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Simple Summary: At a genomic level metastatic castrate resistant prostate cancer state is highly
heterogeneous and no clear genome-based prognostic or predictive biomarkers exist in practice.
We evaluated multiple copy number somatic alterations in two castrate resistant patient cohorts to
determine if a genome-based risk score at the copy number level can predict clinical outcomes. The
first cohort included patients in a prospective clinical-trial in which abiraterone acetate was given
and the other comprised of a real-world hospital-registry. We extracted plasma cell free DNA in both
cohorts and performed low pass whole genome sequencing. Copy number alterations were identified
for 24 candidate genes and a final composite score developed from 11 genes. This risk score was
able to predict survival in castrate resistant patients after adjusting for known clinical biomarkers.
Additionally, the multi-gene copy number alteration based risk score algorithm also predicted if
abiraterone acetate would be effective in castrate resistant patients.

Abstract: A plasma cell-free DNA (cfDNA) multi-gene copy number alteration (CNA)-based risk
score was evaluated to predict clinical outcomes in metastatic castrate resistant prostate cancer
(mCRPC) patients. Methods: Plasma specimens from two independent mCRPC patient cohorts
(N = 88 and N = 92 patients) were used. A treatment-naïve mCRPC cohort (prospective clinical-trial
cohort) included plasma samples before treatment with abiraterone acetate/prednisone and serially
at 3-months. A separate real-world hospital-registry (RWHR) mCRPC cohort included a single blood
sample collected prior to mCRPC treatments in 92 mCRPC patients following ADT failure. Low
pass whole genome sequencing was performed on plasma cell-free DNA (cfDNA) and copy number
alterations (CNAs) were identified for 24 candidate genes of interest. Associations of individual gene
CNAs with 3 month primary resistance to therapy, progression-free survival (PFS) in the prospective
trial cohort and overall survival (OS) in both cohorts was evaluated by Cox regression. A multi-
gene risk score was determined for significantly associated candidate CNAs for predicting clinical
outcomes. Clinical factors were included in the risk model for survival. Statistical significance for all
tests was set at 0.05. Results: In the prospective trial cohort, patients responding to treatment were
observed to have a significant copy number decrease in AR (p = 0.001) and COL22A1 (p = 0.037) at
3 months, while the non-responder group showed a significant CNA decrease in NKX3.1 (p = 0.027),
ZBTB16 (p = 0.025) and CNA increases in PIK3CB (p = 0.006). Based on the significance level of each
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gene, CNAs in 11 of the 24 genes (AR, COL22A1, MYC, NCOR1, NKX3.1, NOTCH1, PIK3CA, PIK3CB,
TMPRSS2, TP53, ZBTB16) were selected to develop a Cox-regression coefficient-based weighted
multi-gene risk score for predicting mCRPC outcomes in both cohorts. A higher multi-gene risk
score was observed to have poor OS in mCRPC patients in the prospective trial cohort (p = 0.00019)
and for the RWHR cohort, (p < 0.0001). A higher risk score was also associated with poor PFS in the
prospective cohort (p = 0.0043). Conclusions: A multi-gene CNAs-based risk score derived from
plasma cfDNA may predict treatment response and prognosticate survival in mCRPC and warrants
prospective validation of risk-based algorithms.

Keywords: prostate cancer; cell free DNA; algorithm; prognosis; predictive biomarker

1. Introduction

Prostate cancer (PCa) accounted for more than 34,000 deaths in US males [1] and for
over 325,000 deaths world-wide [2] in 2021. The therapeutic landscape in PCa treatment has
evolved rapidly and androgen deprivation therapy (ADT)—based drug combinations have
emerged as preferred interventions over ADT alone in different states of progression [3].
While these regimens slow disease progression, there is inevitable progression to metastatic
castrate resistant prostate cancer (mCRPC) and death [4].

Progressive states in prostate cancer from organ-confined disease to mCRPC are char-
acterized by clonal evolution with the appearance of novel genomic instability signatures,
which are either by-stander events or biological drivers of progressive disease. Novel ge-
nomic alterations have been reported in tissue [5] and plasma [6] that have been observed
to be associated with clinically progressive states in the continuum of cancer progression.
Prostate cancer is observed to have all types of genomic alterations but copy number
alterations (CNAs) are frequent genomic events and CNAs in multiple gene loci have been
observed to prognosticate and predict clinical outcomes in the mCRPC state [6–14]. A
representative gene in mCRPC is the androgen receptor (AR), which is amplified in the
mCRPC state and is linked to treatment resistance and poor outcomes with AR Pathway In-
hibitors (ARPIs) [15,16] including abiraterone acetate/prednisone and enzalutamide [17,18].
Recently other ARPIs such as darolutamide [19] and apalutamide [20] have also been used
in metastatic hormone-sensitive states, but no clear efficacy biomarkers are known for these
drugs. Since at a genomic level mCRPC is a highly heterogeneous disease we previously
reported a composite multi-gene CNA-based risk score in mCRPC that could be used to
predict clinical outcomes. In our current study, we now enlarge the scope of using a novel
multi-gene risk score calculation to observations in two independent mCRPC cohorts.

2. Materials and Methods
2.1. Study Cohorts

Plasma samples were obtained from patients enrolled in two cohorts in a single insti-
tution (Mayo Clinic). Cohort 1 included patients enrolled in a prospective trial, “PROstate
cancer Medically Optimized genome enhanced ThErapy (PROMOTE)” (NCT # 01953640).
Bio-specimen collections were performed prospectively across three different Mayo Clinic
sites (Mayo Clinic Rochester, Mayo Clinic Florida and Mayo Clinic Arizona). The second in-
dependent mCRPC cohort consisted of patients collected in a Real-World Hospital Registry
(RWHR) which enrolled advanced prostate cancer patients at Mayo Clinic, Rochester. The
PROMOTE study had an a priori stated primary aim of determining somatic metastatic
tissue-based tumor genome alterations associated with abiraterone acetate + prednisolone
(AA/P) resistance at 3 months using a composite progression endpoint as per the recom-
mendations of the Prostate Cancer Working Group-2 criteria (PCWG2) [21]. This composite
endpoint data was collected prospectively and was also used in correlative bio-specimen
associations. In the PROMOTE cohort, 88 chemotherapy-naïve mCRPC patients who
had disease progression upon androgen-deprivation therapy (ADT) were enrolled from
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May 2013 to August 2015 and followed until December 2018. All patients had a baseline
(pre-treatment) blood sample collection performed before initiating AA/P treatment and a
second blood sample collection at 3 months of AA/P treatment (post-treatment). These
blood samples were used for the current study. In the RWHR cohort, 92 mCRPC patients
following ADT failure were enrolled from September 2009 to July 2013 and followed until
May 2021 and had only one blood sample collected prior to mCRPC treatments which
were used for the present study. All patients in these cohorts were followed until death or
censored at last follow-up. This cohort was enrolled before abiraterone acetate or any novel
treatments used at present for mCRPC state were in use and so no drug-based progression
free survival outcome was collected. An additional 15 plasma specimens from healthy
donors were collected as normal controls from the Medical College of Wisconsin. All
patients in both cohorts and healthy donors provided written informed consent. These
studies were approved by Institutional Review Boards at the Medical College of Wisconsin
and Mayo Clinic (IRB# for the PROMOTE cohort: MC 13-001296; IRB# for the RWHR
cohort: MC 09-001889).

2.2. cfDNA Extraction and Low-Pass Whole Genome Sequencing

Blood collection and processing in both cohorts have been previously described [10,22].
Whole blood collected in 4.5 mL Ethylenediaminetetraacetic acid (K2 or K3 EDTA) tubes
from mCRPC patients and healthy donors were initially centrifuged at 2000 rpm for 10 min.
The supernatant (plasma) was then fractioned into multiple aliquots for storage at −80 ◦C.
Plasma samples underwent a second centrifugation at 3000 rpm for 10 min to make plasma
poor platelet fractions before DNA extraction to ensure complete depletion of cell debris.
cfDNAs were extracted from 400–800 µL of the platelet poor plasma obtained after the
second spin using QIAamp DNA Blood Mini Kit (QIAGEN, Valencia, CA, USA). The final
DNA eluent (50 µL) was quantified by a Qubit 2.0 Fluorometer (Life Technology, Carlsbad,
CA, USA). DNA libraries were prepared using a ThruPlex DNA-Seq Kit (Rubicon Genomics,
Ann Arbor, MI, USA). 12–24 libraries were pooled in a single lane for 50 bp single-end
sequencing using a HiSeq2000 Sequencing System (Illumina, San Diego, CA, USA).

2.3. Sequencing Data Processing and Gene-Specific Copy Number Calling

Fastp (Version 0.20.1) was used for quality control of raw sequence reads with the
default settings [23]. Bowtie-2 (Version 2.4.2) was then used to map the sequence reads to
the human genome (hg19) with the default settings [24]. SAMtools (Version 1.11) command
lines were used to convert the file format from SAM to BAM, followed by sorting, indexing,
and removing duplicate reads [25]. FeatureCounts from the Subread package (Release 2.0.3)
was used to call read counts for each gene [26]. The Human Release 19 comprehensive
gene annotation (https://www.gencodegenes.org/human/release_19.html, accessed on
1 December 2021) (GRCh37.p13) was used as a reference.

2.4. Copy Number Alteration Analysis

For the current study, we chose 24 candidate genes of interest for developing a multi-
gene risk score. The selection of these genes is based on our previously published multi-
gene risk score initial report [10] and additionally included curated gene candidates from
other studies published in the literature that reported CNA association with clinical out-
comes in mCRPC state [5,27]. Details of genes with reference to previous studies have been
listed in Supplementary Table S1. To make calls for the copy number status, a gene-specific
log2 ratio was calculated by dividing sequence reads mapping to a gene in a patient to
median sequence reads mapping to the same gene in normal controls, followed by log2
transformation. Genomic gain was defined as log2 ratio > 0.3 and genomic loss was de-
fined as log2 ratio < −0.3. The oncoPrint function in the R package ‘ComplexHeatmap’
(Version 2.10.0) was used for the visualization of multiple genomic alteration events [28].
In the PROMOTE cohort, copy numbers changes before and after the AA/P treatment were

https://www.gencodegenes.org/human/release_19.html
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evaluated using paired t-test for determining the association between plasma-based CNAs
and primary resistance.

2.5. Survival Analysis

Prognostic and predictive clinical endpoints were evaluated for single gene CNAs
and for multi-gene risk scores. For prognosis in both cohorts, overall survival (OS) was
calculated from the date of study enrollment at the time of ADT failure for metastatic
hormone-sensitive prostate cancer to the date of death or the date of the last follow-up for
both cohorts. For the prediction of treatment outcome in the PROMOTE cohort, progression-
free survival (PFS) was calculated from the date of study enrollment at the time of ADT
failure to the date of AA/P treatment failure. R package ‘survival’ (Version 3.2-13) was used
for the Cox proportional hazards regression analysis. R package ‘survminer’ (Version 0.4.9)
was used to illustrate Kaplan–Meier survival curves.

2.6. Multi-Gene Risk Scores Analysis

To calculate risk scores, each gene’s CNA status (gain, loss, or no change) was first fit-
ted into a Cox proportional hazards regression model. The weight of effect was determined
using the coefficient of Cox regression results, where a positive coefficient was associated
with worse clinical outcomes (OS/PFS). The composite risk score was then calculated by
the following formula:

Sum [Cox regression coefficient × CNA status (1 for gain or loss, and 0 for no change)
of each gene selected (ranked by best p values)].

The Cox proportional hazards regression model was also used to evaluate each of
available clinical variables in the two independent cohorts. A combined risk score was
established by combining selected multi-genes and clinical variables using the same formula
described above.

Leave One Out cross-validation (LOOCV) was performed to prevent overfitting for
both cohorts. Kaplan–Meier survival curves were used to illustrate associations between
risk scores and OS/PFS. In the PROMOTE cohort, the changes in risk score before and
after the AA/P treatment were also evaluated using paired t-test to characterize the phar-
macodynamic effects of treatment. The associations between risk score and treatment
response were tested with Fisher’s exact test. For all statistical tests involved in this study,
the significance levels were set at 0.05.

3. Results
3.1. Clinical Characteristics of Study Cohorts

We enrolled 88 mCRPC patients in the PROMOTE trial of which one patient did
not have specimens at baseline and five did not have plasma specimens at 3 month post-
treatment. Eighty-two patients provided both pre- and post-treatment samples. The median
follow-up time of this cohort is 25.85 months (cut off date for analysis 1 November 2018).
In the RWHR cohort, 92 mCRPC patients were prospectively enrolled at Mayo Clinic from
September 2009 to January 2013 and followed until death, with a cutoff date of 13 June
2021 for analyses (median follow-up 94.67 months). The patient characteristics of the two
cohorts are detailed in Table 1.
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Table 1. Clinical characteristics of the PROMOTE and RWHR cohort.

Patient Cohorts PROMOTE RWHR p Value of Differences

Total 88 92

Age 0.375

Median 72 73

IQR 66–78 67–78

Range 39–91 43–92

Gleason score at initial diagnosis 0.251

2–6 16 9

7 27 34

8–10 45 44

Missing 0 5

Volume of metastatic disease <0.0001

High 50 30

Low 38 62

Site of metastases 0.901

Bone 78 81

Others 10 11

Baseline Prostate-Specific Antigen (ng/mL) 0.276

Median 14.7 19.25

IQR 6.38–41.9 3.25–79.72

Lactate Dehydrogenase (U/L) 0.4535

Median 185.5 188

IQR 170.8–209.2 158.5–230.5

Missing 4 49

Alkaline phosphatase (U/L) 0.767

Median 109.5 96

IQR 83.25–178.75 68.25–137.50

Missing 6 6

Time from ADT start to ADT fail (months) 0.224

Median 24.87 19.97

IQR 11.55–53.8 7.88–44.92

Time from date of enrollment to last follow-up (months) 0.0001

Median 58.52 128.83

IQR 51.74–62.92 120.69–139.01

Dead/alive during follow up <0.0001

Dead 55 86

Alive 33 6

Primary radical prostatectomy 0.944

Yes 37 42

No 45 50

Missing 6 0
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3.2. Broad Range of Detectable CNAs in cfDNA

Previously, we have reported multiple genes whose copy numbers are associated with
clinical outcomes of mCRPCs [5,10,13,27,29,30]. In this study, we included these candidates
and then extended the list by incorporating additional genes from other publications for a
total of 24 genes (Table S1). By applying the predefined cutoffs of log2 values (≥+0.3 for
gain and ≤−0.3 for loss), a wide range of results in CNAs in different genes was observed
in the two clinically similar staged independent cohorts. For example, in the PROMOTE
cohort at baseline and after 3 months of AA/P treatments, we identified 36% and 40%
FOXA1 gain, 30% and 33% MYC gain, 28% and 12% AR gain, respectively. In the RWHR
cohort, we detected gain in 62% patients at PIK3CA, 40% patients at AR, and 36% patients at
FOXA1, as well as loss in 41% patients at TP53. Oncoprint-based figures show the detailed
CNA status for each gene in the PROMOTE and RWHR cohorts (Figures 1 and S1).
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Figure 1. Copy number variation status of the genes of interest. OncoPrint Figure showing CNA
status at 24 gene loci in the PROMOTE (a) and RWHR (b) cohorts. Each column represents an
individual mCRPC patient. The percentage value indicates the CNA frequency of a gene. Red
rectangle represents gain (log2 copy number ratio > 0.3). Blue rectangle represents loss (log2 copy
number ratio < −0.3).

3.3. Gene-Specific and Pharmacodynamics Changes in CNAs for Primary Resistance to Abiraterone
Acetate/Prednisone (AA/P) in the PROMOTE Cohort

To determine association of CNAs with primary resistance, we first investigated
plasma CNAs in the pre-treatment PROMOTE cohort with the clinical status at 3 months of
AA/P treatment failure. Patients were classified into one of the two subgroups depending
on response at 3 months: as responder or progressive disease at 3 months (non-responder).
The composite endpoint for PROMOTE study collected prospectively was used. This
analysis did not identify any pre-treatment gene-specific CNA significant association with
treatment response status at 3 months. We then evaluated pharmaco-dynamic changes of
serial plasma CNAs using the pre-treatment and 3 months post-treatment. This analysis
showed a significant decrease of the copy number in AR (p = 0.001) and COL22A1 (p = 0.037)
and a borderline significant increase of the copy numbers in PTEN (p = 0.061) in the
responders at the 3 month treatment (paired t-test). However, no significant change was
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observed for these genes in the non-responder group at 3 months (Figure 2a–c). Instead we
observed copy number decrease for NKX3.1 (p = 0.026) and ZBTB16 (p = 0.025), and copy
number increase at PIK3CB (p = 0.006) in the non-responders to AA/P after 3 months of
exposure (paired t-test) (Figure 2d–f).
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Figure 2. Copy number changes during the AA/P treatment. Copy number changes at AR (a),
COL22A1 (b), PTEN (c), NKX3.1 (d), ZBTB16 (e), PIK3CB (f) before (pre-) and 3-month after (post-)
abiraterone acetate and prednisolone (AA/P) treatment in responders and non-responders in the
PROMOTE cohort. p values are calculated by paired t-test.

3.4. Gene-Specific CNAs Predict Acquired Resistance and Survival

To determine gene-specific CNAs predictive of acquired resistance, we performed sur-
vival analysis using CNAs in the pre-treatment (baseline) samples of the PROMOTE cohort.
We observed significant shorter PFS in patients with AR gain (log-rank p value = 0.0042, haz-
ard ratio (HR, 95% CI) = 2.17 [1.26–3.73]), and with COL22A1 gain (p = 0.022,
HR = 2.47 [1.11–5.47]) (Figure S2a,b). Median PFS for patients with and without AR gain was
7.9 months and 13.9 months, respectively. Similarly, median PFS for patients with and without
COL22A1 gain was 5.9 months and 12.1 months, respectively. CNA status and their association
with PFS are shown in Table 2. Additionally, although significant copy number changes in
PTEN and NKX3.1 were observed during the 3 months of AA/P treatment (Figure 2c–d),
baseline PTEN loss and NKX3.1 loss were not predictive of acquired resistance.
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Table 2. Cox regression analysis results in the PROMOTE and RWHR cohort.

Gene CNA
PROMOTE PFS PROMOTE OS RWHR OS

HR p Value HR p Value HR p Value

APOB Del 1.07 0.8812 0.69 0.5273 4.54 0.1061
AR Amp 2.17 0.0042 1.98 0.0180 1.59 0.0377

BRAF Amp 0.58 0.4452 0.38 0.3204 1.93 0.0293
CCND1 Amp 1.32 0.4225 1.04 0.9120 NA 1.0000
CHD1 Del 1.17 0.5946 1.02 0.9452 1.84 0.3899

COL22A1 Amp 2.47 0.0216 1.86 0.1456 3.58 0.0002
ERG Del 0.00 0.3336 0.00 0.6569 0.82 0.7421

FOXA1 Amp 1.15 0.5805 0.78 0.3800 1.10 0.6601
MYC Amp 1.57 0.0801 1.43 0.2088 0.55 0.0888

MYCL Amp 0.71 0.2145 0.62 0.1294 0.89 0.8479
NCOR1 Del 1.98 0.1816 4.00 0.0050 7.47 0.0002
NCOR2 Del 0.00 0.3336 0.00 0.6569 1.53 0.0529
NKX3.1 Del 0.69 0.1833 1.02 0.9585 1.80 0.0084

NOTCH1 Amp 1.04 0.8705 1.02 0.9469 5.45 0.0005
PIK3CA Amp 1.22 0.5408 2.16 0.0225 1.68 0.0247
PIK3CB Amp 20.89 0.0001 3.61 0.1797 2.54 0.0391
PIK3R1 Del 1.13 0.7427 1.79 0.1071 1.94 0.0902
PTEN Del 1.10 0.7420 1.07 0.8421 1.70 0.2116
RAF1 Amp 1.00 0.9964 3.06 0.1063 NA 1.0000
RB1 Del 1.15 0.6240 1.02 0.9515 2.49 0.0278

SPOP Del 1.44 0.4378 1.32 0.5539 NA 1.0000
TMPRSS2 Del 0.93 0.8522 1.95 0.0965 1.73 0.0136

TP53 Del 1.43 0.2357 2.07 0.0286 1.50 0.0655
ZBTB16 Del 2.29 0.1547 6.63 0.0008 1.03 0.9405

We also evaluated the prognostic value of CNAs detected in the pre-treatment sam-
ples in candidate genes in the PROMOTE cohort. Pre-treatment CNAs in the PRO-
MOTE cohort with shorter OS were observed with gain of AR (log-rank p value = 0.018,
HR = 1.98 [1.11–3.53]), PIK3CA (p = 0.022, HR = 2.16 [1.10–4.24]), and loss of TP53 (p = 0.028,
HR = 2.07 [1.06–4.02]), NCOR1 (p = 0.0049, HR = 4 [1.41–11.40]) and ZBTB16 (p = 0.00083,
HR = 6.63 [1.84–23.86]) (Figure S2c–e). Table 2 summarizes CNA results of all genes along
with p-values. The association of gene-specific CNAs with OS in the RWHR cohort was
also analyzed (Table 2). Table S3 includes all CNA status raw data for each patient for all
candidate genes for both cohorts.

3.5. Multi-Gene CNAs-Based Risk Scores Are Predictive and Prognostic in Two Separate Cohorts

mCRPC is a highly heterogeneous disease state with diverse drivers of disease pro-
gression and mechanisms of therapeutic resistance. This prompted us to go beyond a single
or limited set of CNAs for determining clinical outcomes that are based on a multi-gene
risk score of CNA alterations. We developed a risk score for each patient based on CNA
alterations of the top 5 genes observed associated with clinical outcomes from the pre-
treatment time-point (Table S2, based on Cox regression p-values). We then dichotomized
the score at its median value for all patients in the cohort to perform survival analysis with
high score (above the median) and low score (below the median) risk. To reduce sampling
bias and randomness and prevent overfitting, we also performed a LOOCV to calculate
the risk scores in both cohorts for the survival endpoint. The LOOCV risk scores remained
prognostic of survival and predictive of acquired treatment resistance at a significant level.
In the PROMOTE cohort, Kaplan–Meier survival analysis showed that a high-risk score at
the pre-treatment was associated with poor OS (p = 0.00014) (Figure S3a). The high-risk
score was also significantly associated with shorter PFS (p = 0.0029) (Figure S3b). In the
RWHR cohort, the top 5-gene based risk score was predictive of survival in mCRPC state
(p = 0.0054) (Figure S3c).
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3.6. A Unified 11-Gene Risk Score Panel for Clinical Application

The multi-gene risk score calculated from the top genes are cohort-dependent. There-
fore, we analyzed a unified multi-gene CNA aberration score taken from the aberrations
observed in both independent cohorts. We combined the top 5 genes altered for survival
in both cohorts and the top five for PFS (in the PROMOTE cohort) listed in Table S2. A
11-gene panel (AR, COL22A1, MYC, NCOR1, NKX3.1, NOTCH1, PIK3CA, PIK3CB, TM-
PRSS2, TP53, ZBTB16) showed the best performance for predicting OS (p = 0.00019, risk
score range: 0–5.42, median 0.68) as well as for predicting acquired resistance to AA/P
treatment (p = 0.0043, risk score range: −0.44–4.01, median 0.36) in the PROMOTE cohort
(Figure 3a,b). Patients with high-risk scores showed a median OS of 25.3 months and
median PFS of 9.2 months, while patients with low-risk scores showed a median OS and
PFS of 33.4 and 21.5 months, respectively. Notably, the risk score based on the 11-gene
panel was also observed to predict survival in the RWHR cohort (p < 0.0001, risk score
range: −0.6–7.33, median 1.07) (Figure 3c). The median OS for patients with high-risk
scores was 23.2 months while with low-risk score was 41.7 months. The risk scores from
the 11-gene panel remained significant after LOOCV (Figure S4a–c).
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progression free survival (PFS). Risk scores calculated from the 11-gene panel (AR, COL22A1, MYC,
NCOR1, NKX3.1, NOTCH1, PIK3CA, PIK3CB, TMPRSS2, TP53, ZBTB16) are significantly associated
with (a) overall survival and (b) AA/P treatment resistance in the PROMOTE cohort, and (c) overall
survival in the RWHR cohort.

3.7. Multi-Gene Risk Score and Clinical Factor-Based Score Association with Outcomes

We compared the 11-gene panel with clinical factors that have been reported to be associ-
ated with castrate resistant prostate cancer survival [31,32]. We included seven known prog-
nostic factors (circulating tumor cell (CTC) > 4, Lactate Dehydrogenase (LDH) > 230 IU/L,
Alkaline phosphatase (ALP) > 147 IU/L, Prostate-specific antigen (PSA) > 4 ng/mL, high
metastatic disease volume, Gleason score > 7, and Age > median age of the cohort) and per-
formed Cox regression at the univariate level in both cohorts (Figure 4a,b). Clinical variables
observed to be statistically significant at the univariate level were included with the gene risk-
based score. They included serum LDH, serum alkaline phosphatase (ALP), Gleason score for
survival analysis. The multivariate model performed better than univariate model alone in
the PROMOTE (p = 5.2 × 10−5) (Figure 4c) and RWHR cohort (p = 4 × 10−7) (Figure 4d).
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Figure 4. Comparison of multi-gene risk score with other clinical factors for survival. (a,b) Cox
regression analysis comparing multi-gene risk score with seven survival-relevant clinical factors in
the PROMOTE (a) and RWHR (b) cohort. Risk score (high) indicates 11-gene risk score above median
value in the corresponding cohort. (c,d) Kaplan–Meier survival curves showing robust survival
prognosis by the combination of 11-gene risk score, LDH, ALP, and Gleason score in the PROMOTE
(c) and RWHR (d) cohort. CTC: circulating tumor cell; LDH: Lactate Dehydrogenase; ALP: Alkaline
phosphatase; PSA: Prostate-specific antigen.

Finally, we determined pharmacodynamic changes based on the 11-gene based risk
score before and after AA/P in the PROMOTE. We observed significant decrease of the risk
score in responders (paired t-test, p = 7 × 10 −6), while no evident changes were observed
in the non-responders (p = 0.685) (Figure S5a). The changes in risk score during AA/P
treatment (∆ risk score) were significantly correlated with treatment response (Fisher’s
exact test, p = 0.003, odd ratio = 7.64) (Figure S5b).

4. Discussion

Liquid biopsies are promising tools for developing prognostic, predictive and molec-
ular biomarkers for detection of minimal residual disease. CNAs in plasma cfDNA of
mCRPC patients at specific genomic regions show strong associations with clinical out-
comes (survival and treatment resistance) [5,13,27,29,30]. However, concerns remain over
the applicability of these biomarkers in clinical settings because of tumor genetic het-
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erogeneity, reproducibility and false negative results in patients with low-tumor volume.
Recently it has been observed that alterations in advanced prostate cancer tissue and ctDNA
show concordant cancer driver alterations making plasma ctDNA detected alterations a
potentially useful tool for guiding clinical applications [33]. In this study, we targeted
CNAs in 24 pre-selected genes which is a more comprehensive set of genomic variables
than our previous report [10] from which the present study also differs in the approach to
calculate the clinic-genomic algorithm in several ways. Even though we used two clinically
matched mCRPC cohorts we observed differences in the frequencies of the candidate gene-
specific CNAs. Since genetic heterogeneity in mCRPC state can make it challenging for
use of a single gene-based alteration as a prognostic or predictive biomarker we explored
multi-gene based cfDNA CNA-based scores to identify clinical outcomes. To accomplish
this task our analytical pipeline used low pass whole-genome sequencing, gene-specific
copy number calling, and then calculated a composite multi-gene risk score calculation.
With this approach, we observed that the multi-gene risk score was able to predict clinical
outcomes in mCRPC patients.

Several novel approaches were employed to calculate multi-gene risk scores that
predict outcomes. Firstly, we used a gene-centric approach for CNA analysis. Traditionally,
CNA analysis using whole-genome sequencing data is based on the sequence reads on
non-overlapping genomic bins, for example, 1 Mb genomic window. In case the gene of
interest is smaller than the pre-defined genomic bin, it can result in undermining gene
counts. For example, AR and MYC are only around 186.6 kb and 5.4 kb in size, respectively.
Therefore, the CNA signal could be significantly diluted if using an entire genomic bin to
represent a gene of interest that only accounts for a small part of the bin. In addition, other
genes or regulatory regions in the genomic bin may also contribute to the CNAs. To address
this issue, in this study we used the sequence reads mapped to the genes of interest only
for CNA analyses, which may help reduce the noise from neighboring genomic contexts
and provide a more accurate gene copy change. Although this gene-centric method may
result in less sequence reads in a gene locus than the genomic binning method, the reads
are still adequate for CNA analysis, even for the challenging copy number loss genes such
as TP53 and PTEN [15].

We also observed that although CNAs were detectable in genes of interest, the fre-
quencies of these CNAs at some gene loci were different between the two cohorts. Gain
of NOTCH1, MYCL and loss of PTEN, CHD1, RB1 were detected with a high frequency
in the PROMOTE cohort but a lower frequency in the RWHR cohort. In contrast, loss of
NCOR2 was more frequently detected in the RWHR cohort than in the PROMOTE cohort.
These findings may be attributed to selection criteria for labelling mCRPC in two different
time periods (at least 5 years apart), during which time there were changing standards of
care treatments for mCRPC and a tendency by clinicians to define mCRPC state earlier
after 2012 than in the period between 2000–2012. Clonal evolutionary pressures may in this
situation have led to differences in alteration frequencies in mCRPC patients collected in
earlier or delayed mCRPC state.

Copy number gain of AR can drive CRPC progression while on ADT as well as during
AA/P treatment [34,35]. Interestingly, we detected AR gain in 29% of patients in the
PROMOTE cohort, but we did observe the association between AR gain and poor clinical
outcomes during AA/P treatment. We also investigated other genes in the AR signaling
axis. NKX3.1 and ZBTB16 are negative transcriptional regulators of the AR signaling
pathway and their loss is associated with the primary resistance of abiraterone acetate and
prednisone [36,37]. However, NKX3.1 loss did not predict acquired resistance during the
four-year follow-up. Although the hazard ratio of this risk factor is very high toward shorter
OS, the frequency of ZBTB16 loss was observed to be low. In addition to the AR signaling
pathway, other pathways are also critically implicated in CRPC progression [38]. PI3K/Akt
pathway is commonly altered in CRPC [39]. Consistent with previous findings, loss of the
tumor suppressor gene PTEN and gain of PI3K catalytic subunit were observed in our CRPC
cohorts. Both PTEN loss and PIK3CB gain were associated with the primary resistance to
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the AA/P treatment within 3 months. Furthermore, loss of the tumor suppressor gene TP53
has been reported in many types of human cancers [40]. We also observed an association of
TP53 loss with shorter OS in our patient cohorts. COL22A1 is located at 8q24.2, where the
most frequent gain has been reported in primary and advanced prostate cancer. This gene
encodes collagen that structurally belongs to the FACIT protein family. Our results showed
a significant association of COL22A1 gain with primary and acquired resistance toward
AA/P treatment.

The other novelty of our study was to develop a multi-gene risk assessment score
for clinical outcomes in two independent cohorts in mCRPC. This approach is similar to
multi-gene expression panels that have been validated for clinical applications, such as the
ONCOTYPE DX recurrence score used for breast cancer prognosis [41] and as a predictive
biomarker [42] for deciding adjuvant chemotherapy. Identifying candidate alterations for
targeted sequencing of the 11-gene panel, if validated, offers an initial step which may
also be more cost effective and have higher clinical utility for practice change compared
to whole genome sequencing or for determining prognostic and predictive outcomes in
mCRPC state based on a single gene.

There are some limitations to this study. First, the method we used to define CNAs
is novel, but exploratory, as there is no gold standard in determining gene-specific CNAs.
To maintain consistency across different genes, we applied the log2 ratio of read counts in
patients and read counts in healthy controls to define the CNA status of a gene locus. Since
different genes have different optimal cut points for survival analysis, we decided to use
0.3 as a cut point to avoid overfitting after balancing the frequency of CNA events in both
the PROMOTE and RWHR cohorts. This will need to be validated in the future using inde-
pendent cohorts. Second, in the RWHR cohort, most patients have experienced different
primary treatments before blood collection. Unlike in the PROMOTE cohort, samples were
collected at time points when the standard of care treatments were different. This may have
affected treatment-induced lineage plasticity and clonal evolutionary pressures for different
results in CNAs in the two cohorts. Interestingly, despite the differences in the frequency of
CNA changes between two cohorts, the 11-gene panel was able to prognosticate survival
and predict treatment response. These observations are based on cohort studies and will
require future validation in appropriately designed biomarker based clinical trials.

5. Conclusions

We developed a risk score algorithm based on cfDNA CNAs in 11 genes, which also
included clinical variables specific for CRPC state. This multi-gene risk score predicts
treatment resistance to AA/P in mCRPC patients and prognosticates mCRPC survival.
These multiple gene CNA-based findings in cfDNA offer the potential for biomarker
development that may impact future clinical management in mCRPC.
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