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Simple Summary: Chemotherapy is recommended prior to surgical removal of the bladder for
muscle-invasive bladder cancer patients. Despite a survival benefit, some patients do not respond
and experience substantial toxicity and delay in surgery. Therefore, the identification of chemotherapy
responders before initiating therapy would be a helpful clinical asset. To date, there are no reliable
biomarkers routinely used in clinical practice that identify patients most likely to benefit from
chemotherapy and their identification is urgently required for more precise delivery of care. To
address this issue, we compared gene expression profiles of biopsy materials from 30 chemotherapy-
responder and -non-responder patients. This analysis revealed a novel signature gene set and CNGB1
as a simpler proxy as a promising biomarker to predict chemoresponsiveness of muscle-invasive
bladder cancer patients. Our findings require further validation in larger patient cohorts and in a
clinical trial setting.

Abstract: Cisplatin-based neoadjuvant chemotherapy (NAC) is recommended prior to radical cystec-
tomy for muscle-invasive bladder cancer (MIBC) patients. Despite a 5–10% survival benefit, some
patients do not respond and experience substantial toxicity and delay in surgery. To date, there
are no clinically approved biomarkers predictive of response to NAC and their identification is
urgently required for more precise delivery of care. To address this issue, a multi-methods analysis
approach of machine learning and differential gene expression analysis was undertaken on a cohort
of 30 MIBC cases highly selected for an exquisitely strong response to NAC or marked resistance
and/or progression (discovery cohort). RGIFE (ranked guided iterative feature elimination) machine
learning algorithm, previously demonstrated to have the ability to select biomarkers with high pre-
dictive power, identified a 9-gene signature (CNGB1, GGH, HIST1H4F, IDO1, KIF5A, MRPL4, NCDN,
PRRT3, SLC35B3) able to select responders from non-responders with 100% predictive accuracy. This
novel signature correlated with overall survival in meta-analysis performed using published NAC
treated-MIBC microarray data (validation cohort 1, n = 26, Log rank test, p = 0.02). Corroboration
with differential gene expression analysis revealed cyclic nucleotide-gated channel, CNGB1, as the
top ranked upregulated gene in non-responders to NAC. A higher CNGB1 immunostaining score
was seen in non-responders in tissue microarray analysis of the discovery cohort (n = 30, p = 0.02).
Kaplan-Meier analysis of a further cohort of MIBC patients (validation cohort 2, n = 99) demonstrated
that a high level of CNGB1 expression associated with shorter cancer specific survival (p < 0.001).
Finally, in vitro studies showed siRNA-mediated CNGB1 knockdown enhanced cisplatin sensitivity
of MIBC cell lines, J82 and 253JB-V. Overall, these data reveal a novel signature gene set and CNGB1
as a simpler proxy as a promising biomarker to predict chemoresponsiveness of MIBC patients.
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1. Introduction

Bladder cancer is the tenth commonest cancer worldwide with 549,000 new cases and
199,000 deaths reported in 2018 [1]. While 85% of patients present with less aggressive
non-muscle invasive bladder cancer (NMIBC), they have a high risk of recurrence (50–70%)
and up to 25% will progress to more advanced disease [2]. For patients that present
with, or progress to, muscle invasive bladder cancer (MIBC), the mainstay of treatment
is radical cystectomy and radiotherapy [3]. However, 5-year disease-free survival is as
low as 15–35% and up to 50% of patients develop metastasis within two years of surgery
inevitably succumbing to their disease [4]. Failure is usually due to occult micrometastatic
disease present at diagnosis. Cisplatin-based neoadjuvant chemotherapy (NAC), includ-
ing administering regimens such as MVAC (Methotrexate, Vinblastine, Doxorubicin and
Cisplatin), is a promising strategy to achieve pathological downstaging as well as early
eradication of micrometastasis to improve patient survival [3].

High level evidence from two large, randomised trials and two meta-analyses demon-
strated that the MVAC regimen prior to cystectomy resulted in a 5–10% increase in 5-year
cancer-specific survival (CSS) in comparison to cystectomy alone [5–8]. Interestingly, the
5-year CSS for responders to NAC is 90% in contrast to 30–40% for non-responders. How-
ever, only approximately 40% of patients will have a major response to NAC (defined as
absence of muscle-invasive disease and lymph node metastasis; <pT2 and pN0) and benefit
from it. Furthermore, non-responders suffer substantial overtreatment, delay of surgery
and loss of opportunity for further therapy due to physical deterioration from toxicity
or to disease progression. Therefore, identification of a reliable method to stratify NAC
administration based on predicted response is of critical importance for the management
of MIBC patients and may ultimately lead to future personalised medicine. Recent studies
have explored DNA repair gene mutations (ERCC1, ERCC2, BRCA1) [9–12], regulators of
apoptosis (survivin, Bcl-xL) [13], receptor tyrosine kinase mutations (ERBB2) [14], gene
expression signatures [13,15–19], molecular subtypes of bladder cancer [20–23] and alter-
ations in the cellular mechanisms of drug uptake/transport (CTR-1, MDR1) [24,25] as
potential predictors of response to NAC and offer promise for improving patient selection
for such treatment and clinical outcomes. However, to date, no biomarker exists in the
clinical setting to prospectively identify the patients most likely to benefit from NAC.

In this study, we aimed to identify a biomarker to predict response to NAC in MIBC
patients. Biomarker discovery investigations using omics technologies such as microarrays,
next generation sequencing and mass spectroscopy generate large volumes of data for
analysis with bioinformatic tools. A wide range of bioinformatics approaches have flour-
ished, including machine learning methods which are concerned with the development
and application of computer algorithms whose prediction performance improves with
experience [26]. Machine learning methods, and particularly feature selection algorithms,
have been extensively used in biomarker discovery and demonstrated to effectively identify
small but relevant subsets of variables from transcriptomic data sets [27–29]. Specifically
in this study, RGIFE (ranked guided iterative feature elimination) machine learning al-
gorithm [27] was applied to microarray gene expression data from 30 MIBC cases who
received NAC and identified a 9-gene signature (CNGB1, GGH, HIST1H4F, IDO1, KIF5A,
MRPL4, NCDN, PRRT3, SLC35B3) able to differentiate responders from non-responders
with 100% predictive accuracy. This signature also associated with outcome in meta-
analysis performed using published microarray data. Next, a complementary approach
of traditional gene ranking by differential gene expression analysis revealed CNGB1, en-
coding a cyclic nucleotide-gated channel that regulates intracellular cation (Ca2+) flow
and downstream transduction signalling cascades, as the top ranked upregulated gene in
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non-responders to NAC and its expression was validated in a further additional cohort of
MIBC patients and in in vitro studies of MIBC cancer cell lines. In Figure 1, we provide an
overview of the analyses conducted in this study.

Figure 1. Overview of the study. This study represents a multi-methods analysis approach of machine
learning and differential gene expression analysis following performance of gene expression profiling
on a cohort of MIBC patients highly selected for an exquisitely strong response to NAC (responder)
or marked resistance and/or progression (non-responder). Identified gene signatures and top ranked
gene markers were subjected to validation using meta-analysis, immunohistochemistry and in vitro
functional assays. FFPE, formalin-fixed paraffin-embedded; TMA, tissue microarray analysis; MIBC,
muscle-invasive bladder cancer; NAC, neoadjuvant chemotherapy.

2. Results
2.1. Machine Learning Approach to Identify Gene Signatures Predicting Response to NAC

Gene expression profiling using Illumina’s Human Whole-Genome DASL HT Assay
was carried out on 30 MIBC patients that received NAC (Discovery cohort). Clinico-
pathological characteristics are summarised in Table 1. These patients had large burden
of disease with documented incomplete resection specifically selected for an exquisitely
strong chemotherapeutic response or marked resistance and/or progression, therefore
providing a relevant cohort to investigate neoadjuvant administration of chemotherapy
in improving MIBC patient survival. Based on their response to treatment, patients were
categorised into two groups: ‘responders’, patients who achieved downstaging (≤pT1)
and ‘non-responders’, patients who did not achieve downstaging (≥pT2). Microarray gene
expression profiles of tumours from 19 ‘responders’ and 11 ‘non-responders’ were com-
pared. The RGIFE machine learning algorithm was applied to the microarray dataset with
the aim to identify new biomarkers to predict response to NAC (see Materials and Methods
Section 4.3 for detailed description of the algorithm). RGIFE has been demonstrated to
have the capacity to select few biomarkers with high predictive power by utilising an itera-
tive process that discards features if their removal does not decrease the overall predictive
performance of the computational model [27]. Accordingly, RGIFE identified five gene
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signatures able to classify the two patient groups with prediction accuracies of 0.933 to 1.000
(Table 2). CNGB1 (cyclic nucleotide gated channel beta 1), HIST1H4F (histone cluster 1, H4
family member F) and PRRT3 (proline-rich transmembrane protein 3) were genes shared by
all signatures (Figure 2a). Next, signature evaluation was undertaken in published bladder
cancer gene expression dataset by Kim and colleagues comprising 62 MIBC patients with
available survival information (GSE13507, Validation cohort 1, Figure 2b) [30]. Signature 1
(CNGB1, GGH, HIST1H4F, IDO1, KIF5A, MRPL4, NCDN, PRRT3, SLC35B3) significantly
associated with overall survival in MIBC patients treated with NAC (n = 26, Log rank
test, p = 0.02) as demonstrated by Kaplan Meier analysis. Additionally, a SHAP (SHapley
Additive exPlanations) summary plot for Signature 1 provided further insight on the con-
tribution of each gene to response to NAC for patients in the discovery cohort (Figure 2c).
Briefly, such plots are informative in identifying if high/low expression of a particular
gene is strongly associated with a positive or negative outcome in the prediction model
(see Materials and Methods Section 4.5 for detailed description of SHAP). Particularly,
high level expression of HIST1H4F and PRRT3 indicated prediction of a ‘good’ response to
NAC, whereas high level expression of CNGB1 indicated prediction of ‘bad’ response to
NAC. In summary, this machine learning approach identified a signature able to classify
patients based on response to NAC that also associated with patient survival and moreover
identified novel potential biomarkers of NAC response for MIBC patients.

Table 1. Clinicopathological characteristics of MIBC patients examined by gene expression profiling.

Sample Gender Age Preoperative Stage Preoperative Grade TNM Stage After RC Response

good1 Male 71 T2 G2/3 T0 N0 Responder
good2 Female 68 T2 G2/3 T0 N0 Responder
good3 Male 74 T2 G3 Tcis N0 Responder
good4 Male 67 T2 G2/3 T0 N0 Responder
good5 Female 69 T2 G3 T0 N0 Responder
good6 Male 56 T2 G2 Tis N0 Responder
good7 Male 46 T2 G3 T0 N0 Responder
good8 Male 64 T2 G2/3 T0 N1 * Responder
good9 Male 63 T2 G3 T0 N0 Responder

good10 Male 70 T4 G3 T0 N0 Responder
good11 Male 69 T2 G3 T0 N0 Responder
good12 Male 63 T2 G2 T1 N0 Responder
good13 Male 58 T1/2 G3 Tcis N0 Responder
good14 Male 60 T2 G3 T0 N0 Responder
good15 Male 59 T2 G3 T0 N0 Responder
good16 Female 70 T2 G3 Tis N0 Responder
good17 Male 69 T2 G3 T0 N0 Responder
good18 Female 73 T2 G3 T0 N0 Responder
good19 Male 59 T2 G3 T0 N0 Responder

bad1 Male 58 T2 G3 T4a N1 Non-Responder
bad2 Male 71 T2 G3 T3a N0 Non-Responder
bad3 Male 74 T2 G3 T3 N0 Non-Responder
bad4 Male 61 T2 G3 T3b N2 Non-Responder
bad5 Female 63 T2 G2/3 T3a N2 Non-Responder
bad6 Male 65 T2 G3 T2b N0 Non-Responder
bad7 Male 60 T2 G3 T3b N0 Non-Responder
bad8 Male 64 T1/2 G3 T2b N0 Non-Responder
bad9 Male 74 T2 G2 T3a N0 Non-Responder
bad10 Male 58 T2 G3 T3a N0 Non-Responder
bad11 Male 50 T2 G2/3 T4a N2 Non-Responder

TNM, Tumour, Node, Metastasis; RC, Radical Cystectomy; Response, response to neoadjuvant MVAC chemotherapy treatment; Responder,
patient who achieved downstaging (≤pT1) after treatment; Non-Responder, patient who did not achieve downstaging (≥pT2) after
treatment; *, micrometastatic. The p values for gender (Fisher’s exact, p = 0.626), age (t-test, p = 0.672), stage (Fisher’s exact, p = 1.000) and
grade (Fisher’s exact, p = 1.000) were non-significant.
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Table 2. List of signatures identified by machine learning algorithm RGIFE with high prediction accuracy.

Signature Gene Symbol Gene Name Prediction Accuracy

1 CNGB1 cyclic nucleotide gated channel beta 1 1.000 (30/30*)
GGH gamma-glutamyl hydrolase

HIST1H4F histone cluster 1 H4, family member F
IDO1 indoleamine 2,3-dioxygenase 1
KIF5A kinesin family member 5A

MRPL4 mitochondrial ribosomal protein L4
NCDN neurochondrin
PRRT3 proline-rich transmembrane protein 3

SLC35B3 solute carrier family 35, member B3

2 CNGB1 cyclic nucleotide gated channel beta 1 1.000 (30/30*)
HIST1H4F histone cluster 1 H4, family member F
NPEPPS aminopeptidase puromycin sensitive

NUFIP2 nuclear fragile X mental retardation protein
interacting protein 2

OR5P3 olfactory receptor family 5, subfamily P, member 3
PRRT3 proline-rich transmemembrane protein 3
TRMT1 tRNA methyltransferase 1

3 CNGB1 cyclic nucleotide gated channel beta 1 0.967 (29/30*)
HIST1H4F histone cluster 1 H4, family member F

NR5A1 nuclear receptor subfamily 5, group A, member 1
PRRT3 proline-rich transmembrane protein 3

SLC2A4RG solute carrier family 2 member 4 regulator

4 CNGB1 cyclic nucleotide gated channel beta 1 0.967 (29/30*)
HIST1H4F histone cluster 1 H4, family member F

PRRT3 proline-rich transmembrane protein 3
TRMT1 tRNA methyltransferase 1

5 CNGB1 cyclic nucleotide gated channel beta 1 0.933 (28/30*)
HIST1H4F histone cluster 1 H4, family member F

NR5A1 nuclear receptor subfamily 5, group A, member 1
PRRT3 proline-rich transmembrane protein 3

* Number of correctly classified samples over the total size of the dataset.

2.2. Differential Gene Expression Analysis to Corroborate Machine Learning Data

To contrast and further validate the findings from the machine learning approach, we
next undertook a classical and non-machine learning approach of conventional differential
gene expression analysis of the Discovery cohort. This approach enabled us to capitalise
on the strengths of each method and aid in the more accurate evaluation of predictive
biomarker candidates. Gene ranking identified genes differentially expressed between
‘responders’ and non-responders’ to NAC (Figure 3a). Ranked gene lists were generated
and revealed FSD1 (fibronectin type III and SPRY domain containing 1) as the top ranked
upregulated gene in ‘responders’ and CNGB1 as the top ranked upregulated gene in
‘non-responders’ to NAC (Figure 3b–d, Tables S1 and S2). CNGB1 was shared by all five
signatures identified by RGIFE (Figure 2a and Table 2) and its high expression indicated
as a predictor of ‘bad’ response to NAC by SHAP analysis (Figure 2c). Additionally,
two further genes ranked in the list of genes upregulated in ‘non-responders’ were also
identified in three of the signatures selected by RGIFE (Figure 3c and Table 2). Specifically,
OR5P3 (olfactory receptor 5P3) was identified in signature 2 and NR5A1 (nuclear receptor
subfamily 5, group A, member 1) in signatures 3 and 5. Other genes upregulated in ‘non-
responders’ included a further cyclic nucleotide gated channel and interacting partner
of CNGB1, CNGA1, receptor tyrosine kinase ligand NRG4, calcium-sensing CALML3,
CALML5 and S100A7A, apoptosis associated DAPL1 and solute transporters SLC26A5,
SLC9A4 and SLC45A2 (Figure 3c, Table S2). Of note, HIST1H4F, identified by RGIFE in
all five signatures and as a predictor of response by SHAP analysis, was upregulated in
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‘responders’ (Figures 2a,c and 3b and Table 2). Other genes upregulated in ‘responders’
included receptor tyrosine kinase ligand NRG1, protease inhibitor SERPINB3, trefoil factor
TFF1 and exoribonuclease XRN2 (Figure 3b, Table S1).

Figure 2. Machine learning approach to identify gene signatures predicting response to NAC.
(a) Gene commonality of signatures identified by RGIFE machine learning algorithm, (b) A Cox
proportional hazards regression analysis was performed to assess the relationship between expression
of Signature 1 and overall survival in the Kim et al. dataset (Validation cohort 1) [30]. The model
generated a survival risk estimate from the panel of markers comprising Signature 1 based on
survival time and overall survival status. The model assigned a survival risk to each sample. The
cohort was divided into two equally sized groups by the median risk (‘low risk’ and ‘high risk’).
Kaplan-Meier plot shows Signature 1 significantly associated with overall survival in MIBC patients
treated with NAC (n = 26, Log rank test, p = 0.02) in Validation cohort 1, (c) SHAP summary plot
showing the contribution that each gene of Signature 1 has in the prediction of good response for
each patient sample in the Discovery cohort (SHAP value, the estimation of the contribution that
each specific gene has in the prediction of good response for a given sample). A positive SHAP value
indicates contribution to predicting good response to NAC. A negative SHAP value reflects a lack of
support for predicting good response to NAC. i.e., contributes to predicting bad response. Blue and
red points indicate low and high expressions of a gene, respectively.

2.3. CNGB1 Is Upregulated in ‘Non-Responders’ to NAC and Associates with MIBC
Patient Survival

Since both machine learning and differential gene expression analysis suggest CNGB1
as a marker of non-response to NAC, we next validated its expression using a tissue
microarray comprising tumours from the 30 MIBC patients treated with NAC used in the
gene expression profiling analysis (Discovery cohort); thus, acting as an internal validation
on a protein level of the Discovery cohort (Figure 4a). Significant upregulation of CNGB1
immunostaining score was seen in ‘non-responders’ compared to ‘responders’ (‘responder’
score 2.1 ± 0.1 vs. ‘non-responder’ score 2.6 ± 0.2) (Figure 4b, t-test, p = 0.02). We further
evaluated CNGB1 expression using a tissue microarray comprising tumours from our own
cohort of 99 patients with MIBC (Validation cohort 2, Table S3). Kaplan-Meier survival
analysis demonstrated that a high expression of CNGB1 (CNGB1hi, n = 50) associated with
shorter CSS compared to low expressing patients (CNGB1lo, n = 49), indicating that high
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levels of CNGB1 expression were associated with a poor prognosis (Log rank test, p < 0.001,
Figure 4c).

Figure 3. Differential gene expression analysis to corroborate machine learning data. (a) Heat map of genes differentially
expressed by ‘responders’ and ‘non-responders’ in the Discovery cohort. Rows, single gene; columns, single patient. Each
cell in the matrix represents the expression level of a single transcript in a single sample with red indicating upregulation
and blue indicating downregulation compared with the median expression for that gene across all samples. (b) Top 10 genes
upregulated (>3-fold) in ‘Responders’ to NAC. For full list, see Table S1. (c) Top 10 genes upregulated in ‘Non-Responders’
to NAC. For full list, see Table S2. (d) Box plot demonstrating CNGB1 gene expression was upregulated in ‘Non-Responders’
compared to ‘Responders’ (p = 0.029).
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Figure 4. CNGB1 is upregulated in ‘Non-Responders’ to NAC and associates with MIBC patient
survival. (a) Examples of low (CNGB1lo) and high (CNGB1hi) levels of CNGB1 expression in
MIBC patient tissue cores. (b) Comparison of CNGB1 immunostaining score between ‘Responder’
and ‘Non-Responder’ patients, a protein-based validation of the Discovery cohort (n = 30, t-test,
* p < 0.05). (c) Correlation of CNGB1 expression with cancer specific survival by Kaplan-Meier
analysis (Validation cohort 2; n = 99, Log rank test, p < 0.001).

2.4. In Vitro Functional Validation of CNGB1 in MIBC Cells

Our two independent approaches of machine learning and differential gene expression
analysis along with survival analysis of MIBC patient cohorts suggest CNGB1 as a novel
marker to predict response to NAC in MIBC patients. To determine whether CNGB1 had a
functional link to chemosensitivity in MIBC, in vitro validation studies were undertaken in
MIBC cell lines, J82 and 253JB-V. Specifically, the effect of cisplatin, as a proxy for cisplatin-
based NAC, (GI50 = 1.5 µM for J82 and GI50 = 2.5 µM for 253JB-V) on MIBC cell growth
was assessed following knockdown of CNGB1 (siCNGB1) expression (Figure 5a, Figure S1).
Knockdown of CNGB1 decreased growth of cisplatin treated MIBC cells compared to non-
silencing control (siCTRL) cisplatin treated cells, -suggesting a role in cisplatin sensitivity
(Figure 5b).
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Figure 5. CNGB1 knockdown enhanced cisplatin sensitivity. (a) Confirmation of CNGB1 knockdown
in J82 and 253JB-V MIBC cells by western blot analysis. α-tubulin was used as a loading control.
(b) The effect of cisplatin, as a proxy for NAC, was assessed on the growth of J82 and 253JB-V
cells following knockdown of CNGB1 for 48 h. Mean growth fold change relative to siCTRL was
calculated for cisplatin treated cells (n = 3 experimental repeats, t-test, * p < 0.05).

3. Discussion

To date, there are no clinically approved biomarkers predictive of response to NAC
and identification of such predictors remains crucial for the selection of the most effective
treatment for MIBC patients. To address this clinical urgency, a mutli-methods analysis
approach of differential gene expression and machine learning methods was undertaken
on a cohort of MIBC patients highly selected for an exquisitely strong chemotherapeutic
response or marked resistance and/or progression. This approach identified a 9-gene
signature able to select responders from non-responders with 100% accuracy which further
showed significant association with survival in our limited external validation and also
highlighted CNGB1 as a promising potential biomarker to predict chemoresponsiveness
of MIBC patients through validation in internal and external patient cohorts as well as
in vitro studies.

Multiple signatures predicting response to NAC have been reported previously in
MIBC, identifying markers such as survivin, IPO7, TOP2A, PIR51, RACGAP1 and solute
carriers such as SLC16A3 and SLC22A18 [13,15–18]. Even though none have been incor-
porated into routine clinical practice so far, they have provided positive steps towards
achieving a precision medicine approach for the treatment of this disease. The signature
identified in the present study appears mutually exclusive of previous studies, possibly
reflecting the study design performed with the purposely selected patient cohort based
on strict criteria for chemotherapeutic response. The interplay between bladder tumour
biology, chemotherapy response and resistance mechanisms are complex. Recently, it has
been suggested molecular subtyping may impact patient benefit to NAC [20–23]. Molec-
ular subtypes have been discovered that are associated with specific clinicopathological
characteristics and differential sensitivity to treatments. It will be interesting to interrogate
expression of our signature and CNGB1 in these subtypes particularly those expected to be
resistant to NAC, such as the p53-like expression subtype.
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Our analysis led to the identification of CNGB1, which encodes for one of the subunits
that compose cyclic nucleotide-gated channels (CNGs). CNGs belong to the superfamily
of voltage-gated ion channels and are key components for signal transduction by con-
trolling the influx of cations, including Ca2+ ions, in response to signal-induced changes
of cGMP or cAMP levels [31]. CNGs were first identified in retinal photoreceptors and
olfactory sensory neurons, in which their function has been extensively studied [32,33].
Interestingly, Olfactory receptor 5P3 (OR5P3), a G-protein coupled-receptor also expressed
by olfactory receptor neurons, was similarly upregulated in ‘non-responders’ and also
identified in Signature 2 by RGIFE. CNGs expression has also been seen in other tissues
including brain, liver and kidney, though their function in non-sensory cells is not as well
understood [34]. Recently, a clinically aggressive variant of bladder cancer, sarcomatoid
carcinoma, was shown to carry frequent mutations of CNGB1 [35]. CNGs form heterote-
tramers composed of up to three different types of subunits that determine the channel’s
functional features, including CNGA1 which was also observed to be upregulated by ‘non-
responders’ [36]. For example, rod photoreceptors comprise three CNGA1 subunit and
one CNGB1 subunit, with the latter conferring Ca2+/Calmodulin-dependent modulation
of channel activity. Upregulation of calcium-sensing proteins CALML3, CALML5 and
S100A7A was also noted in ‘non-responders’. Previously, a correlation of S100A7A (also
known as psoriasin) expression with poor bladder cancer survival was seen [37]. A role
for other S100 family of calcium-binding proteins in bladder cancer cisplatin sensitivity
has also been reported [38,39]. Interestingly, HIST1H4F, identified by both RGIFE and
differential gene expression analysis, has been shown previously to be part of a prognostic
signature [40].

Calcium ions are one of the most important cellular messengers in biology and have
been implicated many hallmarks of cancer [41]. Several drugs have been reported to block
CNG channels including calcium channel blockers currently used in clinical practice in the
management of high blood pressure, angina and cardiac arrhythmias, including dihydropy-
ridines (e.g., nifedipine), phenylalkylamines (e.g., verapamil) and benzothiazepines (e.g.,
diltiazem) as well as the local anaesthetic tetracaine and calmodulin antagonists [32,42,43].
Calcium channel blockers can also enhance chemotherapy cytotoxicity by blocking the
multidrug resistance protein P-glycoprotein, which through its function as an adenosine
triphosphate-dependent drug efflux pump reduces intracellular chemotherapeutic drug
accumulation [44]. Based on our proof-of-principle, future studies and clinical trials could
explore calcium channel blockers as a clinical target for MIBC patients. Repurposing
of approved calcium channel blockers could be a promising therapeutic approach for
‘non-responder’ MIBC patients to NAC.

Our multi-methods analysis approach of machine learning and differential gene
expression analysis produced results consistent to each other and identified a signature and
a candidate gene that appear to be promising and have provided an early compelling signal.
However, we note that our validation focused primarily on CNGB1 and investigation of
our 9 gene signature (Signature 1) in other publicly available NAC-treated MIBC patient
cohorts was limited. Additionally, determining whether the prediction accuracy of the
signature is superior to that of the genes identified by differential gene expression analysis
is warranted. Indeed, larger scale validation analysis is essential and would allow more
definitive confirmation for the potential of the signature and CNGB1 as a biomarker to
predict chemoresponsiveness of MIBC patients.

4. Materials and Methods
4.1. Patient Cohorts

All patient tissue samples were used in accordance with approval granted by the
Northumberland, Tyne and Wear NHS Strategic Health Authority Research Ethics Com-
mittee (reference 2003/11; The Freeman Hospital) and informed consent from all patients.

This study consisted of a MIBC patient sample set used for microarray gene expres-
sion profiling that was analysed by machine learning and differential gene expression
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approaches and further used for tissue microarray analysis (TMA, Discovery cohort).
The demographic and clinicopathological characteristics are described in Table 1. All pa-
tients were histologically confirmed having pT2-T4G2-G3 transitional cell carcinoma of the
bladder and were treated in the period from August 2002 to July 2010. A total of 30 sam-
ples were selected for microarray analysis (5 women and 25 men; median age, 64; range,
46–74 years). Patients underwent transurethral resection of bladder tumour and were
referred for conventional 4 cycles of neoadjuvant platinum-based chemotherapy (MVAC).
Patients underwent radical cystectomy and bilateral pelvic lymph node dissection.

A published microarray dataset of MIBC patients was used for validation (GSE13507,
Validation cohort 1 [30]).

An additional MIBC patient sample set (Validation cohort 2) was used also for valida-
tion by TMA analysis. The demographic and clinicopathological characteristics for this
cohort, comprising 99 MIBC samples, are described in Table S3.

4.2. Tissue Sampling and Gene Expression Profiling

FFPE tissue samples were histologically examined to identify tumour regions. Sample
cores (n ≥ 3) taken using a 0.6 mm core punch were deparaffinised in xylene for 5 min,
rehydrated in 100% ethanol for 2 min (twice) and dried for 10 min at 55 ◦C. Tissue pellets
were digested in 100 µL tissue lysis buffer with 16 µL 10% SDS and 40 µL Proteinase K
overnight at 55 ◦C. Total RNA was extracted using High Pure RNA Paraffin kit (Roche,
Basel, Switzerland). Gene expression profiling of samples was performed using Illumina’s
Human Whole-Genome DASL HT Assay (Illumina, San Diego, CA, USA). Preparation of
cDNA, DASL assay, hybridisation to Human HT-12 v4 expression beadchip, data collec-
tion and analysis (VisualSense) was carried out by Cambridge Genomic Services (GSC,
Cambridge, UK).

4.3. Machine Learning Identification of Reduced Biomarker Panels

In order to identify candidate genes with good discriminative power between sample
groups, we have used our own machine learning algorithm called RGIFE (Rank-Guided
Iterative Feature Elimination). This algorithm was designed to identify reduced and
highly discriminative panels of biomarkers from high-throughput omics data [27] and
has shown good performance across a variety of scenarios including omics technologies
(transcriptomics, proteomics) and diseases (cancer, osteoarthritis) [27–29]. RGIFE starts by
considering all potential biomarkers as candidates, and iteratively some are dropped if their
removal has no negative effect on the predictive capacity of a Random Forest (RF) machine
learning algorithm. The predictive performance of the RF models is estimated from our
data using a variant of stratified 10-fold cross-validation called DB-SCV (Distributed-
balanced stratified cross-validation) [45] which is designed to create folds with more
uniform data distribution than the standard cross-validation procedure, leading to more
reliable estimates of predictive capacity as shown in [46]. This data partitioning process
and predictive capacity estimation is performed within the RGIFE algorithm in order to
select models having good predictive capacity on unseen data. The order in which features
are removed is determined by the ranking of feature importance produced by RF as part of
its training process. Initially RGIFE will attempt to remove blocks of 25% of the number of
features. If the trial to remove a block fails (because its removal led to a model of worse
quality) the algorithm will attempt to remove another block, following the ranking of
features produced by RF. After five consecutive failed trials, the block size will be divided
by 4 and the process will start again by attempting to remove the block at the bottom of the
ranking. Once the block size is reduced to 1, the algorithm will stop after five unsuccessful
trials and will return the remaining features as the final panel, hence automatically deciding
when to stop the iterative feature elimination process. As this is a stochastic algorithm (due
to both RF and the internal cross-validation process) running RGIFE multiple times can
generate different biomarker panels. We have repeated this process five times to generate
different biomarker signatures. For a full description of the algorithm see [27].
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Furthermore, permutation tests were run to further evaluate the discriminative power
of our signature of interest (Signature 1). To this aim we generated 1000 versions of the
dataset in which the class labels (responder vs. non-responder) were scrambled. The
purpose of this statistical test was to determine if this panel would be able to predict any
set of class labels with the same distribution of responders and non-responders, i.e., if
we break the link between inputs and outputs, can we still learn equally good models?
For each permutation we trained and tested random forest models again using ten-fold
cross-validation. After all permutations were generated and models trained and tested
from these, the final step was to run a normality test to determine if the accuracy of 1
obtained from the original dataset would be part of the distribution of accuracies from
the permutations. The permutations had an average accuracy was 0.58 ± 0.08, and the
statistical tests was rejected with a p-value of 2.15 × 10−12.

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the
output of any machine learning model [47]. Using game theory, it fits a surrogate linear
model on top of the RF model that enables the estimation of the contribution of each feature
to each individual prediction made by the model, i.e., the SHAP values. Such values are
estimated for each class in a dataset. If the SHAP value is positive for a class, it means that
it is strongly contributing to the prediction of that class. A negative SHAP value reflects a
lack of support for predicting such class.

4.4. Differential Expression Analysis

We used the limma R package to identify differentially expressed genes with the
Empirical Bayes (eBayes) method to compute moderated t-statistics tests, adjusted for
multiple comparisons with the Benjamini and Hochberg correction.

4.5. Immunostaining of Tissue Microarrays

Immunohistochemistry was performed using tissue microarrays containing 0.6-mm
cores of MIBC and control tissues including breast, kidney, placenta, ovary and liver as
described [48]. Sections were stained with anti-CNGB1 (1:2000; Novus Biologicals, Littleton,
CO, USA) and viewed using Aperio CS2 (Leica Biosystems, Wetzlar, Germany). Negative
controls were prepared by incubating without the primary antibody. Immunostaining was
reviewed and scored independently by two assessors that were blinded to the clinical data
to give average scores of staining intensity of absent (0), weak (1), moderate (2) or strong (3).
High (CNGB1hi) and low (CNGB1lo) levels of CNGB1 expression were compared. ‘High’
expression was any single score ≥ 2.5, or an average score of ≥1.5 and ‘low’ expression
was any score ≤ 1.

4.6. Cell Culture

Human bladder cancer cells J82 were obtained from the American Type Culture
Collection (ATCC, HTB-1, Mannasas, VA, USA) and cultured in RPMI 1640 (Sigma, St Louis,
MO, USA) supplemented with 10% fetal bovine serum (FBS) and 1% L-glutamine. The
highly metastatic human TCC cell line 253JB-V was generously provided by Prof CP
Dinney [49] and cultured in MEMalpha media supplemented with 5% FBS. All cells were
grown at 37 ◦C in the presence of 5% CO2.

4.7. Western Blotting

Cells were lysed and analysed by SDS-PAGE as previously described [44]. Antibodies
used where: anti-CNGB1 1:1000 (Millipore, cat. no. MABN282, Burlington, MA, USA) and
anti-α-tubulin 1:4000 (Sigma, cat. no. T9026, St Louis, MO, USA).

4.8. siRNA Transfections

Cells were reverse transfected with siRNA using RNAiMax (Invitrogen, Waltham, MA,
USA) according to the manufacturer’s instructions at a final concentration of 25 nM. siRNA
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sequence used for Scrambled (siCTRL) was 5′-UUCUCCGAACGUGUCACGUdTdT-3′.
siRNA sequence used for CNGB1 (siCNGB1) was purchased from Dharmacon (product
code J-006160-06-0002, Lafayette, CO, USA).

4.9. Cell Growth Assay

Cells were seeded into 96-well plates at a density shown to give exponential growth and
approximately three cell doublings throughout the exposure period, that is 1 × 103 cells/well
for J82 cells and 2.5 × 103 cells/well for 253JB-V cells, in 100 µL tissue culture medium. Six
wells were seeded per experimental arm. Cells were reverse transfected with 25 nM siRNA
using RNAiMax according to the manufacturer’s protocol (Invitrogen, Waltham, MA, USA).
Following 48 h knockdown, cells were treated with cisplatin (GI50 = 1.5 µM for J82 and
GI50 = 2.5 µM for 253JB-V) for 24 h. Cell viability was assessed with Sulforhodamine B
(SRB) assay. Briefly, 50 µL of 50% trichloroacetic acid was added to each well and plates
were incubated at 4 ◦C for 1 h. Plates were rinsed with distilled H2O and 100 µL of 0.4%
SRB in 1% acetic acid was added to each well. Plates were incubated for 30 min at room
temperature, and then rinsed with 1% acetic acid. SRB was solubilized with 100 µL of
10 mM Tris buffer pH 10.2 for 20 min with shaking. Absorbance values were measured on
a microplate reader at 570 nm.

4.10. Statistical Analysis

Patient survival was analysed using the Kaplan-Meier method using the R survival
package (SPSS, Chicago, IL, USA). For immunostaining score analysis and cell growth
studies, the two-tailed paired t-test was used to determine statistical significance at a level
of p < 0.05.

5. Conclusions

Our approach of multi-methods analysis of machine learning and differential gene
expression analysis, using a purposely selected patient cohort based on strict criteria for
chemotherapeutic response proceeded with validation in internal and external patient
cohorts as well as in vitro studies, identified a novel gene signature able to select responders
from non-responders with high predictive accuracy and highlighted CNGB1 as a simpler
proxy as a promising potential biomarker to predict chemoresponsiveness of MIBC patients.
Our signature gene set and the role of CNGB1 as a simpler proxy warrants additional larger
scale validation in similar established cohorts of patients stratified based on response
to NAC and ideally in trials of biomarker directed therapy in improving survival for
MIBC patients.
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