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Public health authorities whole-genome sequence thousands of isolates each month for
microbial diagnostics and surveillance of pathogenic bacteria. The computational methods
have not kept up with the deluge of data and the need for real-time results. We have
therefore created a bioinformatics pipeline for rapid subtyping and continuous phylogenomic
analysis of bacterial samples, suited for large-scale surveillance. The data is divided into sets
by mapping to reference genomes, then consensus sequences are generated. Nucleotide
based genetic distance is calculated between the sequences in each set, and isolates are
clustered together at 10 single-nucleotide polymorphisms. Phylogenetic trees are inferred
from the non-redundant sequences and the clustered isolates are added back. The method is
accurate at grouping outbreak strains together, while discriminating them from non-outbreak
strains. The pipeline is applied in Evergreen Online, which processes publicly available
sequencing data from foodborne bacterial pathogens on a daily basis, updating phylogenetic
trees as needed.
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public health authorities, as well as animal health autho-

rities, to detect outbreaks of infectious diseases and deter-
mine trends over time. Traditionally, this includes culturing and
isolating the pathogen, followed by species identification and
subtyping using various conventional microbiological and mole-
cular methodologies.

For outbreak investigation, however, it is necessary to place the
infectious agent into a more discriminatory category than species,
to establish links between cases and sources. Multi-locus sequence
typing (MLST) has been a frequently used molecular subtyping
method, where sequence types are assigned to the isolates based
on the combinations of alleles for 6-10 housekeeping genes!.

Whole-genome sequencing (WGS) has opened a new chapter
in microbial diagnostics and epidemiological typing. WGS data
can be used to determine, amongst other characteristics, both
MLST types and serotype of several bacterial species®3. Fur-
thermore, several studies for multiple bacterial species have
shown the value of WGS for elucidating the bacterial evolution
and phylogeny, and identifying outbreaks*-°.

The use of WGS has enabled the unbiased comparison of
samples processed in different laboratories, boosting surveillance
and outbreak detection, but the methods for sharing and com-
paring a large number of samples have not been established yet”-8.
Therefore, a number of national, regional, and international
initiatives have been launched with the aim of facilitating the
sharing, analyses and comparison of WGS data®-11.

Since 2012, the US Food and Drug Administration (FDA) is
leading a network of public health and university laboratories,
called GenomeTrakr. These laboratories sequence bacterial
isolates from food and environmental samples, and upload the
data to the National Center for Biotechnology Information
(NCBI). GenomeTrakr is restricted to foodborne pathogens and
currently includes data from seven such bacterial species!2. All
raw WGS data are publicly shared through NCBI, facilitating
the collaboration between laboratories. Furthermore, the raw
data are picked up by the NCBI Pathogen Detection pipeline!3,
that assembles the samples into draft genomes to predict the
nearest neighbors and construct phylogenetic trees for each
within-50-SNPs cluster using an exact maximum compatibility
algorithm!4. This approach requires access to all of the raw data
or assembled genomes, and very extensive computational
resources for larger databases, like Salmonella enterica. In
addition, no sub-species taxonomical classification has so far
been implemented in the pipeline.

Focusing on the same bacterial species as GenomeTrakr, Pul-
seNet USA has also established procedures for use of WGS data
for outbreak detection. In their vision, an extension of the highly
successful MLST approach into a core-genome (cgMLST) or
whole-genome (WgMLST) scheme, with in the order of a thou-
sand genes, would allow for sharing information under a com-
mon nomenclature!!. MLST schemes are offered from several
databases!>~17, and a number of, at times conflicting, cg- and
wgMLST schemes have recently been proposed for a limited
number of bacterial species!®!8-24, Moreover, few of the pro-
posed schemes provide a definitive nomenclature of sequence
types to go with the allele profiles. The existing schemes do not
cover all of the potential allelic variation: a recent study showed,
that for Campylobacter jejuni, that has maintained MLST
schemes, only approximately 53% of the strains of animal origin
could be assigned to an existing unique allelic profile?>. Con-
tinuous curation of the hundreds of relevant bacterial species, that
are known human, animal and plant pathogens, would require
great effort. A centralized database for the distribution of the
allele profiles and sequences would be also necessary. Further-
more, for comparable results, and surveillance, the same analysis

E pidemiological typing of bacteria is used by hospitals and

pipeline or software should be used for the prediction of the
allelic profiles. For example, single-linkage cgMLST clusters can
be generated of public and private uploaded data on Enter-
oBase!®, and up to 1000 sequences on Pathogenwatch?®, by
manual selection of strains to be included in the analysis.

The results generated by gene based approaches often lack the
necessary resolution, and in most cases, selected WGS data are
further analyzed using single nucleotide profiling. Here, genomic
variants (single nucleotide polymorphisms (SNPs), insertions and
deletions) are derived by aligning WGS reads to a reference
genome. For each bacterial species, custom single nucleotide
profiling (SNP validation, cluster threshold determination, etc.) is
necessary in order to achieve results that are biologically relevant
and informative. Here, the choice of the reference genome is
crucial to maximize the number of SNPs that could be detected,
as SNPs outside the regions covered by the reference are over-
looked. The analyzed samples and the reference genome are
chosen on a case-by-case basis, usually based on the subtyping
results. Various offline SNP analysis pipelines are used by
laboratories and research groups for inferring phylogenetic trees
for isolates of interest?’~32. For example, Public Health England
developed and uses SnapperDB for outbreak detection without
initial cluster analysis by cg- or wgMLST. SnapperDB consists of
tools to create a database of SNPs compared to a given reference
sequence, and assign each isolate a SNP address based on single
linkage clustering®>. As for web based solutions, in addition to
cgMLST clustering, EnteroBase also offers SNP analysis of user
selected strains based on the predicted genotypes!®. Real-time
tracking of bacterial pathogens with nucleotide resolution is
performed by NCBI Pathogen Detection platform, that processes
WGS data from selected bioprojects!3. For viral pathogens, real-
time tracking and visualization of evolution has been realized
for seasonal influenza with Nextflu’4, and generalized in
Nextstrain3.

We present here a whole-genome, SNP-based method for
subtyping and preliminary phylogenomic analysis of bacterial
isolates, that circumvent the known limitations of current gene-
and SNP-based approaches. PAPABAC carries out rapid and
automated subtyping of bacterial whole-genome sequenced iso-
lates and generates continuously updated phylogenetic trees based
on nucleotide differences. We demonstrate two applications, a
standalone version for local monitoring of bacterial isolates, and
Evergreen Online, for global surveillance of foodborne bacterial
pathogens. We also suggest a stable naming scheme for each
isolate, making the results from the pipeline easier to commu-
nicate to others. To the best of our knowledge, no such tool exists
at the moment.

Results

Automated phylogenomic analysis of bacterial WGS data. We
developed PAPABAC (Fig. 1), a pipeline for automated phylo-
genomic analysis of bacterial isolates, that needs no additional
input besides WGS data (FASTQ files) and generates clusters of
closely related isolates. PAPABAC first matches the isolates to
complete bacterial chromosomal genome reference sequences
with greater than 99.0% sequence identity and a minimum
average depth of 11. These reference sequences serve as templates
for the alignment of the raw reads. The aligned bases at each
position are statistically evaluated to determine the consensus
sequence, as previously described for a nucleotide difference
method3®. Positions that do not fulfill the significance criteria
remain ambiguous, get assigned “N”, and are disregarded during
the pairwise genetic distance calculation. These steps ensure that
there is high confidence in the consensus sequence that is the
basis of the genetic distance estimation.
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Fig. 1 Overview of PAPABAC. a The input raw read files are classified into sets based on k-mer similarity to NCBI RefSeq complete prokaryotic
chromosomal genomes. b The raw reads are mapped to the reference genome and a consensus sequence is generated via strict statistical evaluation
(p <0.05) of the mapped bases in each position. ¢ The resulting consensus sequences are of equal length in each template set. The new isolates in each set
are clustered to the non-redundant isolates already in the set if the pairwise nucleotide difference based genetic distance is less than 10. The remaining
new isolates undergo the same clustering process. d Pairwise genetic distance between all non-redundant isolate in the set is used as input for neighbor-
joining algorithm. If there are less than 600 non-redundant isolates in a set, an approximately maximum likelihood phylogenetic tree is also inferred based
on the consensus sequences (red: new isolates). The clustered isolates are placed back onto the trees with O distance to the cluster representative
(marked with an asterisk). e The information about the acquired isolates, the sets, the clusters, and the phylogenetic trees is stored in SQLite databases,
which are queried once all sets with new isolates are processed to output the results to the users.

The pipeline retains analysis results in such a manner that
input is added to the previously processed data. The phyloge-
nomic analysis is carried out on the current input and the
previously found non-redundant isolates (singletons and cluster
representatives). The genetic distance is estimated in a pairwise
manner, comparing the given two sequences for all non-
ambiguous positions, ie., positions where none of the two
sequences have an “N” assigned. The distances between the
previously processed runs are stored on disk, saving computa-
tional time, and only the distances to the new isolates are
computed in a given run.

A clustering step during the genetic distance calculation forms
clusters of closely related isolates and reduces the number of
similar sequences in each set, and thereby also reduces the
computation time. After identifying a non-redundant isolate and
a closely related isolate to it, the one previously deemed non-
redundant will be the cluster representative and kept, while the
clustered one is omitted from the subsequent runs of the pipeline.
However, the information about the clustering is added to a
database and the clustered isolate will be placed on the inferred
phylogenetic tree. The cluster representatives remain constant
through the subsequent runs of the pipeline, and the clusters only

COMMUNICATIONS BIOLOGY | (2020)3:137 | https://doi.org/10.1038/s42003-020-0869-5 | www.nature.com/commsbio 3


www.nature.com/commsbio
www.nature.com/commsbio

ARTICLE

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0869-5

uy

222211 -

i Gutug

Nz
NIIN

D= —==N

RRONRERRNRFRGRRGRAN

*
G G {0 D G G
e
jy

((p10p1¢p10])
e T SN I SN S I

HLHARH
Z=zz

(11001010
pof e gk el 4
P jariargarian
I St i iy
~ NN

*
w
=
-
-
N
-
N
N

QRRDR%A

NN
[rehrgirghrgirgird

Fig. 2 Benchmarking of PAPABAC. Comparison of the ideal tree (left) to the PAPABAC maximum likelihood tree made of the in vitro experiment
dataset3°. Taxa with an asterisk were clustered together with the taxa in the same clade.

increase in size if new isolates are clustered with the representa-
tive. Therefore, each cluster is stable in the sense that an isolate
will never change which representative it is associated with and
each cluster can be reliably identified by the template name and
the identifier of its cluster representative.

The pipeline can be run on a computer with 8 Gb RAM and
Unix system. The computational time is reduced compared to re-
running the whole analysis each time new samples are added,
even without parallelization (Supplementary Fig. 1).

PAPABAC was benchmarked against three SNP pipeline
benchmarking datasets. An Escherichia coli in vitro evolution
experiment dataset’” provided 50 closely related samples on a
short temporal scale with less than 100 nucleotide differences
across the dataset. The algorithm clustered together seven out of
ten samples with the same ancestor that were taken on the same
day and presumably had less than ten nucleotide differences
between them. The PAPABAC maximum likelihood (Fig. 2) and
neighbor-joining (Supplementary Fig. 2) trees with the clustered
isolates pruned to resolve the polytomies were comparable to the
ideal phylogeny of the in vitro experiment dataset: the normalized
Robinson-Foulds distances were 0.18 and 0.12, respectfully.
Benchmarking against the Campylobacter jejuni (Supplementary
Fig. 3a, b) and the Listeria monocytogenes (Supplementary Fig. 3c,
d) datasets from Timme et al.>¥, PAPABAC correctly clustered
the related outbreak strains (colored) and the outgroups, where
the genetic distance was below the clustering threshold. The
topologies of the maximum likelihood phylogenetic trees closely
resembled the tree topologies given.

Online surveillance of foodborne bacterial pathogens. Ever-
green Online was built on PAPABAC. Raw WGS data files of five
major foodborne pathogens (C. jejuni, E. coli, L. monocytogenes,
Salmonella enterica, and Shigella spp.) are downloaded daily from

public repositories with the aim of global surveillance of potential
outbreaks worldwide. The inferred phylogenetic trees and infor-
mation about all of the isolates in the system are available
and searchable on the website (http://cge.cbs.dtu.dk/services/
Evergreen). The full phylogenetic trees can be viewed in the
platform, or in Microreact®®, where the temporospatial infor-
mation of the samples are also presented visually. Recognizing
that phylogenies with more than a few hundred nodes are difficult
to browse, the hyperlink of the cluster representative leads to
subtrees, limiting the taxa shown to those surrounding the given
cluster. Refined phylogenetic trees, based on SNP differences
between all isolates around the cluster representative, are also
published in Evergreen Online. The platform has been available
since October 1st 2017, with logs reliably saved since October
28th 2017. The number of raw read files downloaded fluctuates
with the work week of the public health laboratories. On busier
days, more than 800 isolates are downloaded. The average
number of isolates downloaded per day is 418. Downloading and
mapping to the reference genomes take 130 min on average, with
the majority of the time spent on downloading. Alignment of the
raw reads and the generation of the consensus sequences takes on
average 9 min per isolate. The computing time for the template
sets is dependent on the number of non-redundant and new
sequences in each set, but in most cases even the slowest is
finalized within 5h (Fig. 3 and Supplementary Data 1).

As of June 26th 2018, the pipeline downloaded 82,043 isolates.
Out of these, 63,276 isolates have been mapped to references with
at least 99.0% identity and average depth of 11 (Supplementary
Fig. 4a). The majority of the isolates were typed as Salmonella
enterica (59.1%), followed by Escherichia coli (19.4%) (Supple-
mentary Fig. 4b). The two largest template sets are S. Dublin and
S. Typhimurium serovars, with both close to 9500 isolates in total.
After the homology reduction there were 3216 and 5093 non-
redundant sequences in these sets, respectively. As of July 13th
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Fig. 3 Walltime of the phylogenetic analysis. Time requirement of the
phylogenomic analysis for given number of non-redundant and new strains,
on 20 CPUs.

2018, on average, 67% of the sequences are non-redundant in
the template sets, while the E. coli template sets are the most
diverse and the Listeria monocytogenes ones are the least diverse
(Supplementary Fig. 4c). There were 122 isolates predicted to
have a type not specified by the query (Supplementary Table 1).
Of these, 14 isolates were mixed samples, composed of both the
queried and the non-queried organisms.

The L. monocytogenes SNP pipeline benchmarking dataset38
was added to the template set (Listeria_monocytogenes_
07PF0776_NC_017728_1) of the corresponding reference gen-
ome in Evergreen Online, to test the sensitivity and accuracy of
the clustering in large datasets. This template set at that moment
contained more than 2400 isolates, of which 1398 were non-
redundant. The isolates were placed onto a clade of a clonal
lineage. The outbreak and outgroup isolates were separated in
concordance with the ideal phylogeny (Fig. 4). The smaller clade
of outbreak samples clustered to a sample (SRR538386) of an
environmental swab in 2014, from California, USA.

Isolates that were presumed to be from an E. coli O157:H7
outbreak were selected for the comparison of Evergreen Online
and the NCBI Pathogen Detection platform (NCBI-PD). They
were located on the Escherichia_coli_0157_H7_str_Sakai_chro-
mosome_NC_002695_1 neighbor-joining tree from Evergreen
Online and the PDS000000952.271 SNP cluster tree from NCBI-
PD. The labeled isolates appeared in three clusters on the
neighbor-joining tree. There were 19.9 nucleotide differences
between the yellow and the red cluster representatives and 12.6
nucleotide differences between the yellow and the blue cluster
representative. On the NCBI-PD tree, the isolates marked with
red circles were on the same clade, while the ones marked with
blue and yellow were intermixing on clades that were, at most, 15
compatible characters apart (Fig. 5). On the refined subtree
encompassing the labeled isolates, the yellow and blue labeled
isolates intermix, similarly to the NCBI-PD tree (Supplementary
Fig. 5).

Discussion

Whole-genome sequencing, performed alongside the traditional
methods in routine microbiology, yields hundreds to thousands
of WGS isolates yearly in hospital, public health and food safety
laboratories. This amount of data is overwhelming for many, and
there is a lack of methods to generate a quick overview and help
prioritize resources. The timely analysis of the sequencing data
would allow the detection of more bacterial outbreaks and aid the
prevention of further spread. However, lack of human and
computational resources for this demanding task often hampers
the prompt analysis of the data. Automating the initial subtyping
phase would facilitate the start of an outbreak investigation.
PAPABAC offers rapid subtyping for a wide range of prokaryotic

organisms: the supplied database covers all bacterial subtypes
with complete genomes present in NCBI RefSeq. Further refer-
ence genomes could be added to increase the covered sequence
space, but the active curation of the reference database is not
required for routine use. The selection of the reference sequence
for the phylogenomic analysis is fast and robust. It is independent
of pre-assumptions about the isolates: misclassification during
previous analysis does not introduce errors into the downstream
analysis. Contamination from another species is discarded during
the consensus sequence generation. The subtyping step via k-mer
based mapping to a close reference also serves as a sequencing
quality control measure, because low-quality sequencing runs will
typically result in isolates with low identity to any reference and/
or low depth. These isolates do not progress further to the phy-
logenomic analysis, as they would not yield reliable results.

The phylogenomic analysis performed on the template sets has
higher discriminatory power than cg- or wgMLST. The under-
lying nucleotide difference method was validated in five different
studies®36:37:4041 - By using all positions in the consensus
sequences for estimating the genetic distance, instead of con-
sidering only selected loci, we ensure a high level of sensitivity, as
we also include mutations that occur between genes.

The clustering step during the genetic distance calculation was
introduced in order to reduce the homology in the template sets
and thus reduce the computational burden as the template sets
increase in size. However, the clustering threshold of 10 nucleo-
tide differences also constructs informative clusters of highly
similar isolates. Benchmarking with the E. coli in vitro evolution
experiment dataset (Fig. 2) showed that the algorithm was cap-
able of correctly clustering isolates that were derived from the
same ancestor, while distinguishing them from other closely
related strains. The same sensitivity was demonstrated on
empirical outbreak datasets (Supplementary Fig. 3), where the
pipeline clustered the outbreak-related strains and separated them
from the outgroup strains. Both the maximum likelihood inferred
and the neighbor-joining trees placed the outbreak strains cor-
rectly in the phylogeny. These results show, that PAPABAC
provides quick and reliable information about the close relatives
of an outbreak strain to provide candidates to perform a more
thorough analysis on.

The design of PAPABAC means that once an isolate passed
the homology reduction step, it will be present in the subsequent
runs of the pipeline. When an incoming isolate is highly similar
to a non-redundant one, the more recent will be the one that is
clustered, added to the database and removed from further runs.
Hence, the cluster representatives and clusters are robust to the
addition of new data to the analysis. Therefore, PAPABAC
yields a stable and communicable name for the clusters, com-
prised of the template name and the cluster representative. This
is an advantage over cg- and wgMLST, where allelic profiles
don’t necessarily have communicable names, and the clusters
could merge.

Evergreen Online has been steadily processing WGS data of
foodborne bacterial pathogen isolates collected worldwide in real
time (Supplementary Fig. 4a). It has been able to keep pace with
the flow of the generated data that mainly came from public
health and food safety laboratories. Excluding the download time
and the optional maximum likelihood based phylogenetic infer-
ence, the whole analysis is done in less than a day, even for
template sets with thousands of isolates (Fig. 3). This turnover
time facilitates quick response in a potential outbreak scenario.

The isolates are not distributed equally across the templates in
the system (Supplementary Fig. 4b). Out of the five queried
species, S. enterica isolates are disproportionally represented.
Sequences in the S. Dublin and the S. Typhimurium LT2 template
sets comprise in total approximately half of the S. enterica
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Fig. 4 Benchmarking of Evergreen Online on benchmark dataset for phylogenomic pipelines. Neighbor-joining tree for the Listeria_monocytogenes_
07PF0776_NC_017728_1 set after the samples of the L. monocytogenes dataset were added. The red and blue isolates belong to the two original outbreak

clades, and the purple isolates are outgroups in the benchmark dataset.

isolates. The sequence diversity in the template sets is varied, but
the homology reduction on the template sets reduces the number
of sequences approximately by a third, considerably decreasing
the computational time. The L. monocytogenes template sets were
the least diverse, which could be due to sampling bias: bacteria
that are present in the environment are routinely sampled from
food production sites multiple times, producing highly similar
sequences, that are then removed from the ongoing analysis. We
also tested how a large number of sequences already present in a
template set would affect the ability of the pipeline to discriminate
between samples (Fig. 4). The template set that corresponded to
the stone fruit L. monocytogenes outbreak dataset reference had
more than 1000 non-redundant isolates, which was ideal for the
test analysis. The isolates that were part of the same outbreak
clustered together and formed the two expected outbreak clusters,
despite the confounding presence of the sequences already in the
template set. The smaller clade, however, had a different cluster
representative when using all data for the template set, compared
with analysis of the outbreak data alone: an environmental
sample, that could be related to the outbreak, as it was sampled
from the same US state and year (California, 2014) as the samples
in the outbreak dataset. These findings indicate that the pipeline
is capable of identifying closely related samples, however it is
necessary to conduct epidemiological analysis and apply other
knowledge when interpreting the results.

Evergreen Online allows for automated selection of closely
related isolates out of thousands, which is also the objective of
NCBI-PD. E. coli isolates, situated on three clusters in Evergreen
Online and supposedly from an outbreak, were located in NCBI-

PD and their placement in the SNP cluster tree was compared to
the Evergreen Online tree (Fig. 5). One cluster (red) was in
agreement between the two platforms, and samples from the
other two (yellow and blue) clusters were intermixing on a clade
on the NCBI-PD tree. The nucleotide difference counts between
these samples are low and the differences between the phyloge-
nomic methods could lead to differences in the finer details of the
inferred phylogenies. On the refined subtree (Supplementary
Fig. 5), the labeled samples form similar topology to the NCBI-
PD tree. The homology reducing clustering in Evergreen Online
means that any sample in the cluster is less than ten nucleotides
differences from the cluster representative, however, the differ-
ences between the samples could amount to 18 nucleotides. The
compatible character distances on the NCBI-PD tree between the
mixed samples are less than that. Taking this into account, the
observed distribution of the labeled samples in the two platforms
are concordant.

In summary, we developed PAPABAC with the aim of rapid
subtyping and continuous phylogenomic analysis on a growing
number of bacterial samples. PAPABAC overcomes limitations of
cg- and wgMLST approaches by tolerating genomic variation
during subtyping, but providing greater sensitivity during the
phylogenomic analysis. It was benchmarked on datasets created
for testing SNP-based pipelines, and was proved to be accurate in
discriminating between outbreak related and non-related sam-
ples. The software is open source and fulfills expectations put to
WGS-based surveillance pipelines (Table 1). Evergreen Online, an
application made for the global surveillance of foodborne bac-
terial pathogens, demonstrates the accuracy, speed, stability and
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Fig. 5 Comparison of Evergreen Online and the NCBI Pathogen Detection platform. Selected isolates in the a Escherichia_coli_O157_H7_str_Sakai_
chromosome_NC_002695_1 NJ tree and on the b PDSO00000952.271 SNP cluster maximum compatibility tree. The three largest clusters of the selected
samples on the NJ tree are labeled with yellow, red, and blue dots. These isolates were marked with the same labels on the NCBI-PD tree. The red labeled
ones are on a single clade on the PD tree, while the blue and yellow isolates are mixing on two other clades.
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Table 1 Comparison of pipelines for large-scale surveillance for pathogenic bacteria.

SnapperDB NCBI-PD PAPABAC
For a wide range of bacterial species X X X
Only sequencing data is required input — X X
Whole-genome based X X X
Assembly-free X — X
Quality control steps X X X
Automated phylogenomic analysis — X X
Stable clustering of samples across runs — — X
Communicable nomenclature for subtype and cluster X — X
Open source X — X

practicality of PAPABAC on thousands of samples via an on-
going analysis, where the results are published online.

Methods

PAPABAC pipeline. The pipeline takes raw whole-sequencing reads (FASTQ files)
as input. Matching reference sequences (templates) in our reference database, that
have greater than 99.0% identity and a minimum average depth of 11, are identified
for the isolates using 16-mers via KMA“2 in sparse mode. Multiple templates are
accepted, if they meet the criteria, allowing for the procession of mixed samples.
Information about the runs and their templates are inserted into the main SQLite
database. The isolates are grouped into sets according to the matched templates.
The next steps are performed in these sets in parallel. The isolate reads are mapped
to the template using the mapping algorithm of NDtree3, yielding equal-length
consensus sequences. The Z-score threshold for accepting a base is set to 1.96, and
the majority base have to be present in 90% of the mapped reads.

Genetic distance based on nucleotide difference is calculated pairwise between
the previous, non-redundant isolates, and the new isolates. Positions with
ambiguous bases are discarded. The new isolates are clustered to the non-
redundant ones with a threshold of 10, in order to reduce the homology in each set
and form informative clusters. In this step, the non-redundant isolate is prioritized
over the new isolate and becomes the cluster representative. After the clustering,
the remaining new isolates are clustered together with the Hobohm 1 algorithm®3.
In this case, the cluster representative is the one that has already passed the
redundancy threshold. The information about new or extended clusters is saved to
the main SQLite database. A distance matrix is constructed for all non-redundant
isolates and saved to disk for use in the next run. A distance-based phylogenetic
tree is inferred by neighbor-joining*44°. If there are less than 600 non-redundant
isolates in the set, then a whole-genome based approximate maximum likelihood
phylogenetic tree is also inferred using IQ-tree*%, where the neighbor-joining tree is
the starting tree and the GTR nucleotide substitution model is used. The clustered
isolates are placed back onto the clades with zero distances to the cluster
representative. Their tip labels start with an asterisk. The information about the
trees is saved to the main SQLite database.

When all the phylogenetic trees with new isolates have been inferred, then the
main SQLite database is queried for the list of all isolates, their templates, cluster
representatives (if there is any) and the latest phylogenetic tree they are on. This
information is printed to a tab-separated file.

Evergreen Online platform. A query is made to the National Center for Bio-
technology Information (NCBI) Sequencing Read Archive (SRA) for the newly
published Illumina paired-end sequenced isolates of Campylobacter jejuni,
Escherichia coli, Listeria monocytogenes, Salmonella enterica, and Shigella spp. on a
daily basis. Fastq files of raw sequencing reads and the corresponding metadata
(collection date, location, institute, source, etc.) are acquired either from SRA or
from the European Nucleotide Archive (ENA). The sample inclusion criteria is
known metadata for collection date and location, and in addition, samples are
included from the following institutions: Unites States Center for Disease Control,
United States Food and Drug Administration, Food Safety and Inspection Service,
Public Health England, University of Aberdeen, University Hospital Galway, Sta-
tens Serum Institut, Norwegian Institute of Public Health. The downloaded isolates
are the input to PAPABAC. The metadata are saved in the main SQLite database,
and added to the tip labels on the phylogenetic trees.

Individual subtrees are inferred from isolates with less than 20 SNPs distance
from each cluster-representative, considering only the positions in the sequences
where there is no missing data. No tree is inferred, if no genetic difference is found.
The subtrees are inserted into an SQLite database.

Once all instances of the second wrapper script have finished, then the SQLite
databases are queried for the list of available phylogenetic trees (the maximum
likelihood trees preferred over neighbor-joining ones), changes in the clusters and
the list of all isolates in the system, which is then used to update the website.

The phylogenetic trees are interactively visualized on the website (https://cge.cbs.
dtu.dk/services/Evergreen/) using the Phylocanvas API (http://phylocanvas.org).

For visualization in external programs, such as Microreact??, the phylogenetic
trees can be downloaded as newick files and the corresponding metadata as tab
separated files. The isolates and clusters can be searched by SRA run ID, which
allows the quick localization of the clusters that increased in size via their cluster
representative.

Architecture. The pipeline is written in Python 2.7 and Bash in Unix environment.
In addition to the standard Anaconda Python 2.7 packages, it also requires ETE
Toolkit v3.047 and Joblib v0.11 (https://pythonhosted.org/joblib) packages to be
installed. Neighbor program from the PHYLIP package v3.697 (http://evolution.
genetics.washington.edu/phylip.html) and IQ-tree v1.6.4%0 are used for the phy-
logenetic tree inference. The SQL database management is performed with SQLite
v3.20.1 (https://www.sqlite.org).

The two main parts of the pipeline have their own wrapper scripts. PAPABAC
can be run on a personal computer with as few as four cores. Evergreen Online is
running on a high-performance computing cluster, utilizing the Torque (Adaptive
Computing Inc., USA) job scheduler. The first wrapper is run in one instance on 20
cores, meanwhile the second wrapper is run once on 20 cores for each template
that has at least one new run, in a parallel fashion. When all of these instances are
finished running, a Bash script is launched to collect the information from the SQL
database, the website is updated and the job for the next day is scheduled.

Reference database. The reference sequences are complete prokaryotic chro-
mosomal genomes from the NCBI RefSeq database. Homology reduction was
performed at a 99.0% sequence identity threshold with the Hobohm 1 algorithm.
The curated NCBI prokaryotic reference genomes were given priority in the pro-
cess. The reference sequences could be downloaded via ftp (ftp://ftp.cbs.dtu.dk/
public/CGE/databases/Evergreen/).

Computational time comparison. One hundred and one samples from the
Escherichia coli in vitro evolution experiment dataset by Ahrenfeldt et al. were
batched according to their sampling time. The parallelization in PAPABAC was
disabled. The traditional method meant that the analysis was carried out on all the
samples up to the given batch, starting anew each time, but using the same scripts
as PAPABAC.

Benchmarking with dataset by Ahrenfeldt et al. The last samples in each lineage
of the Escherichia coli in vitro evolution experiment dataset3” were selected for the
benchmarking. Therefore, the benchmarking dataset constituted 50 tips on the
ideal phylogeny. These samples were batched according to their sampling time
(6th, 7th, and 8th day). The batches were processed by PAPABAC chronologically.
The pipeline was run with the default parameters. Both maximum likelihood and
neighbor-joining trees were inferred.

The phylogenetic trees inferred on all 50 isolates were trimmed for the reference
sequence and compared with the ideal phylogeny using the phytools R package
(v0.6-60)*8. The normalized Robinson-Foulds distance was calculated between the
ideal and the maximum likelihood, and the ideal and the neighbor-joining trees,
after the clustered isolates are removed from each pair of trees. The RF.dist
function was utilized from the phangorn R package (v2.4.0)%°.

Benchmarking with datasets from Timme et al. The Campylobacter jejuni
0810PADBR-1 and the Listeria monocytogenes 1408MLGX6-3WGS dataset’® was
downloaded with the provided script into a distinct directory. The pipeline was run
individually on the datasets with default parameters. If the isolates were mapped to
more than one template, the phylogenetic trees of the template set with the highest
number of isolates were evaluated. The maximum likelihood trees were visually
compared to the ideal phylogenies and checked for the distribution of the isolates
amongst the clades.

Using the default options on the pipeline, the L. monocytogenes SNP dataset was
added to a copy of the Listeria_monocytogenes_07PF0776_NC_017728_1 template
set of Evergreen Online on 2018-06-15.
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Comparison with the NCBI pathogen detection platform. Escherichia coli iso-
lates were queried from the SQL database of Evergreen Online for the period of
2018-03-15 and 2018-06-01, corresponding to a multistate outbreak of E.coli 0157:
H7 in the USA%(. These samples were subtyped using traditional MLST?, as it
was assumed, that the sequence type with the most isolates would also include
the outbreak samples. Sequence type 11, which commonly corresponds to the
O157:H7 serotype, was selected for further analysis. The corresponding samples
and their SNP clusters were found in the NCBI-PD platform. The phylogenetic
tree for the SNP cluster with the most samples (PDS000000952.271) was
downloaded. The common samples (Supplementary Data 2) were noted on
both the NCBI-PD and the Evergreen Online phylogenetic tree (Escher-
ichia_coli_O157_H7_str_Sakai_chromosome_NC_002695_1, downloaded on
2018-08-07). The refined subtree around SRR6766978 was downloaded on
2019-10-30, and pruned to contain only the isolates that were on the Evergreen
Online tree. The common samples on the three biggest clusters on the Ever-
green Online tree were labeled, and their placement on the NCBI-PD tree and
the refined tree was visually inspected.

Statistics and reproducibility. The code for running PAPABAC is provided, and
running it on the same input data would yield reproducible results for the con-
sensus sequences, clusters and neighbor-joining trees, for they are produced with
deterministic algorithms.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

No novel datasets were generated during the current study. All analyzed data are
available in this published article, or on the website: https://cge.cbs.dtu.dk/services/
Evergreen/.

Code availability
Scripts and installation instructions for the pipeline are publicly available on Bitbucket:
https://bitbucket.org/genomicepidemiology/evergreen.
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