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Different penalty methods for assessing interval from first to 
successful insemination in Japanese Black heifers

Asep Setiaji1,2,3 and Takuro Oikawa1,2,*

Objective: The objective of this study was to determine the best approach for handling miss­
ing records of first to successful insemination (FS) in Japanese Black heifers. 
Methods: Of a total of 2,367 records of heifers born between 2003 and 2015 used, 206 (8.7%) 
of open heifers were missing. Four penalty methods based on the number of inseminations 
were set as follows: C1, FS average according to the number of inseminations; C2, constant 
number of days, 359; C3, maximum number of FS days to each insemination; and C4, average 
of FS at the last insemination and FS of C2. C5 was generated by adding a constant number 
(21 d) to the highest number of FS days in each contemporary group. The bootstrap method 
was used to compare among the 5 methods in terms of bias, mean squared error (MSE) and 
coefficient of correlation between estimated breeding value (EBV) of non-censored data and 
censored data. Three percentages (5%, 10%, and 15%) were investigated using the random 
censoring scheme. The univariate animal model was used to conduct genetic analysis. 
Results: Heritability of FS in non-censored data was 0.012±0.016, slightly lower than the 
average estimate from the five penalty methods. C1, C2, and C3 showed lower standard errors 
of estimated heritability but demonstrated inconsistent results for different percentages of 
missing records. C4 showed moderate standard errors but more stable ones for all percentages 
of the missing records, whereas C5 showed the highest standard errors compared with non-
censored data. The MSE in C4 heritability was 0.633×10–4, 0.879×10–4, 0.876×10–4 and 0.866 
×10–4 for 5%, 8.7%, 10%, and 15%, respectively, of the missing records. Thus, C4 showed the 
lowest and the most stable MSE of heritability; the coefficient of correlation for EBV was 
0.88; 0.93 and 0.90 for heifer, sire and dam, respectively. 
Conclusion: C4 demonstrated the highest positive correlation with the non-censored data 
set and was consistent within different percentages of the missing records. We concluded 
that C4 was the best penalty method for missing records due to the stable value of estimated 
parameters and the highest coefficient of correlation.

Keywords: Interval First to Successful Insemination; Japanese Black Heifer; Penalty Method; 
Bootstrap; Heritability

INTRODUCTION 

Reproduction traits are important components from various breeding aspects, which have 
a large bearing on production and profitability. As in other livestock species, reproductive 
traits of beef cattle tend to be of low heritability [1]. Reproductive traits of heifers are measured 
relatively early in their productive life and have positive genetic correlations with reproduc­
tive and yield traits in dairy cows [2]. Thus genetic analysis of reproductive traits in heifers 
should be conducive to the improvement of reproductive performance without loss of genetic 
progress in yield traits.
  The interval from first to successful insemination (FS) is the number of days between the 
first insemination and the insemination that results in conception. The FS in heifers has 
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moderate heritability and high genetic correlation with the 
reproductive performance of cows, especially with FS and days 
open [3]. A problem in evaluating FS of heifers is the high 
number of unsuccessful inseminations termed “open heifer”. 
Farmers tend to cull heifers that do not conceive after a series 
of inseminations in that early culling can reduce the cost of 
feeding the animals. In the present study, heifers that did not 
conceive were culled and categorized under “missing FS re­
cord”. Thus, records of all animals are crucial for valid genetic 
analysis. 
  For solving the problem of missing records, several penalty 
methods have been proposed by animal geneticists: Adding 
21 days to the largest record within a contemporary group, 
has been proposed based on the estrous cycle of female cattle 
[4]. Adding a constant number of 30, 60, or 90 days to a miss­
ing record, has been proposed, based on the number of months 
after the last insemination [5]. In this study, we set up one ap­
proach based on the number of inseminations and another 
based on the estrous cycle of female cattle. The objective of this 
study is to determine the best approach for handling missing 
records of heifer reproductive traits, for estimating the genetic 
parameters and for predicting the breeding value of FS in 
Japanese Black heifers.

MATERIAL AND METHODS

Data set
Reproduction records of Japanese Black heifers were obtained 
from Artificial Insemination Center of Northern Okinawa. 
A data set consisted of records of artificial insemination, calv­
ing events and FS in heifers. The data set was edited by the 
following requirement: heifers born between 2003 and 2015, 
first insemination of heifers between 2005 and 2016, and farms 
with a minimum of five records. The final data set comprised 
2,367 records of heifers from 164 farms, including 206 (8.7% 
of the total) missing records. The data structure is presented 
in (Table 1). The FS is computed as the interval in days be­
tween the first insemination date and the last insemination 
date that resulted in conception. Three percentages (5%, 10%, 
and 15%) of the records were investigated with the use of a 
random censoring scheme. 

Penalty method 
Two penalty approaches were used in this study: i) based on 
the number of inseminations, ii) based on the estrous cycle 
of female cattle. The FS days tend to be prolonged with the 
increasing number of inseminations, and based on this rela­
tionship, four penalty methods, coded C1, C2, C3, and C4, 
were set up. The last penalty method (C5) was based on the 
estrous cycle of female cattle [4]. When P is days of penalty, 
the methods are:

i) C1: average FS according to the number of inseminations. 
P = nx, where nx is the average number of FS days at the 
number of times till the last insemination plus one.

ii) C2: constant number of days (359), derived from the 
highest expectation of FS in the records, P = nm, where 
nm = 359. 

iii) C3: maximum number of FS days to each insemination. 
P = nn, where nn is the maximum number of FS days to 
the nth insemination.

iv) C4: average of nx and nm, where nx is the average number 
of FS days at the number of times till the last insemi­
nation.

v) C5: a constant number (21 d) was added to the highest 
number of FS days in each contemporary group. P = ng+ 
21, where ng is the maximum number of FS in each con­
temporary group.

Statistical analysis
The general linear model (GLM) procedure of SAS 9.3 software 
[6] was used for preliminary analysis to test the significance 
of environment effects. The linear model used for FS was as 
follows:

  yijklmn = Fi+Yj+Mk+Tl+Am+eijklmn

where yijklmn is the observation of FS, Fi the ith fixed effect of 
farm, Yj the jth fixed effect of year of insemination, Mk the kth 
fixed effect of month of insemination, Tl the lth fixed effect 
of artificial insemination (AI) technicians, Am the mth fixed 
effect of age class of heifers and eijklmn the random residual of 
yijklmn. 
  Genetic parameters were estimated using the univariate 
animal model by restricted maximum likelihood; estimated 
breeding value (EBV) for animals was predicted by the BLUP 
method using Asreml software [7]. Statistics for the mixed 
model analysis is 

  y = Xb+Gu+e, 

where, y = a vector of observation, b = a vector of fixed effect 
of farm and AI technician, X = an incidence matrix for the 
fixed effects, u = a vector of random genetic additive effect, 

Table 1. Structure of source data 

Class Number

Heifer with data 2,161
Open heifer 206
Sire 101
Dam 1,317
Farm 164
Age1) 3
Animal in pedigree 15,600

1) Age class: < 16, 16 to 19 and > 19 month.
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Z = an incidence matrix for the random effect, and e = a vec­
tor of random residuals. 

  The expectations for y, u, and e are 
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 the additive genetic 
variance and residual variance, respectively.

Bootstrap method
The bootstrap method is one of the most powerful variance 
estimation techniques applied to complex sample statistics, 
whereby simulation is conducted to generate multiple data sets 
from an original data set [8]. The principle of bootstrap is based 
on resampling of records from a current data set, that is com­
posed of pseudo samples distributed according to the same 
distribution as of the original sample. A data set with missing 
values is generated by a random sampling scheme from the 
original data by replacement. Although each resampled data 
set has the same number of observations as the original sam­
ple, the composition of the data set is different. Therefore, each 
of these data sets randomly deviates from the original data set. 
  In the present study, the bootstrap method was used to 
compare five penalty methods in terms of bias, mean squared 
error (MSE) and the accuracy of EBV. Resampling was gen­
erated 100 times from the original data. The bias and error 
variance computation requires between 50 and 200 resam­
plings [9]. The number of bootstrap replications suggested is 
a minimum of 100 for standard error estimation [10]. None­
theless, an approach using the bootstrap technique has been 
proposed for obtaining robust estimates of heritability [11] 

and [12]. In the present study, the steps of bootstrap were as 
follows:

i) Generate a resampled data set 100 times from the original 
(non-censored) data.

ii) Choose 8.7% of missing records within each resampling 
data set by the random censoring scheme.

iii) Estimate genetic parameters and predict EBV for each 
data set.

iv) Calculate the average of genetic parameters and predicted 
EBV.

v) Compare the penalty methods by bias and MSE of heri­
tability and correlation of EBV with a non-censored data 
set.

vi) Repeat steps 1 to 5 for three other percentages (5%, 10%, 
and 15%) to assess the influence of different proportions 
of missing records on the inference. 

RESULTS 

Results of GLM of non-genetic effects for FS with the use of 
non-censored data are presented in Table 2. The fixed model 
analysis showed that the effects of farm and the AI technician 
were statistically significant, while other factors did not show 
any significant effect. Accordingly, only the farm and the AI 
technician were included in the model for estimation and pre­
diction. Table 3 show the basic statistics of FS in the penalty 
methods at each percentage of the missing records. The mean 
FS in C5 was higher than in the other methods. On the other 
hand, among the methods based on the number of insemi­

Table 3. Basic statistics of first to successful insemination in the penalty methods at each percentage of missing records

Method

Percentage of missing

5% 8.7% 10% 15%

Mean SD Mean SD Mean SD Mean SD

C1 59.34 72.64 64.78 78.12 65.69 91.63 70.73 92.33
C2 72.18 82.34 78.18 86.47 80.21 87.58 93.03 95.84
C3 60.26 71.02 64.93 75.52 68.16 78.13 72.89 82.88
C4 64.83 78.36 68.45 80.29 71.87 81.43 78.15 87.52
C5 107.43 120.60 111.35 123.04 113.23 124.97 119.12 131.26

SD, standard deviation.

Table 2. Statistical significance of non-genetic effects of first to successful 
insemination for non-censored data

Effect DF Mean square F value Probability

Farm 163 21136.68 2.21 0.0448
Year 11 19814.45 2.07 0.0941
Month 11 7847.10 0.82 0.6242
AI technician 5 46399.24 4.84 0.0139
Age 2 29934.07 3.12 0.0715

DF, degrees of freedom; AI, artificial insemination.
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nations, the highest and the lowest mean FS was observed in 
C2 and C3, respectively.
  Additive genetic variances, error variances and heritability 
for non-censored data and five different penalty methods are 
shown in Table 4. The estimated genetic variance, residual 
variance and heritability of the non-censored data set were 
136.15; 10,527; 0.012, respectively. C1 showed high heritability 
ranging between 0.011±0.019 and 0.014±0.016. The lowest 
heritability was 0.009±0.017 and the highest was 0.015±0.019 
in C2. C3 also showed heritability ranging between 0.008± 
0.019 and 0.015±0.019. C4 demonstrated medium heritability, 
whereas C5 showed unstable heritability. All penalty methods 
showed large standard errors of heritability. 
  Bias of estimated heritability in five penalty methods is pre­
sented in Table 5. C1 and C2 had bias ranging between 0.61 
and 1.91 and between 0.54 and 2.71, respectively. The same 
trend was observed in both methods, where the lowest bias 
occurred in 10% and the highest in 15% of the missing records. 
The bias in C3 ranged between 0.79 and 2.54, with the lowest 
in 5% and the highest in 10%; in 8.7% it was lower than in the 
other penalty methods. The bias in C4 ranging between 0.48 
and 2.49, demonstrated fluctuation within different percent­
ages of the missing records. C5 showed the highest bias among 
the penalty methods at all percentages of missing records.
  The MSE of estimated heritability in five penalty methods 

is presented in Table 6. The result showed that C1 had the 
highest MSE in 8.7%, and a variable MSE between different 
percentages of missing records. C2 showed a moderate MSE, 
ranging between 1.047 and 1.552, and the trend increased as 
the percentage of missing records became higher. C3 showed 
a low MSE, the lowest occurring in 5% and increasing as miss­
ing records increased. The highest MSE was observed at 15% 
of missing records. C4 showed a moderate MSE of estimated 
heritability, ranging between 0.633 and 0.879. C5 had a larger 
MSE ranging between 1.423 and 1.876. 
  The average correlation between the EBV of the five pen­
alty methods and the EBV from the non-censored data set is 
shown in Table 7. The correlation in C1 in 8.7% of the miss­
ing records was 0.82, 0.84, and 0.83 for heifer, sire and dam, 
respectively. The correlation between C1 and non-censored 
data was high in 5% and decreased as the percentage of miss­
ing records increased. C2 and C3 showed moderate correlation 
in 8.7% (0.81, 0.87, and 0.83) and (0.86, 0.90, and 0.86) for 
heifer, sire and dam, respectively. The highest correlation was 
found in C4 (0.88, 0.93, and 0.90) for heifer, sire and dam, re­
spectively. C5 showed the lowest correlation (0.41, 0.46, and 
0.41) for heifer, sire and dam, respectively, with the same trend 
as in C1, C2, and C3 in terms of different missing records. 

DISCUSSION 

Estimated parameters
Heifers that have a true FS are those with successful insemi­
nation, gestation and calving. Eliminating an open heifer from 
the data set would yield biased or underestimated genetic pa­
rameters [13]. In the present study, genetic and error variances 
tended to be large when the penalty data were included, and 

Table 4. Genetic variance, error variance and heritability of first to successful 
insemination for non-censored data and for each percentage of missing records 
in five penalty methods

Method Percentage of 
missing σ2

g σ2
e h2±SE

non-censored data 136.15 10,527 0.012 ± 0.016
C1 5% 193.76 13,808 0.014 ± 0.016
C2 199.07 14,669 0.013 ± 0.019
C3 172.65 13,190 0.013 ± 0.019
C4 140.31 11,366 0.012 ± 0.018
C5 891.07 61,925 0.015 ± 0.023
C1 8.7% 210.95 14,654 0.014 ± 0.020
C2 250.54 16,743 0.015 ± 0.019
C3 197.07 13,887 0.015 ± 0.019
C4 151.25 13,260 0.011 ± 0.018
C5 1051.6 104,080 0.010 ± 0.021
C1 10% 217.59 15,943 0.013 ± 0.019
C2 224.08 18,066 0.012 ± 0.017
C3 113.86 13,599 0.008 ± 0.019
C4 171.63 16,469 0.010 ± 0.018
C5 1694.5 111,500 0.015 ± 0.021
C1 15% 231.04 20,307 0.011 ± 0.019
C2 199.11 21,068 0.009 ± 0.017
C3 263.13 16,743 0.008 ± 0.019
C4 139.81 14,035 0.010 ± 0.019
C5 2033.8 161,740 0.012 ± 0.022

σ2
g, additive genetic variance; σ2

e, error variance; h2, heritability; SE, standard error.

Table 5.  Bias of estimated heritability (×10–3) in five penalty methods

Method
Percentage of missing 

5% 8.7% 10% 15%

C1 1.47 1.12 0.61 1.91
C2 0.64 1.17 0.54 2.71
C3 0.79 1.05 2.91 2.54
C4 0.48 2.12 0.57 2.49
C5 2.18 2.39 2.53 2.67

Table 6. Mean square error (×10–4) of estimated heritability in five penalty 
methods

Method
Percentage of missing 

5% 8.7% 10% 15%

C1 0.776 1.899 1.344 1.453
C2 1.047 1.334 1.337 1.552
C3 0.786 1.266 1.345 2.781
C4 0.633 0.876 0.879 0.866
C5 1.442 1.876  1.423 1.775
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those in C4 were the lowest among the five penalty methods 
in 8.7%, whereas those in C5 were the highest. The effect of 
30, 60, and 90 penalty days on calving day and age at first calv­
ing in the Angus heifer has demonstrated that genetic and 
error variance increase when a high penalty score is includ­
ed in the analysis [5]. They have concluded that the smallest 
number of penalty days is recommended in genetic analysis 
because their result showed that the lowest standard error of 
heritability was estimated at the smallest penalty score. 
  In the present study, heritability of a non-censored data set 
was 0.012±0.016, lower than the average estimates in C1, C2, 
and C3, but slightly higher than those in C4 and C5. Standard 
errors of heritability of penalty methods were all higher than 
the heritability of a non-censored data set. Compared with 
previous reports, our heritability estimates were within the 
range of estimates in the literature. For Holstein heifers [3,14] 
and Ayrshire heifers [15], FS heritability has ranged between 
0.01 and 0.02. 
  In the present study, all of the penalty methods showed posi­
tive bias in heritability estimates. The bias in C5 was higher 
than that in the other penalty methods, making its error vari­
ance five times higher than the other penalty methods. 
  The MSE is the most important criterion in evaluating the 
performance of a predictor or an estimator; it is also useful in 
acquiring the concepts of bias and accuracy in statistical esti­
mations [16]. Estimates with a small MSE are better because 
they are closer to the real value [17]. Taking those aspects into 
consideration in the present study, MSE was calculated to 
compare the penalty methods: C4 showed the lowest MSE; 

however, C1 and C5 were both higher, demonstrating that 
C4 was better than the other methods. This result indicates 
that true FS of animal with missing records may be higher 
than the average number of FS days at the number of times 
till the last insemination but lower than the highest expecta­
tion of FS in the records. Accordingly C1 and C2 are inadequate 
because they are too extreme to infer true FS, whereas C4 
seems to have properties that reflect true FS.

Percentage of missing records
In the present study, 8.7% of the records were missing, and 
5%, 10%, and 15% were designed to assess the influence of 
the missing records. The genetic and error variances in C1 and 
C5 tended to increase as the percentage of missing records 
increased; in C2, C3, and C4 they were inconsistent in the 10% 
and 15% missing records; in C4 they were the lowest in 5%, 
8.7%, and 15% as compared with the other methods; however, 
in 10% of the missing records, the lowest variance was ob­
served in C3. The reason for the fluctuation in genetic and 
error variances in 10% and 15% of the missing records was 
attributable to changes in pedigree structure. This phenome­
non may be due to the deletion of key animals with regard to 
pedigree. 
  C1 showed the lowest MSE in 5% and the highest in 8.7% 
compared with the other percentages. In C2 MSE tended to 
be similar to those in C3 and C4, where the lowest MSE oc­
curred in 5% and increased as the percentage of missing records 
became higher. In C4 MSE was lower than in the other me­
thods at all percentages of missing records. C5 showed the 
highest and the most unstable MSE among the different per­
centages. When the percentage of missing records rises up to 
15%, heritability tends to be lower because genetic variance 
decreases, while error variance increases. The change in ge­
netic and error variances is reinforced with higher missing 
percentages in conjunction with changes in the data struc­
ture [18].

Prediction of estimated breeding value of heifer and 
parent
The coefficient correlation of EBV for heifer was lower than 
that for sire and dam, whereas it was higher for sire in 8.7%, 
10%, and 15% of the missing records. In 5% of the missing 
records, it was higher in C1 for heifer than for sire, whereas in 
C2 it was higher for heifer than for dam or sire. In the other 
percentages, it was lower for heifer than for sire or dam, which 
may be attributable to the decreased accuracy for heifer EBV 
at higher percentages of missing records.
  The coefficient correlation in C3 was lower than in C4 but 
higher than in the other three methods. In C4 it was consistent 
and highest for heifers, sires and dams at all the percentages 
of missing records. In C5 it was the lowest for heifer and par­
ents among the five penalty methods. The penalty in C5 was 

Table 7. Average of correlation between estimated breeding value of five 
penalty methods and of non-censored data set in first to successful insemination

Percent of missing Method Heifer Sire Dam

5% C1 0.89 0.87 0.90
C2 0.87 0.85 0.86
C3 0.92 0.94 0.92
C4 0.92 0.95 0.93
C5 0.50 0.60 0.52

8.7% C1 0.82 0.84 0.83
C2 0.81 0.87 0.83
C3 0.86 0.90 0.86
C4 0.88 0.93 0.90
C5 0.41 0.46 0.41

10% C1 0.79 0.82 0.79
C2 0.77 0.85 0.80
C3 0.82 0.87 0.84
C4 0.87 0.91 0.89
C5 0.43 0.44 0.41

15% C1 0.69 0.71 0.73
C2 0.71 0.81 0.73
C3 0.73 0.81 0.76
C4 0.78 0.87 0.83
C5 0.39 0.42 0.38
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based on the highest number of FS days, as identified in each 
contemporary group plus the constant number (21 d). Thus 
the penalty by the simple addition of certain days resulted in 
a less accurate EBV and a lower correlation than the other 
methods. This phenomenon could be due to changes in EBV 
ranking when penalty data are implemented [19]. Smaller 
changes in EBV ranking may result in C4 attaining the highest 
correlation with a non-censored data set, demonstrating that 
the penalty data in C4 are the most appropriate for handling 
missing records of FS in genetic analysis.

CONCLUSION

This study indicates that C4 is the best penalty method for 
missing records because it has the lowest MSE and the average 
of standard errors for heritability. It also demonstrated the 
highest accuracy for EBV and consistent results for all the 
percentages of missing records. 
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