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Abstract

Background

Binary definitions of the metabolic syndrome based on the presence of a particular number

of individual risk factors are limited, particularly in the pediatric population. To address this

limitation, we aimed at constructing composite and continuous metabolic syndrome scores

(cmetS) to represent an overall measure of metabolic syndrome (MetS) in a large cohort of

metabolically at-risk children, focusing on the use of the usual clinical parameters (waist cir-

cumference (WC) and systolic blood pressure (SBP), supplemented with two salivary surro-

gate variables (glucose and high density lipoprotein cholesterol (HDLC). Two different

approaches used to create the scores were evaluated in comparison.

Methods

Data from 8,112 Kuwaiti children (10.00 ± 0.67 years) were used to construct two cmetS for

each subject. The first cmetS (cmetS-Z) was created by summing standardized residuals of

each variable regressed on age and gender; and the second cmetS (cmetS-PCA) was

defined as the first principal component from gender-specific principal component analysis

based on the four variables.

Results

There was a graded relationship between both scores and the number of adverse risk fac-

tors. The areas under the curve using cmetS-Z and cmetS-PCA as predictors for severe

metabolic syndrome (defined as the presence of�3 metabolic risk factors) were 0.935 and

0.912, respectively. cmetS-Z was positively associated with WC, SBP, and glucose, but

inversely associated with HDLC. Except for the lack of association with glucose, cmetS-

PCA was similar to cmetS-Z in boys, but had minimum loading on HDLC in girls. Analysis

using quantile regression showed an inverse association of fitness level with cmetS-PCA (p
= 0.001 for boys; p = 0.002 for girls), and comparison of cmetS-Z and cmetS-PCA
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suggested that WC and SBP were main contributory components. Significant alterations in

the relationship between cmetS and salivary adipocytokines were demonstrated in over-

weight and obese children as compared to underweight and normal-weight children.

Conclusion

We have derived continuous summary scores for MetS from a large-scale pediatric study

using two different approaches, incorporating salivary measures as surrogate for plasma

measures. The derived scores were viable expressions of metabolic risk, and can be uti-

lized to study the relationships of MetS with various aspects of the metabolic disease

process.

Background
Metabolic syndrome (MetS) has been defined as a concurrence of metabolic abnormalities
associated with atherosclerotic cardiovascular disease and insulin resistance that are related to
the development of type 2 diabetes (T2D). Based on recommendations from the International
Diabetes Federation (IDF) and Adult Treatment Panel III (ATPIII) [1], the core components
of MetS include elevated abdominal adiposity, blood pressure, glucose, and triglycerides, and
lowered high-density lipoprotein cholesterol, considered present if exceeding certain threshold
values. MetS is well defined in the adult population, but due to relatively low prevalence rate
(<10%) [2, 3] and lack of large-scale studies, its definition is not as clear in children and adoles-
cents, especially in terms of choice of factors to be included at this early stage when some symp-
toms have yet to emerge.

Despite the usefulness of a binary definition of individual risk factor in clinical setting, by
which diagnosis of the metabolic syndrome is made in the presence of a certain number of
measures exceeding thresholds (e.g. n� 3), growing evidence supports using a continuous
approach instead of a dichotomous one [4–8]. Aside from the statistical consideration to gain
power by using all the information, it is believed that the risk of MetS increases gradually with
increasing levels of each individual risk factor, together with increasing number of risk factors.
Therefore, a continuous score would best reflect the progressive nature by providing a measure
in risk severity. Ideally, an approach would allow for differential weighting of different compo-
nents [9, 10], accounting for the fact that not all risk factors contribute equally to MetS, which
is an assumption inherent in the dichotomous approach.

Various strategies have been used to construct a continuous metabolic syndrome scores
(cmetS) from its components. The most frequently used methods are the summation of stan-
dardized Z scores adjusting for covariates [7, 11], and the use of first principal component
(PC1) from principal component analysis (PCA) [12–15]. Z score summation is an efficient
method, but it is limited by the presumption that each component contributes equally and
independently to the total risk, thereby assigning the same weight to each measure and failing
to address the inter-correlation among them. PCA, on the other hand, is an analytical approach
that has been designed to summarize multidimensional correlated data. Its unrotated PC1 is
the linear combination of all measures that captures the maximum variance in the data, more
than any other linear combination from succeeding PCs. Thus, PC1 is a reasonable representa-
tion for quantifying MetS, by assigning differential weights to different components with vari-
able loadings, and accounting for the maximum variance among the components. Compared
to the Z score approach, PCA is more data-driven in the sense that it allows the data to
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determine how much each individual risk component contributes to the process, instead of
imposing that all components contribute equally. This is especially helpful in the case of pediat-
ric studies, where there is no universally accepted definition of MetS and the relative impor-
tance of various components is less certain than it is in adults.

The current analysis is based on a large-scale longitudinal study evaluating factors related to
the etiology and development of obesity in over 8,000 Kuwait children aged 8–14 years [16]. In
this population, obesity and hypertension were prevalent (34.2% and 23.9%, respectively), and
the prevalence of metabolic syndrome (presence of at least 3 risk factors) was approximately
1.1%. Given the fact that we have a relatively large pediatric population with a low prevalence
of MetS from a region where adult T2D is highly prevalent [17], it is of particular interest to
derive a continuous score representing a composite risk profile of MetS still at its emergent
stage, in which the interplay of different components may be quite different from adults, and
metabolic risk is difficult to assess as defined by the binary variable. The cmetS score will be
tracked in the follow-up study as an indicator of metabolic risk, and cmetS at baseline can be
used in predicting later incidents, such as development of T2D or cardiovascular disease.

Importantly, one aspect worth noting with this cohort is that fasting saliva samples were col-
lected in all subjects and risk factors and many biomarkers were measured, making it possible
to evaluate MetS profile using saliva parameters as surrogates of plasma parameters.

Based on the unique metabolic risk status of this study population and the increasing utility
of cmetS in pediatric research, the focus of our study is to construct and validate cmetS using
two different approaches: Z score and PCA. Furthermore, the utility of the scores was evaluated
in terms of predicting fitness level, as well as examining the relationship between salivary adi-
pocytokines and metabolic risk.

Materials and Methods
This research study was part of the Kuwait Healthy Life Study (KHLS), which aimed to investi-
gate the obesity-related consequences and the etiology of metabolic syndrome in Kuwait chil-
dren. The validation study for US subjects was approved by the Forsyth Institutional Review
Board in USA, and the study of Kuwaiti subjects (4th or 5th grades) was approved by the Das-
man Diabetes Institute Ethical Review Committee in Kuwait. Written consent forms signed by
parents/guardians were collected in advance for both US and Kuwait study subjects. Subject
assent was obtained on the day of the visit.

Saliva samples were collected rather than blood samples in recognition of salivary assay as a
source of valuable surrogate information [18, 19], to reduce anxiety in our Kuwait subjects (10
year old children) [20] and to promote their willingness to participate in our study. The use of
non-invasive procedures throughout the study was directly related to our ability to enroll over
8,000 children/year within the Kuwaiti school system

Study population
KHLS has been previously described [16]. Briefly, clinical data and saliva samples were col-
lected from 8,319 participants during 179 visits to 138 Kuwaiti schools between October 2,
2011 and May 15, 2012. Participating children were 4th and 5th graders attending Kuwaiti
public schools, which were approximately equally distributed among each region (governorate)
of Kuwait. After excluding those with missing saliva samples and major clinical measurements,
8,112 children were included in the current study, predominantly pre-pubertal based on the
respective age criteria for boys and girls. A few missing values for clinical covariates were
imputed by median values.
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Clinical and biological measurements
Subject identification, height, weight, blood pressure, oral examination findings, and fitness
data were entered into a programmed iPad™ (Apple, Cupertino, CA) system for Internet trans-
fer, as described previously [16]. Body weight categories were defined by World Health Organi-
zation (WHO) criteria using a Body Mass Index (BMI) Z-score [21]. Based on this criterion,
obese was�95th percentile, overweight was�85th to<95th percentile, normal healthy weight
was�5th to<85th percentile and underweight was<5th percentile. Fitness was measured by
heart rate elevation (beats/minute) following a standard 3-minute exercise [22]. Another obe-
sity status was defined according to the criteria based on the waist circumference (WC). Based
on the data from European-American children and adolescents [23], those with�90th percen-
tile in WC for age and sex were assigned as obese.

Saliva samples were collected after overnight fast, as described previously [24]. Samples
were centrifuged at 2,800 rpm for 20 min at 4°C, after which the supernatants were transferred
to a screw-cap 2D barcoded storage tubes (Thermo Scientific), which can be read by a barcode
reader (Thermo Scientific VisionMate™ ST) and frozen at -80°C. The frozen samples were air-
transported to Forsyth Institute under temperature-monitored dry ice.

High-density lipoprotein cholesterol (HDLC) and glucose were measured in all the saliva
samples, using fluorescent spectroscopic analysis (Infinate1 200 Pro, Tecan, Gröndig, Austria)
from commercially available kits (BioVision, Mountain View CA, HDL and LDL/VLDDCholes-
terol Quantification Kit, #K613-100 and Glucose Assay kit Cat #K606-100) adapted to operate
on a robotic chemical assay platform (Tecan EVO 150,Tecan Group, Männedorf, Switzerland).

We randomly selected 744 samples to assay for 20 biomarkers (insulin, CRP, adiponection,
leptin, IL-1β, IL-4, IL-6, IL-8, IL-10, IL-12P70, IL-13, IL-17A, resistin, MMP_9, MPO, MCP-1,
TNF-α, VEGF, IFN-γ, and ghrelin), as previously described [24]. Briefly, saliva supernatants
were thawed at 4°C overnight and kept on ice throughout the assay procedure. All assays were
performed on 25 μl of saliva supernatant using four multiplex magnetic bead panels on a Lumi-
nex 200™ system (Luminex, Austin, TX). Results were evaluated using Bio-Plex Manager™
(Version 5.0; Bio-Rad, Hercules, CA). IL-17A, IFN-γ, and ghrelin were not included in analysis
due to a large number of zero or abnormal values. Additionally, 18 samples with extreme values
in measurements were excluded from the current analysis, as assessed by their undue influence
on regression in an initial model.

Statistical analyses
All of the statistical analyses were performed using SAS version 9.3 (SAS Institute, Cary, NC,
USA). The risk factor measures chosen to construct both metabolic syndrome scores (cmetS-Z
and cmetS-PCA) were: waist circumference (WC), systolic blood pressure (SBP), salivary
HDLC concentration, and salivary glucose concentration.

Construction of cmetS-Z. The derivation of the cmetS-Z involved two steps. First, for
each risk factor, standardized residuals (Z score) were calculated by regressing them onto age
and gender to adjust for age and gender differences. Z scores for HDLC were multiplied by –1,
based on the assumption that HDLC is inversely associated with MetS risk; Secondly, Z scores
for each measure were summed to create a continuous composite score (cmetS-Z = Z_WC
+ Z_SBP—Z_Saliva HDLC + Z_saliva glucose) This approach resulted in each risk component
being equally weighted in the final score.

Construction of cmetS-PCA. We constructed cmetS-PCA using principal component
analysis (PCA). PCA transformed the original variables into a set of principal components
(PC), with the first PC (PC1) being the linear combination of all variables that captured the
largest variance in the data, and each succeeding PC as the one that captured the largest
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fraction of variance orthogonal to the preceding PC. On the log-transformed measures of the
four risk factors, PCA was performed using the correlation matrix of standardized variables,
stratified by gender. As PC1 accounts for the largest proportion of total variance in the four
measures, we defined it as a continuous score of metabolic syndrome (cmetS-PCA). In contrast
to the Z score method, this approach allowed for differential weighting of each individual risk
component in the final score.

Analysis using cmetS. MetS was defined as the presence of at least three of the following
four factors: 1) WC�90th; 2) SBP�130 or DBP�85; 3) salivary HDLC�0.6 mg/dL (approxi-
mate plasma HDLC�50 mg/dL) (S1 Appendix); and 4) salivary glucose�1.13 mg/dL
(approximate plasma level of glucose� 100mg/dL) [25]

The ability of cmetS to predict MetS was assessed using receiver operating characteristic
(ROC) curves. The area under the curve (AUC) was taken as a measure of overall accuracy of
cmetS to discriminate between subjects with and without severe metabolic syndrome.

Quantile regression (SAS 9.3, Proc Quantreg) was used to assess the association of fitness
with cmetS, stratified by gender and adjusting for potential confounders including age, BMI,
sleep parameters, and regions in which the patient’s school was located. This technique was
used to estimate conditional quantiles, requiring no distribution assumption of the dependent
variable and was robust to outliers [26]. The linear quantile regression function Q (τ|X = x) =

x0β(τ) can be estimated by solving b̂ðtÞ ¼ argmin
Pn

i¼1 rtðyi � x0ibÞ, where ρτ(u) = u(τ −
I(u<0)), for any quantile τ in [0,1]. We chose τ = 0.5 thus it corresponded to median regression.
As fitness had an extremely skewed distribution, quantile regression offered a robust alternative
to linear regression for modeling this variable.

In the analysis of the random cohort in which 20 salivary biomarkers were assayed, model
selection based on stepwise selection was used to develop a parsimonious linear model to pre-
dict cmetS (Sas 9.3, Proc Glmselect). As the distribution of both cmetS scores was approxi-
mately normal, they could be reasonably modeled by a linear model. During the selection
process, all biomarkers (values standardized) and variables of subject features were considered.
The Schwartz Bayesian Criterion was evaluated for all models by deleting a variable from the
current model or adding a variable to this model. To avoid over-fitting, a 10-fold cross valida-
tion procedure was adopted to assess the performance, and the best model was determined
based on the average predictive performance in the test sets. Subsequently, the selected subsets
of significant predictors for each cmetS were examined separately in subgroups, stratified by
their WHO body weight categories.

Results

Anthropometric and metabolic phenotypes of participants
In the KHLS study, 3045 boys and 5067 girls (total n = 8112) completed clinical measures of
BMI, waist circumference, and blood pressure, as well as HDLC and glucose levels in fasting
saliva samples collected at baseline (Table 1). Boys appeared to have higher metabolic risk than
girls in regard to blood pressure measures (p<0.0001 for SBP, p = 0.0002 for DBP), salivary
glucose level (p<0.0001), and the proportion identified as obese (p<0.0001). Girls, however,
had a significantly lower salivary HDLC level than boys (p<0.0001)

Construction of cmetS-Z and cmetS-PCA and their validity as indicators
of MetS
The value of cmetS-Z for each child was obtained by summing the standardized residual for
individual components of risk factors (i.e. WC, SBP, Saliva HDLC and glucose), after regressing
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onto age and gender. Meanwhile, PCA was performed using the log-transformed components,
stratified by gender. In boys, the first PC (PC1) explained 37.2% of the variance (Eigen-
value = 1.49). The loadings of the four components were: WC: 0.70, SBP: 0.70, HDLC: -0.13,
glucose: -0.04. In girls, PC1 explained 35.9% of variance (Eigenvalue = 1.43), and the loadings
of the four components were: WC: 0.70, SBP: 0.71, HDLC: 0.02, glucose: -0.03. Notably, HDLC
had a negative loading in boys, consistent with the notion that HDLC is inversely related to
metabolic risk. In girls, however, the loading of HDLC was close to zero. Because of this differ-
ence in the loading profile, the two groups of participants were not combined for subsequent
analysis. To ensure that the score was maximally spread out the four components, cmetS-PCA
was constructed using an unrotated PC1.

Table 2 shows the graded relationship between each cmetS score and number of risk factors.
We found that cmetS-Z was the lowest in children with no risk factors (-1.11±1.62) and highest
(4.46±2.71) in the group with 3 risk factors. Likewise, cmetS-PCA increased progressively with
number of risk factors from no risk (-0.63±0.87), to 1 risk factor (0.46±0.99), 2 risk factors

Table 1. Characteristics of study participants (mean (SD)).

Characteristic Boys (n = 3045) Girls (n = 5067) p value Combined (n = 8112)

Age (years) 9.99 (0.67) 10.00 (0.67) 0.78 10.00 (0.67)

Weight (kg) 40.38 (13.75) 40.26 (12.87) 0.67 40.31 (13.21)

Height (cm) 137.3 (7.56) 137.8 (7.69) 0.004 137.7 (7.64)

BMI (kg/m2) 1 21.01 (5.34) 20.86 (5.14) 0.26 20.92 (5.22)

% obese (WHO category) 2 39.21% 31.24% <0.0001 34.23%

Waist circumference (cm) 68.22 (12.79) 68.43 (11.80) 0.46 68.35 (12.18)

Systolic blood pressure (mmHg) 110.4 (17.64) 108.9 (15.39) <0.0001 109.44 (16.29)

Diastolic blood pressure (mmHg) 74.43 (13.36) 73.30 (12.44) 0.0002 73.72 (12.81)

Saliva HDLC (mg/dL) 1 1.36 (1.06) 1.26 (1.02) <0.0001 1.30 (1.04)

Saliva glucose (mg/dL) 1 0.22 (0.28) 0.18 (0.22) <0.0001 0.19 (0.24)

Fitness level (Δbpm) 1 25.31 (22.45) 26.34 (22.53) 0.02 25.96 (22.50)

Metabolic syndrome2 1.22% 1.11% 0.65 1.14%

Comparison between sexes was by t-test, except as noted.
1 via Wilcoxon rank test.
2 via Chi-square test.

doi:10.1371/journal.pone.0138979.t001

Table 2. Values of continuousmetabolic syndrome scores stratified by number of risk factors (mean (SD)).

Number of risk
factors* present

Waist
circumference (cm)

Systolic blood
pressure (mmHg)

Saliva HDLC
(mg/DL)

Saliva Glucose
(mg/DL)

cmetS-Z cmetS-PCA Age
(years)

N

0 62.46 (7.00) 102.5 (12.5) 1.39(1.07) 0.18 (0.16) -1.11
(1.62)

-0.63 (0.87) 9.99
(0.67)

4550

1 72.15 (12.20) 114.8 (15.7) 1.20(0.99) 0.22 (0.30) 0.84
(1.75)

0.46 (0.99) 9.99
(0.65)

2519

2 84.65 (11.20) 126.6 (14.7) 1.18 (0.94) 0.22 (0.35) 2.64
(1.86)

1.62 (0.87) 10.04
(0.70)

950

3 86.86 (8.90) 129.0 (11.9) 0.70 (0.47) 0.47 (0.64) 4.46
(2.71)

1.86 (0.65) 10.04
(0.64)

92

4 88.90 120.0 0.48 1.18 7.13 1.64 10.01 1

* Risk factors include obesity defined by abdominal adiposity, blood pressure, fasting saliva HDLC and glucose concentrations expressed in calibrated

serum concentrations, with values surpassing a threshold value as described in Materials and Methods.

doi:10.1371/journal.pone.0138979.t002
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(1.62±0.87), and 3 risk factors (1.86±0.65). It is worth noting that as number of risk factors
increased, in contrast to the significant changes in the values for WC and SBP, values for sali-
vary levels of HDLC and glucose did not exhibit substantial change until the number reached
3. The lack of change in these two components in the study population was reflected in PC1,
which had a small negative loading on HDLC only in boys and nearly zero loading on glucose
in both sexes.

To evaluate the global accuracy of cmetS-Z and cmetS-PCA as predictors for MetS (defined
as presence of> = 3 risk factors), ROC curve analysis was performed (Fig 1). The AUC for
cmetS-Z was 0.935, and 0.912 for cmetS-PCA. Both scores had AUCs that outperformed the
AUCs of individual metabolic risk components as follows: WC (0.892), SBP (0.844), salivary
HDLC (0.851), and salivary glucose (0.593) (Table 3). It was found that PC2, whose loadings
were largely on HDLC and glucose (boys: WC: 0.03, SBP: 0.14, HDLC: 0.67, glucose: 0.73; girls:
WC: 0.07, SBP: -0.05, HDLC: 0.62, glucose: 0.78), was not a good predictor of MetS
(AUC = 0.602). Based on the fact that PC2 did not constitute viable expressions of metabolic
risk, PC1 alone was chosen to construct cmetS-PCA, instead of using the combined vectors of
PC1 and PC2, which would have attenuated the predictive power of PC1.

Despite the low prevalence of MetS in this study population (1.15%), there was a much
larger group with at least 2 risk factors present (12.86%). Such children may be susceptible to
developing MetS later in life. Therefore, we also tested an alternative outcome among children

Fig 1. ROC for cmetS-Z and cmetS-PCA as predictors for MetS in Kuwait children.

doi:10.1371/journal.pone.0138979.g001

Table 3. Area under the curve (AUC) of cmetS-Z and cmetS-PCA as predictors for MetS (defined as the presence of > = 3 risk factors), as compared
to that using the individual components as predictors. AUCs using these predictors to predict an emerging state of MetS (defined as the presence of > =
2 risk factors) are also presented.

cmetS-Z cmetS-PCA Waist circumference
(cm)

Systolic blood pressure
(mmHg)

Saliva HDLC (mg/
DL)

Saliva Glucose (mg/
DL)

AUC (Risk factor >
= 3)

0.935 0.912 0.892 0.844 0.851 0.593

AUC (Risk factor >
= 2)

0.900 0.917 0.894 0.841 0.593 0.513

doi:10.1371/journal.pone.0138979.t003
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using a less stringent criterion for MetS (i.e.�2 risk factors present). As shown in Table 3, we
found that cmets-PCA had the highest AUC (0.917), followed by cmetS-Z (0.900), WC alone
(0.894) or SBP alone (0.841). Notably, although salivary HDLC level was a good predictor for
MetS, it was not a good predictor (0.593) for this emerging state of MetS.

To examine the metabolic risk in obese children as compared with healthy-weight children,
average cmetS-Z and cmetS-PCA were compared across WHO body weight categories. Both
obese and overweight children had significantly higher scores than did normal-weight children
(cmetS-Z: 1.58±1.95 and -0.08±1.70 vs. –1.21±1.82; cmetS-PCA: 1.10±0.87 and 0.02±0.80 vs.
-0.88±0.84), indicating a significant risk even existed in overweight children. Correspondingly,
the distribution of these two scores exhibited a gradual shift towards higher values across the
four body weight categories (Fig 2)

Fig 2. Distribution of cmetS-Z and cmetS-PCA acrossWHO body weight categories in a cohort of
8,112 Kuwaiti children. The four body weight categories were defined according to WHO criteria. The
numbers at the top of each graph were the mean ± SD of cmetS-Z and cmetS-PCA for each category, as also
indicated by the bars at the corresponding locations of the distributions.

doi:10.1371/journal.pone.0138979.g002

Continuous Metabolic Syndrome Scores Using Salivary Biomarkers

PLOS ONE | DOI:10.1371/journal.pone.0138979 September 29, 2015 8 / 16



Association of cmets-Z and cmets-PCA with fitness level
The association of both cmetS scores with fitness was assessed using quantile regression. The
analysis was stratified by gender, adjusting for age, BMI, sleep parameters, and region
(Table 4). In both boys and girls, cmetS-PCA, but not cmetS-Z, was found to be significantly
associated with fitness level, conditioned on the above covariates. In boys, for every 1 SD
increase in cmetS-PCA there was an average increase of 3.24 beats/min in heart rate
(p = 0.001). In girls, for every 1 SD increase in cmetS-PCA there was an average increase of
2.01 beats/min in heart rate (p = 0.002). Thus, cmetS-PCA demonstrated a strong association
with fitness level in children, but not cmets-Z, although it exhibited a marginal significant asso-
ciation with fitness level in girls (p = 0.07).

Salivary biomarkers as predictors of cmetS-Z and cmetS-PCA
In a previously reported randomly selected cohort of 744 children [24], various salivary bio-
markers including adipocytokines were assayed. In the current analysis, all biomarkers and
variables of subject characteristics were considered for building a predictive model for meta-
bolic risk as indicated by cmetS. Data from the 726 subjects of the entire cohort was used for
stepwise selection, for the benefit of large sample size. This selection procedure with 10-fold
cross validation yielded a parsimonious model for each score, which, for cmetS-Z, consisted of
CRP, insulin, adiponectin, and fitness status. For cmetS-PCA, the procedure yielded an almost
identical subset, except leptin was added as an additional predictor. Further analysis was con-
ducted in two sub-groups divided by WHO body weight category: normal weight and under-
weight versus overweight and obese. In each sub-group, a predictive model for cmetS-Z or
cmetS-PCA was built based on the above identified predictors. As shown in Table 5, in the nor-
mal weight/underweight sub-group, neither biomarkers nor fitness status was a significant pre-
dictor for cmetS scores, The one exception was adiponectin, which was inversely associated
with cmetS-Z (p = 0.01). In contrast, in the overweight/obese sub-group most biomarkers
became significant predictors for cmetS, with insulin being the strongest predictor for both
cmetS-Z (p<0.0001) and cmetS-PCA (p<0.0001), followed by adiponectin (p = 0.0002 and

Table 4. Association of fitness level with cmetS-Z and cmetS-PCA, adjusting for age, sex, BMI, sleep parameters, and region in which the partici-
pants’ school was located.

Fitness vs. cmetS-Z Fitness vs. cmetS-PCA

Estimate (95% CI) p value Estimate (95% CI) p value

Boys (n = 3045)

Age (per year) 1.62 (0.04–3.19) 0.04 1.14 (-0.39–2.68) 0.14

cmetS (per SD) 1.02 (-0.44–2.48) 0.17 3.24 (1.27–5.22) 0.001

BMI(per unit) 0.82 (0.55–1.08) <0.0001 0.40 (0.03–0.77) 0.03

Sleep (per hr) 0.40 (-0.25–1.05) 0.23 0.33 (-0.31–0.99) 0.31

Region 0.01* 0.02*

Girls (n = 5067)

Age (per year) -0.43 (-1.56–0.69) 0.45 -0.62 (-1.74–0.50) 0.28

cmetS (per SD) 0.84 (-0.07–1.76) 0.07 2.01(0.77–3.25) 0.002

BMI(per unit) 0.85 (0.68–1.01) <0.0001 0.67 (0.45–0.90) <0.0001

Sleep (per hr) 0.33(-0.12–0.78) 0.15 0.38 (-0.08–0.85) 0.11

Region <0.0001* 0.0001*

*indicates p values of Wald test for all categories in type 3 analysis.

doi:10.1371/journal.pone.0138979.t004
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p = 0.007, respectively), CRP (p = 0.01 and p<0.0001, respectively), and fitness status (p = 0.07
and p = 0.003, respectively). Leptin, although was selected as a significant predictor for
cmetS-PCA from the entire cohort, did not manifest as such in the overweight/obese sub-
group.

Discussion
In this population of 8,112 children who are at risk of metabolic disease, we used two
approaches to construct continuous metabolic syndrome scores (cmetS) in order to summarize
the inter-correlated risk factors for MetS. The first approach was based on the sum of sample-
specific Z scores (cmetS-Z), and the second was based on the first principal component from
principal components analysis (cmetS-PCA). We assessed their respective global accuracy in
predicting MetS and compared each to that of individual metabolic risk components. We also
evaluated the predictive utility of these scores by their ability to predict cardiovascular health as
measured by fitness level, and investigated their relationships with salivary adipocytokines in
subgroups within different body weight categories

Since it is not clear whether the definition of metabolic risk of adulthood can be extended to
childhood where MetS is at its emergent stage, there has been little consensus on the criteria
for defining MetS in children and adolescents, both in terms of the choice of risk factors and
their respective threshold values [27]. In this context, it is useful to develop a continuous sum-
mary score that takes into account of all risk components and provides a progressive measure
for the severity of metabolic risk, either in equally weighted [7] or differentially weighted man-
ner [28].The two summary measures developed within a large and homogeneous pediatric
population in this study enabled us to compare these two strategies.

In our study, variables of risk factors used to derive cmetS were selected a priori, which
included waist circumference (WC), systolic blood pressure (SBP), saliva HDLC, and saliva
glucose. As triglycerides and HDLC have a strong inverse correlation [29, 30] we chose saliva
HDLC to represent the lipid parameters due to measurement issues of salivary triglycerides in

Table 5. Multiple salivary biomarkers and subject characteristics as predictors for cmetS-Z and cmetS-PCA in a randomly selected cohort
(n = 726), stratified byWHO obesity status

cmetS-Z cmetS-PCA

Estimate (95% CI) p value Estimate (95% CI) p value

Underweight and normal-weight children (n = 312)

Age (per year) 0.15 (-0.15–0.45) 0.33 0.30 (0.15–0.45) 0.0001

CRP (per SD) -0.04 (-0.23–0.16) 0.72 0.009 (-0.09–0.11) 0.86

Insulin (per SD) 0.11 (-0.35–0.59) 0.64 0.13 (-0.11–0.37) 0.29

Adiponectin (per SD) -0.21 (-0.37–-0.05) 0.01 -0.02 (-0.11–0.06) 0.57

Leptin (per SD) NA NA -0.03 (-0.15–0.23) 0.62

Fitness (poor vs. good)* 0.02 (-0.35–0.40) 0.90 0.04 (-0.15–0.23) 0.71

Overweight and obese children (n = 414)

Age (per year) 0.28 (-0.03–0.59) 0.08 0.36 (0.23–0.49) <0.0001

CRP (per SD) 0.28 (0.07–0.48) 0.01 0.18 (0.10–0.27) <0.0001

Insulin (per SD) 0.48 (0.32–0.65) <0.0001 0.19 (0.12–0.26) <0.0001

Adiponectin (per SD) -0.47 (-0.71–-0.22) 0.0002 -0.14 (-0.25–-0.04) 0.007

Leptin (per SD) NA NA 0.04 (-0.03–0.12) 0.28

Fitness (poor vs. good) 0.36 (-0.04–0.76) 0.07 0.25 (0.09–0.42) 0.003

*poor is defined as having values above the median, and good as having values below the median.

doi:10.1371/journal.pone.0138979.t005
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our study. For the Z score method, these four variables were pre-defined as contributors to
metabolic risk, each being presumed equally important. In contrast, PCA, as a method that
transforms correlated variables to a set of uncorrelated principal components (PC), had differ-
ential loading coefficient for each variable in the PCs. Algebraically, the first PC captured the
maximum variance in the data, so it follows that PC1 was the quantity that most efficiently
characterized the clustering of original variables, and for that reason it was defined as the index
score representing metabolic risk. Interestingly, PC1 was found to be considerably loaded on
WC and SBP in both boys and girls, marginally loaded on saliva HDLC in boys, and not loaded
on saliva glucose in either. Correspondingly, prominent changes of WC and SBP were observed
across different risk factor categories, which contrasted with relatively small changes seen in
salivary HDLC level and marginal changes in saliva glucose level across categories, especially
the first three in which most subjects belonged to (Table 2). This suggests that the main drivers
of metabolic risk in this population are WC and SBP, together with a small contribution from
HDLC. Hence, unlike the summed Z score assuming equal weighting of each component, the
data-driven PCA approach created a summary measure of differential weighting that mini-
mized the role of glucose in this population, which was consistent with earlier observations
that fasting blood glucose was typically normal in youth and even in overweight youth [31].

The two cmetS constructed in our study increased progressively with increasing number of
risk factors (Table 2). As shown by ROC analysis, cmetS-Z and cmetS-PCA performed well in
predicting MetS as conventionally defined in a clinical setting, (AUC = 0.935, 0.912, respectively),
and was superior to that using individual component (Table 3). We also tested an alternative out-
come using a less stringent criterion for MetS (i.e.,�2 risk factors), and found cmetS-Z and
cmetS-PCA are also good predictor for this outcome (AUC = 0.900, 0.917, respectively). In this
scenario, HDLC was not a predictor for the outcome anymore, suggesting that in the early stage
of MetS, WC and SBP were the main emergent components. As an obesity-related consequence,
metabolic risk increased along with obesity status, as demonstrated in Fig 2, in which distribu-
tions of both scores showed a marked upward shift across WHO body weight categories (Fig 2).

Previous studies suggested that physical fitness, especially cardiorespiratory or aerobic fit-
ness, is correlated with metabolic risk [32, 33]. Thus we used fitness level as an outcome that
may have long-term implication for cardiovascular functions. In the analysis stratified by gen-
der, fitness level was found to be highly significantly associated with cmetS-PCA (p = 0.001 for
boys, 0.002 for girls), independent from BMI which was always a strong predictor of fitness
(Table 4). In the case of cmetS-Z, however, a marginally significant relationship with fitness
was only found in girls (p = 0.07). The fact that cmetS-PCA demonstrated a stronger associa-
tion with fitness than cmetS-Z suggested that central adiposity and hypertension were the two
main components correlated with cardiovascular fitness in these children. Therefore, for the
outcome of fitness level, cmetS-PCA appeared to be a superior predictor to cmetS-Z.

Dysregulation of adipocytokines from adypocytes has been a subject of extensive study,
which is believed to be a key mechanism in obesity-related sequelae [34]. Among the adipo-
kines, adiponectin and leptin are the most studied. Adiponectin is anti-inflammatory, and is
inversely associated with obesity and other parameters of MetS [35]; leptin, on the other hand,
is positively correlated with obesity, playing a key role in regulating body mass [36]. Using a
randomly selected cohort from the entire study population, we tested the association of adipo-
cytokines with metabolic risks, as represented by cmetS. A subset of biomarkers were selected
for significant association with cmetS, including adiponectin, leptin, and other inflammatory
markers such as insulin and CRP. When this subset was used to model cmetS in subgroups
stratified by body weight categories, a remarkable contrast was observed. In the normal/under-
weight group, none of the above biomarkers was significant predictor for cmetS except for adi-
ponectin, whereas in the overweight/obese group most of these biomarkers became highly
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significantly predictors (Table 5). The only exception was leptin, despite that it was a significant
predictor for cmetS-PCA when using the entire cohort. This result suggested that as a conse-
quence of obesity, an entirely different relationship has emerged between metabolic risk and
adipocytokines, with body fat playing a pivotal role. It has been shown by others that adiponec-
tin is positively correlated with plasma HDLC level [37]. This is consistent with our finding
that in the normal/underweight group salivary adiponectin was significantly associated only
with cmetS-Z, but not with cmetS-PCA, which had much smaller loading on HDLC than the
former. Incidentally, the fact that adiponectin was already inversely associated cmetS-Z in the
normal group agreed well with the conclusion that a decrease in adiponectin is an early predic-
tor of MetS in children [38]. Notably, the observation of an altered relationship between cmetS
and salivary adipocytokines only in high body weight categories confirmed that these scores
were good indicators for the severity of metabolic risk in the entire study population.

Due to the low prevalence of MetS in children, it is a challenge to conduct association stud-
ies using the binary variable (defined as presence of> = 3 risk factors). Therefore, the continu-
ous score of cMets has its advantage as a more sensitive measure. In modeling fitness using the
binary variable, we were unable to detect a significant effect of MetS (S1 Table) in either gender
group, while a very strong effect was detected in both groups using cmetS-PCA (Table 5). Simi-
larly, for selection of adipocytokines associated with MetS, the low prevalence made it impossi-
ble to model the binary variable.

Based on our analysis in the entire population, salivary measures appeared to be reasonable
surrogates of plasma measures for evaluating metabolic risk in children. Moreover, our finding
with the random cohort concurred with other findings on the relationship of blood adipocyto-
kines and inflammatory markers with Mets in obese children [39], validating our cmetS derived
from salivary parameters. We noticed, however, that in a recent study on Thai adult male, sali-
vary adiponectin and leptin did not correlate with MetS [40]. This disagreement could be due to
a number of reasons, including the difference in the way MetS was defined (continuous scores vs.
binary variable), and limited power in their study rendered by a relatively small sample size.

One of the strengths of this study is the unusually large sample size, combined with homo-
geneity of the study subjects. As cmetS thus constructed is sample specific, which provides a
relative measure of risk with each individual’s risk being compared to the study population, a
large and relatively homogenous sample is advantageous. The two summary measures devel-
oped within this population enabled us to compare these two strategies comprehensively, and
to our knowledge, no previous investigation has done so in children. Our data showed that
these two differently constructed scores both constitute viable measures of metabolic risk in
our study population. The performance of these two scores, however, was not always compara-
ble. For instance, cmetS-PCA was a much more robust predictor for fitness level than cmetS-Z.
Hence the choice of which cmetS score to use will depend on the objective of the study. Evi-
dently, as compared to cmetS-Z, cmetS-PCA that weighs the inter-correlated components
based on their variance structure would be more dynamically reflective of the data. In evalua-
tion of longitudinal data of pediatric populations, the weighting of the components in
cmetS-PCA will change at each time point a new score is constructed, reflecting the changing
pattern of risk factors as body grows and matures.

One limitation of this study lies in the lack of plasma measures of HDLC and glucose in the
Kuwaiti children. Due to the reticence of Kuwaiti parents, blood samples from the children
were not collected. Hence, we were unable to examine the correlation between plasma and sali-
vary measures of these two parameters in this study population. Instead, a validation study to
measure this correlation was carried out in a small separate group of children instead [25]. Fur-
ther investigation with plasma level of HDLC and glucose would be valuable to confirm the
role of these two components in the emergent stage of Mets among children.
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Conclusion
We have constructed two continuous summary scores for metabolic syndrome from a large,
metabolically at-risk pediatric population, using summation of standardized Z scores and prin-
cipal component analysis, with salivary measures incorporated as surrogate for plasma mea-
sures. With cmetS as an indicator of metabolic risk, our findings demonstrated that fitness
level in these children are inversely associated with MetS profile, and the relationships between
Mets status and salivary adipocytokines/inflammatory markers are drastically dysregulated in
overweight and obese children. Either score may be useful in investigating associations between
metabolic risk and various aspects of disease process, and either could potentially be utilized to
track the metabolic profile from childhood into young adulthood.

Supporting Information
S1 Appendix.
(DOCX)

S1 Dataset.
(XLS)

S1 Table.
(DOCX)

Acknowledgments
We wish to recognize these individuals for helping to conduct the study in Kuwait from 2011–
2012: Dr Sarah Ahmed, Dr Sumaiah, Dr Yasmeen, Rabab Al Khajah, Massouma Saket, Laila
Khaja, Laila Diab, Mariyam Sayer, Nadia, Mahmoud Bader, Amna Ahmed, Eman Adnan, and
Shymaa Al Fadly. Saliva processing was done at Tissue Bank Core Facility, Dasman Diabetes Insti-
tute Kuwait, under the supervision of Azadali Moorji, Head of TBCF. We gratefully acknowledge
the participation of dentists Rithna Shajahan, Safura Mohammed, Hemalatha Vasudevaraj, Enas
Mahmoud Ismail, and Noha Syed Musthafa; nurses Wisam Hassan, Neda Saleh Hamad, Amal
Kamel Ebrahim, Abeer Abdul Hameed, Amani Ata’allah, Flavia D. Ferrao, July K. Kunjumon,
Reji Thomas, Wedad Al Shamary, Hanady Salem, Asma Al Said, AbdulHameed Said, Bashaer Eid
Al Enezin, Jenny Mol Kurian, Laila Hamed Habib, Kholoud Kazem Jaber, Rawan Salem, Halima
Malek Hussein, Marwa Ibraheem, Priya, Deslin, Suad Ahmed Al Deyab, Zakiya Abdul Mohsen,
Rasha Mohammed, Kawthar Sa'ad Jaber, Afaf Eid Tharesh, Nawal Abdullah, and Shaima Syed
Mohammed; field coordinators Eman Sayed Khadmi and Fatma Al Fadhli; secretary Raseena
Valamvayal; drivers A. K. Jamaluddeen, V. M. Kunhammed, K. K. Basheer and O. T. Shaishad;
and setup helpers P. Soopy and Shameer Porayil. We acknowledge the assistance of New England
Survey Systems of Brookline Massachusetts for aid in database preparation. We also acknowledge
the consultations offered by Boston Nutrition and Obesity Research Center (grant P30 DK46200)
and thank Dr. Jorge Chavarro for his critical review of the manuscript. We thank Jillian L. Lokere,
MS, for editorial assistance in preparing the manuscript.

Author Contributions
Conceived and designed the experiments: JMG KB FW. Performed the experiments: MLH HH
TY JV RB OA SA JA P. Soparkar JB. Analyzed the data: P. Shi. Wrote the paper: P. Shi JMG.
Ethical Review Board communication: MC OA JA.

Continuous Metabolic Syndrome Scores Using Salivary Biomarkers

PLOS ONE | DOI:10.1371/journal.pone.0138979 September 29, 2015 13 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0138979.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0138979.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0138979.s003


References
1. Expert Panel on Detection E, Treatment of High Blood Cholesterol in A. Executive Summary of The

Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Eval-
uation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 2001;
285(19):2486–97. PMID: 11368702.

2. de Ferranti SD, Gauvreau K, Ludwig DS, Neufeld EJ, Newburger JW, Rifai N. Prevalence of the meta-
bolic syndrome in American adolescents: findings from the Third National Health and Nutrition Exami-
nation Survey. Circulation. 2004; 110(16):2494–7. Epub 2004/10/13. doi: 01.CIR.0000145117.40114.
C7 [pii] doi: 10.1161/01.CIR.0000145117.40114.C7 PMID: 15477412.

3. DuBose KD, Stewart EE, Charbonneau SR, Mayo MS, Donnelly JE. Prevalence of the metabolic syn-
drome in elementary school children. Acta Paediatr. 2006; 95(8):1005–11. doi: 10.1080/
08035250600570553 PMID: 16882578.

4. Katzmarzyk PT, Perusse L, Malina RM, Bergeron J, Despres JP, Bouchard C. Stability of indicators of
the metabolic syndrome from childhood and adolescence to young adulthood: the Quebec Family
Study. J Clin Epidemiol. 2001; 54(2):190–5. PMID: 11166535.

5. Brage S, Wedderkopp N, Ekelund U, Franks PW,Wareham NJ, Andersen LB, et al. Features of the
metabolic syndrome are associated with objectively measured physical activity and fitness in Danish
children: the European Youth Heart Study (EYHS). Diabetes Care. 2004; 27(9):2141–8. PMID:
15333475.

6. Andersen LB, Harro M, Sardinha LB, Froberg K, Ekelund U, Brage S, et al. Physical activity and clus-
tered cardiovascular risk in children: a cross-sectional study (The European Youth Heart Study). Lan-
cet. 2006; 368(9532):299–304. doi: 10.1016/S0140-6736(06)69075-2 PMID: 16860699.

7. Eisenmann JC. On the use of a continuous metabolic syndrome score in pediatric research. Cardiovas-
cular diabetology. 2008; 7:17. doi: 10.1186/1475-2840-7-17 PMID: 18534019; PubMed Central
PMCID: PMC2430947.

8. Pandit D, Chiplonkar S, Khadilkar A, Kinare A, Khadilkar V. Efficacy of a continuous metabolic syn-
drome score in Indian children for detecting subclinical atherosclerotic risk. Int J Obes (Lond). 2011; 35
(10):1318–24. doi: 10.1038/ijo.2011.138 PMID: 21772245.

9. Wijndaele K, Beunen G, Duvigneaud N, Matton L, Duquet W, Thomis M, et al. A continuous metabolic
syndrome risk score: utility for epidemiological analyses. Diabetes Care. 2006; 29(10):2329. doi: 10.
2337/dc06-1341 PMID: 17003322.

10. Martinez-Vizcaino V, Martinez MS, Aguilar FS, Martinez SS, Gutierrez RF, Lopez MS, et al. Validity of a
single-factor model underlying the metabolic syndrome in children: a confirmatory factor analysis. Dia-
betes Care. 2010; 33(6):1370–2. doi: 10.2337/dc09-2049 PMID: 20299487; PubMed Central PMCID:
PMC2875456.

11. Okosun IS, Lyn R, Davis-Smith M, Eriksen M, Seale P. Validity of a continuous metabolic risk score as
an index for modeling metabolic syndrome in adolescents. Ann Epidemiol. 2010; 20(11):843–51. doi:
10.1016/j.annepidem.2010.08.001 PMID: 20933191.

12. Batey LS, Goff DC Jr., Tortolero SR, Nichaman MZ, ChanW, Chan FA, et al. Summary measures of
the insulin resistance syndrome are adverse among Mexican-American versus non-Hispanic white chil-
dren: the Corpus Christi Child Heart Study. Circulation. 1997; 96(12):4319–25. PMID: 9416899.

13. Hillier TA, Rousseau A, Lange C, Lepinay P, Cailleau M, Novak M, et al. Practical way to assess meta-
bolic syndrome using a continuous score obtained from principal components analysis. Diabetologia.
2006; 49(7):1528–35. doi: 10.1007/s00125-006-0266-8 PMID: 16752171; PubMed Central PMCID:
PMC3505191.

14. Agarwal S, Jacobs DR Jr., Vaidya D, Sibley CT, Jorgensen NW, Rotter JI, et al. Metabolic Syndrome
Derived from Principal Component Analysis and Incident Cardiovascular Events: The Multi Ethnic
Study of Atherosclerosis (MESA) and Health, Aging, and Body Composition (Health ABC). Cardiology
research and practice. 2012; 2012:919425. doi: 10.1155/2012/919425 PMID: 22536533; PubMed Cen-
tral PMCID: PMC3318892.

15. Mochizuki K, Miyauchi R, Misaki Y, Ichikawa Y, Goda T. Principal component 1 score calculated from
metabolic syndrome diagnostic parameters is a possible marker for the development of metabolic syn-
drome in middle-aged Japanese men without treatment for metabolic diseases. Eur J Nutr. 2013; 52
(1):67–74. doi: 10.1007/s00394-011-0287-z PMID: 22160241.

16. Goodson JM, Tavares M, Wang X, Niederman R, Cugini M, Hasturk H, et al. Obesity and Dental
Decay: Inference on the Role of Dietary Sugar. PloS one. 2013; 8(10):e74461. doi: 10.1371/journal.
pone.0074461 PMID: 24130667.

17. International_Diabetes_Federation. IDF Diabetes Atlas, 5th edition Brussels, Belgium 2011. Available:
http://www.idf.org/diabetesatlas.

Continuous Metabolic Syndrome Scores Using Salivary Biomarkers

PLOS ONE | DOI:10.1371/journal.pone.0138979 September 29, 2015 14 / 16

http://www.ncbi.nlm.nih.gov/pubmed/11368702
http://dx.doi.org/10.1161/01.CIR.0000145117.40114.C7
http://www.ncbi.nlm.nih.gov/pubmed/15477412
http://dx.doi.org/10.1080/08035250600570553
http://dx.doi.org/10.1080/08035250600570553
http://www.ncbi.nlm.nih.gov/pubmed/16882578
http://www.ncbi.nlm.nih.gov/pubmed/11166535
http://www.ncbi.nlm.nih.gov/pubmed/15333475
http://dx.doi.org/10.1016/S0140-6736(06)69075-2
http://www.ncbi.nlm.nih.gov/pubmed/16860699
http://dx.doi.org/10.1186/1475-2840-7-17
http://www.ncbi.nlm.nih.gov/pubmed/18534019
http://dx.doi.org/10.1038/ijo.2011.138
http://www.ncbi.nlm.nih.gov/pubmed/21772245
http://dx.doi.org/10.2337/dc06-1341
http://dx.doi.org/10.2337/dc06-1341
http://www.ncbi.nlm.nih.gov/pubmed/17003322
http://dx.doi.org/10.2337/dc09-2049
http://www.ncbi.nlm.nih.gov/pubmed/20299487
http://dx.doi.org/10.1016/j.annepidem.2010.08.001
http://www.ncbi.nlm.nih.gov/pubmed/20933191
http://www.ncbi.nlm.nih.gov/pubmed/9416899
http://dx.doi.org/10.1007/s00125-006-0266-8
http://www.ncbi.nlm.nih.gov/pubmed/16752171
http://dx.doi.org/10.1155/2012/919425
http://www.ncbi.nlm.nih.gov/pubmed/22536533
http://dx.doi.org/10.1007/s00394-011-0287-z
http://www.ncbi.nlm.nih.gov/pubmed/22160241
http://dx.doi.org/10.1371/journal.pone.0074461
http://dx.doi.org/10.1371/journal.pone.0074461
http://www.ncbi.nlm.nih.gov/pubmed/24130667
http://www.idf.org/diabetesatlas


18. Singh S, Ramesh V, Oza N, Balamurali PD, Prashad KV, Balakrishnan P. Evaluation of serum and sali-
vary lipid profile: A correlative study. Journal of oral and maxillofacial pathology: JOMFP. 2014; 18
(1):4–8. doi: 10.4103/0973-029X.131881 PMID: 24959029; PubMed Central PMCID: PMC4065446.

19. Mascarenhas P, Fatela B, Barahona I. Effect of diabetes mellitus type 2 on salivary glucose—a system-
atic review and meta-analysis of observational studies. PloS one. 2014; 9(7):e101706. doi: 10.1371/
journal.pone.0101706 PMID: 25025218; PubMed Central PMCID: PMC4098915.

20. Goodson JM, Welty f. Using salivary biomarkers to identify children at risk of Type 2 diabetes. Diabetes
Management. 2014; 4(6):463–5. doi: 10.2217/dmt.14.34

21. de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth
reference for school-aged children and adolescents. Bull World Health Organ. 2007; 85(9):660–7.
Epub 2007/11/21. PMID: 18026621; PubMed Central PMCID: PMC2636412.

22. Suriano K, Curran J, Byrne SM, Jones TW, Davis EA. Fatness, fitness, and increased cardiovascular
risk in young children. J Pediatr. 2010; 157(4):552–8. Epub 2010/06/15. doi: 10.1016/j.jpeds.2010.04.
042 PMID: 20542285.

23. Zimmet P, Alberti KG, Kaufman F, Tajima N, Silink M, Arslanian S, et al. The metabolic syndrome in
children and adolescents—an IDF consensus report. Pediatric diabetes. 2007; 8(5):299–306. doi: 10.
1111/j.1399-5448.2007.00271.x PMID: 17850473.

24. Goodson JM, Kantarci A, Hartman ML, Denis GV, Stephens D, Hasturk H, et al. Metabolic disease risk
in children by salivary biomarker analysis. PloS one. 2014; 9(6):e98799. doi: 10.1371/journal.pone.
0098799 PMID: 24915044; PubMed Central PMCID: PMC4051609.

25. Hartman ML, Goodson JM, Barake R, Alsmadi O, Al-Mutawa S, Ariga J, et al. Salivary glucose concen-
tration exhibits threshold kinetics in normal-weight, overweight, and obese children. Diabetes, meta-
bolic syndrome and obesity: targets and therapy. 2015; 8:9–15. doi: 10.2147/DMSO.S72744 PMID:
25565874; PubMed Central PMCID: PMC4274134.

26. Koenker R, Hallock K. Quantile Regression. J Economic Perspectives. 2001; 15:143–56.

27. Sovio U, Skow A, Falconer C, Park MH, Viner RM, Kinra S. Improving prediction algorithms for cardio-
metabolic risk in children and adolescents. Journal of obesity. 2013; 2013:684782. doi: 10.1155/2013/
684782 PMID: 23862055; PubMed Central PMCID: PMC3703718.

28. Peterson MD, Liu D, IglayReger HB, Saltarelli WA, Visich PS, Gordon PM. Principal component analy-
sis reveals gender-specific predictors of cardiometabolic risk in 6th graders. Cardiovascular diabetol-
ogy. 2012; 11:146. doi: 10.1186/1475-2840-11-146 PMID: 23190687; PubMed Central PMCID:
PMC3537600.

29. Miller M, Langenberg P, Havas S. Impact of lowering triglycerides on raising HDL-C in hypertriglyceri-
demic and non-hypertriglyceridemic subjects. Int J Cardiol. 2007; 119(2):192–5. doi: 10.1016/j.ijcard.
2006.07.132 PMID: 17052787; PubMed Central PMCID: PMC1950669.

30. Brewer HB Jr. Hypertriglyceridemia: changes in the plasma lipoproteins associated with an increased
risk of cardiovascular disease. Am J Cardiol. 1999; 83(9B):3F–12F. PMID: 10357568.

31. Cook MD, Weitzman M, Auinger P, Nguyen M, Dietz WH. Prevalence of a metabolic syndrome pheno-
type in adolescents. Arch Pediatr Adolesc Med. 2003; 157:821–7. PMID: 12912790

32. Rizzo ACB, Goldberg TBL, Silva CC, Kurokawa CS, Nunes HRC, Corrente JE. Metabolic syndrome
risk factors in overweight, obese, and extremely obese brazilian adolescents. Nutrition journal. 2013;
12. doi: 10.1186/1475-2891-12-19 PMID: WOS:000317126400001.

33. DuBose KD, Eisenmann JC, Donnelly JE. Aerobic fitness attenuates the metabolic syndrome score in
normal-weight, at-risk-for-overweight, and overweight children. Pediatrics. 2007; 120(5):e1262–8. doi:
10.1542/peds.2007-0443 PMID: 17974719.

34. Chilibeck PD, Perez-Lopez FR, Bodary PF, Kang ES, Jeon JY. Adipocytokines, metabolic syndrome,
and exercise. International journal of endocrinology. 2014; 2014:597162. doi: 10.1155/2014/597162
PMID: 24734044; PubMed Central PMCID: PMC3966404.

35. Koerner A, Kratzsch J, KiessW. Adipocytokines: leptin—the classical, resistin—the controversical, adi-
ponectin—the promising, and more to come. Best practice & research Clinical endocrinology &metabo-
lism. 2005; 19(4):525–46. doi: 10.1016/j.beem.2005.07.008 PMID: 16311215.

36. Venner AA, Lyon ME, Doyle-Baker PK. Leptin: a potential biomarker for childhood obesity? Clin Bio-
chem. 2006; 39(11):1047–56. doi: 10.1016/j.clinbiochem.2006.07.010 PMID: 17005171.

37. Bacha F, Saad R, Gungor N, Arslanian SA. Adiponectin in youth: relationship to visceral adiposity, insu-
lin sensitivity, and beta-cell function. Diabetes Care. 2004; 27(2):547–52. PMID: 14747242.

38. Korner A, Kratzsch J, Gausche R, Schaab M, Erbs S, Kiess W. New predictors of the metabolic syn-
drome in children—role of adipocytokines. Pediatr Res. 2007; 61(6):640–5. doi: 10.1203/01.pdr.
0000262638.48304.ef PMID: 17426657.

Continuous Metabolic Syndrome Scores Using Salivary Biomarkers

PLOS ONE | DOI:10.1371/journal.pone.0138979 September 29, 2015 15 / 16

http://dx.doi.org/10.4103/0973-029X.131881
http://www.ncbi.nlm.nih.gov/pubmed/24959029
http://dx.doi.org/10.1371/journal.pone.0101706
http://dx.doi.org/10.1371/journal.pone.0101706
http://www.ncbi.nlm.nih.gov/pubmed/25025218
http://dx.doi.org/10.2217/dmt.14.34
http://www.ncbi.nlm.nih.gov/pubmed/18026621
http://dx.doi.org/10.1016/j.jpeds.2010.04.042
http://dx.doi.org/10.1016/j.jpeds.2010.04.042
http://www.ncbi.nlm.nih.gov/pubmed/20542285
http://dx.doi.org/10.1111/j.1399-5448.2007.00271.x
http://dx.doi.org/10.1111/j.1399-5448.2007.00271.x
http://www.ncbi.nlm.nih.gov/pubmed/17850473
http://dx.doi.org/10.1371/journal.pone.0098799
http://dx.doi.org/10.1371/journal.pone.0098799
http://www.ncbi.nlm.nih.gov/pubmed/24915044
http://dx.doi.org/10.2147/DMSO.S72744
http://www.ncbi.nlm.nih.gov/pubmed/25565874
http://dx.doi.org/10.1155/2013/684782
http://dx.doi.org/10.1155/2013/684782
http://www.ncbi.nlm.nih.gov/pubmed/23862055
http://dx.doi.org/10.1186/1475-2840-11-146
http://www.ncbi.nlm.nih.gov/pubmed/23190687
http://dx.doi.org/10.1016/j.ijcard.2006.07.132
http://dx.doi.org/10.1016/j.ijcard.2006.07.132
http://www.ncbi.nlm.nih.gov/pubmed/17052787
http://www.ncbi.nlm.nih.gov/pubmed/10357568
http://www.ncbi.nlm.nih.gov/pubmed/12912790
http://dx.doi.org/10.1186/1475-2891-12-19
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000317126400001
http://dx.doi.org/10.1542/peds.2007-0443
http://www.ncbi.nlm.nih.gov/pubmed/17974719
http://dx.doi.org/10.1155/2014/597162
http://www.ncbi.nlm.nih.gov/pubmed/24734044
http://dx.doi.org/10.1016/j.beem.2005.07.008
http://www.ncbi.nlm.nih.gov/pubmed/16311215
http://dx.doi.org/10.1016/j.clinbiochem.2006.07.010
http://www.ncbi.nlm.nih.gov/pubmed/17005171
http://www.ncbi.nlm.nih.gov/pubmed/14747242
http://dx.doi.org/10.1203/01.pdr.0000262638.48304.ef
http://dx.doi.org/10.1203/01.pdr.0000262638.48304.ef
http://www.ncbi.nlm.nih.gov/pubmed/17426657


39. Gonzalez M, del Mar Bibiloni M, Pons A, Llompart I, Tur JA. Inflammatory markers and metabolic syn-
drome among adolescents. Eur J Clin Nutr. 2012; 66(10):1141–5. doi: 10.1038/ejcn.2012.112 PMID:
22909576.

40. Thanakun S, Watanabe H, Thaweboon S, Izumi Y. Comparison of salivary and plasma adiponectin and
leptin in patients with metabolic syndrome. Diabetology & metabolic syndrome. 2014; 6(1):19. doi: 10.
1186/1758-5996-6-19 PMID: 24528653; PubMed Central PMCID: PMC3926677.

Continuous Metabolic Syndrome Scores Using Salivary Biomarkers

PLOS ONE | DOI:10.1371/journal.pone.0138979 September 29, 2015 16 / 16

http://dx.doi.org/10.1038/ejcn.2012.112
http://www.ncbi.nlm.nih.gov/pubmed/22909576
http://dx.doi.org/10.1186/1758-5996-6-19
http://dx.doi.org/10.1186/1758-5996-6-19
http://www.ncbi.nlm.nih.gov/pubmed/24528653

