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Abstract

As a key sphingolipid metabolite, sphingosine-1-phosphate (S1P) plays crucial roles in vascular and immune systems.

It regulates angiogenesis, vascular integrity and homeostasis, allergic responses, and lymphocyte trafficking. S1P is intercon-

verted with sphingosine, which is also derived from the deacylation of ceramide. S1P levels and the ratio to ceramide in cells

are tightly regulated by its metabolic pathways. Abnormal S1P production causes the occurrence and progression of

numerous severe diseases, such as metabolic syndrome, cancers, autoimmune disorders such as multiple sclerosis, and

kidney and cardiovascular diseases. In recent years, huge advances on the structure of S1P metabolic pathways have been

accomplished. In this review, we have got a glimpse of S1P metabolism through structural and biochemical studies of:

sphingosine kinases, S1P transporters and S1P receptors, and the development of therapeutics targeting S1P signaling.

The progress we summarize here could provide fresh perspectives to further the exploration of S1P functions and facilitate

the development of therapeutic molecules targeting S1P signaling with improved specificity and therapeutic effects.
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Introduction – Sphingolipid Metabolism

and S1P Signaling

Sphingolipids, named after the sphinx in Egypt to rep-

resent its mysterious role, were isolated from the hydro-

lysis products of phrenosin in the 1870s by Johann

Thudichum (Thudichum, 1884; Spiegel and Milstien,

2003; Chun and Hartung, 2010). The chemical structures

of sphingolipids attracted the attention of chemists in the

early 20th century (Spiegel and Milstien, 2003). Then, its

biological mysteries have been gradually unveiled to

show irreplaceable roles in forming the cell membrane

and functioning as signaling molecules in recent decades

(Takabe et al., 2008). Complex sphingolipids, including

glycosphingolipids and sphingomyelins, are structural

components to form the mechanically stable and chem-

ically resistant outer leaflet of eukaryotic cell membranes

(Kumari et al., 2018). The general structure of sphingo-

lipids is composed of a long-chain sphingoid base,

O-linked to a polar head group on sn-1 site, and

amide-linked to a fatty acid on sn-2 site of the backbone

(Figure 1(a)). Variations of functional groups attached

to the backbone determine the physical, chemical, and

biological properties of sphingolipids. For instance, the

phosphorylation of sphingosine, which is derived from
the deacylation of ceramide, on the sn-1 hydroxyl group
creates the lysophospholipid S1P (Figures 1(b) and 2).

The metabolism of sphingolipids in cells is complex
and dynamic (Figure 2). There are three major pathways
to generate ceramides. Firstly, sphingomyelinase breaks
down sphingomyelins within the plasma membrane to
release ceramides (Nganga et al., 2018). Secondly, the
de novo pathway generates ceramide starting from less
complicated substrates in the smooth endoplasmic retic-
ulum (sER) (Lucaciu et al., 2020b). Condensation of
serine and palmitoyl-CoA by serine palmitoyl-
transferase, which is the limiting step of the pathway,
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generates 3-keto-dihydrosphingosine (Futerman et al.,

1990; Satsu et al., 2013). In turn, 3-keto-dihydrosphin-

gosine is reduced to dihydrosphingosines, which is then

acylated by ceramide synthases to produce dihydro-

ceramides (Linn et al., 2001; Galadari et al., 2006; Xu

et al., 2006). The final step to produce ceramide is cata-

lyzed by dihydro-ceramide desaturase (Hannun and

Obeid, 2008). Thirdly, the salvage pathway in acidic sub-

cellular compartments (Ditaranto-Desimone et al., 2003;

Li et al., 2015 ), which facilitates the degradation of

complex sphingolipids including sphingomyelin and gly-

cosphingolipids, and contributes to the generation of

ceramides (Takabe et al., 2008; Zhang et al., 2009;

Tukijan et al., 2018). Ceramide is subsequently

transported to the Golgi apparatus and further con-
verted to other sphingolipids (Funato et al., 2002; Jain
and Holthuis, 2017).

Ceramidases catalyze the reverse process to yield
sphingosine by deacylation of ceramide (el Bawab
et al., 2002). Additionally, sphingosine can be yielded
from the diet (Ebenezer et al., 2017). Sphingosine can
be further converted to S1P by sphingosine kinases
(SPHK1 and -2) through phosphorylation (Olivera,
1993; Liu et al., 2000a; Gao and Smith, 2011). In con-
trast, dephosphorylation of S1P by S1P phosphatases
(SGPP1 and -2) allows S1P to be transformed back to
sphingosine (Le Stunff et al., 2002; Takabe et al., 2008;
Tukijan et al., 2018). S1P lyase (SPL), S1P phosphatase,
and three lysophospholipid hydrolases are responsible
for S1P’s degradation (Tukijan et al., 2018). S1P lyase,
which acts as a crucial regulator of S1P and other sphin-
golipid intermediates, is the last enzyme for S1P degra-
dation at the ER membrane (Serra and Saba, 2010). To
date, the extracellularly located broad substrate-specific
lipid phosphate phosphohydrolases (LPPs) are the only
known enzymes that can act as ecto-enzymes for S1P
(Ksiazek et al., 2015).

(Intra-)cellular S1P levels are a function of the
dynamic relation to compartmental (including extracel-
lular) S1P levels (Cartier and Hla, 2019). Different cel-
lular stress conditions, the relative intracellular
concentrations of S1P, sphingosine, and ceramide deter-
mine the cell fate through pathways described as the
series of “drains” and “faucets” (Shaw et al., 2018).
Ceramide is well characterized as a pro-apoptotic
signal (Mizushima et al., 1996; Pettus et al., 2002;
Lewis et al., 2018). Ceramidases hydrolyze ceramide to
sphingosine to allow cellular escape from apoptosis

Figure 1. General structures of sphingolipids. (a) Chemical
structures of sphingolipids. The sphingoid base is shown in gray
shadow. R1 and R2 representing functional groups are highlighted
red and green, respectively. (b) The compositions of R1 and R2 in
different types of sphingolipids are listed.

Figure 2. Metabolic pathways of S1P. S1P is generated by phosphorylation of sphingosine by sphingosine kinases (SPHK1 and -2) and
converted to sphingosine by sphingosine phosphatases (SGPP1 and -2). Sphingosine is generated by deacylation from ceramide by
ceramidase and converted back by ceramide synthase. Ceramide can also be produced through de novo synthesis or recycling from other
sphingolipids. FTY720 (fingolimod) is a prodrug, which serves as a functional antagonist of S1P1 after phosphorylation to FTY720-
phosphate by SPHK2.
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(Nganga et al., 2018). S1P promotes cellular prolifera-
tion (Goetzl et al., 1999; Lewis et al., 2018). These dis-
coveries suggest that S1P acts not only as a building
block of cell membranes but also as a bioactive lipid
mediator. From then on, S1P has been extensively stud-
ied and closely linked to a myriad of essential cellular
processes including immune cell trafficking (Dorsam
et al., 2003; Neubauer et al., 2016; Ebenezer et al.,
2017), cell motility (Lee et al., 2001; Guerrero et al.,
2011; Neubauer et al., 2016; Sanna et al., 2016;
Lucaciu et al., 2020a), angiogenesis and vascular matu-
ration (Liu et al., 2000b; Watson et al., 2010; Ohotski
et al., 2014; Gaire et al., 2018; Lucaciu et al., 2020a), and
neurogenesis (Mizugishi et al., 2005). Plasma S1P also
helps to maintain vascular integrity and regulate vascu-
lar leaks (Baek et al., 2013a). Besides, S1P was identified
as an early risk factor of lung cancer in an epidemiolog-
ical study (Bagdanoff et al., 2009) and as a crucial medi-
ator of cardio-protection (Billich et al., 2013).

The consequences of S1P signaling are not exclusively
exerted within cells (Sanna et al., 2016; Xiong et al.,
2019), but also by ligating to its five G protein-coupled
receptors (GPCRs), designated as S1P1-5. Vascular endo-
thelial cells comprise the predominant secretory source
for S1P in the circulation (Chun et al., 2002; Pan et al.,
2006; Sanna et al., 2016; Hur et al., 2017; Xiong et al.,
2019). S1P receptors regulate cell proliferation, apopto-
sis, cell adhesion, cell motility, angiogenesis, and
inflammation, by coupling different downstream hetero-
trimeric G proteins (Takabe et al., 2008; Lucaciu et al.,
2020b). S1P1 prefers to bind to Gai/o (Cyster and
Schwab, 2012). S1P2, besides binding to Gai/o, is also
associated with Gaq, G12/13, and Gas (Chun and
Hartung, 2010; Cyster and Schwab, 2012). It couples
most efficiently with G12/13, in the wake of activation
of the small GTPase Rho (Gonda et al., 1999; Windh
et al., 1999; Okamoto et al., 2000). S1P3 is reported to
couple with Gai/o, Gaq, and G12/13, and S1P4 and S1P5

couple to Gas, Gaq, and G12/13 (Ancellin and Hla, 1999;
Windh et al., 1999). This partially explains why S1P,
such a simple molecule bears the potential to induce var-
ious systemic consequences (Figure 3).

Within the last two decades, atomic structures of
many sphingolipid metabolizing enzymes were deter-
mined, including human sphingosine kinase 1 (Wang
et al., 2013), three types of ceramidases (Inoue et al.,
2009; Airola et al., 2015; Gebai et al., 2018;
Vasiliauskaite-Brooks et al., 2018; Dementiev et al.,
2019), human S1P receptor S1P1 (Hanson et al., 2012),
bacterial homologs of serine-palmitoyltransferase
(Raman et al., 2010), S1P lyase (Bourquin et al., 2010),
some sphingolipids transfer proteins (Christoffersen
et al., 2011; Blaho et al., 2015), and so on. However,
there are still various other essential enzymes and recep-
tors, such as ceramide synthases, sphingosine kinase 2,
and S1P2-5, for which the structures and molecular
mechanisms remain yet to be uncovered. Here, we
catch a glimpse of the progress made in the metabolism,
transportation, and sensing of S1P. From a structural
viewpoint, this may pave the way for the development
of therapeutic molecules targeting S1P signaling.

Molecular Mechanism of Sphingosine
Kinases

To yield S1P in cells, SPHKs phosphorylate sphingosine
on its primary hydroxyl group (Gustin et al., 2013).
There are two SPHKs isoforms encoded in the human
genome, designated as SPHK1 and -2 (Murakami et al.,
2010; Gao and Smith, 2011). It appears that SPHK1 and
-2 have important roles in cell fate determination
(Maceyka et al., 2005) and angiogenesis (Mizugishi
et al., 2005). The SPHK1/-2 double knockout mouse
confers embryonic lethality due to detrimental effects
on severe defects in angiogenesis and neurogenesis
(Mizugishi et al., 2005). Apart from the large N terminal

Figure 3. Trafficking and signal transduction of S1P. S1P can act intracellularly to determine cell fate. S1P can also be exported via MFS
transporters (Mfsd2b and Spns2) or ABC transporters and act on S1P receptors in autocrine or paracrine manners. In particular, Mfsd2b is
expressed majorly in red blood cells and platelets, whereas Spns2 is highly expressed in lymphatic endothelial cells. The therapeutic
molecule targeting S1P1, FTY720 phosphate, was developed for the treatment of multiple sclerosis. In the circulating system, S1P is
transported by binding to ApoM. Five S1P receptors are belonging to the cell surface class A G protein-coupled receptor (GPCR) family
and regulating different cellular responses, such as cell proliferation, apoptosis, cell adhesion, cell motility, angiogenesis, and inflammation.
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and internal insertions in the sequence of SPHK2,
human SPHK1 and -2 share 48% primary sequence
identity and 73% similarity, respectively. Although cat-
alyzing the same reaction and having some functional
redundancy (Allende et al., 2004), SPHK1 and -2 present
different substrate specificities, tissue distributions, and
subcellular localizations (Liu et al., 2003; Maceyka et al.,
2005; Taha et al., 2006). For instance, SPHK1 is
recruited to the plasma membrane in response to extra-
cellular signals, such as TNFa, by generating S1P that
binds to TNF receptor associated factor 2 and regulates
cell survival (Alvarez et al., 2010; Jarman et al., 2010).
While the S1P generated by SPHK2 stabilizes telomerase
to enhance proliferation, it inhibits HDAC to maintain
histone acetylation and to regulate PPARc in nucleus
and regulates the electron transport chain assembly in
mitochondria (Hait et al., 2009; Panneer Selvam et al.,
2015; Parham et al., 2015). Moreover, studies have
shown abundant SPHK1 expression in several cancers
(Van Brocklyn et al., 2005; Ruckhaberle et al., 2008) and
inflammatory conditions (French et al., 2003). SPHK2
also shows the oncogenic function in various tumors,
such as lymphoblastic leukemia (Weigert et al., 2009;
Neubauer et al., 2016). The silencing of SPHK2 signal-
ing prominently reduces tumor growth of human xeno-
graft models in mice (Weigert et al., 2009). Enhancement
of SPHK2 expression is related to the progression of
non-small cell lung cancer and multiple myeloma (Gao
and Smith, 2011; Ebenezer et al., 2016), and the block-
age of SPHK2 expression induces cell death and
increases sensibility to various cancer cell types
(Sankala et al., 2007). Thus, SPHK inhibitors bear the
potential to alter mitochondria function, regulate S1P
signaling, and prevent cellular immortality in cancer
(Adams et al., 2020).

Apo and inhibitor bounded structures of human
SPHK1 are available in Protein Data Banks (Wang
et al., 2013; 2014). Based on the sequence and structural
alignments, human SPHK1 belongs to the phosphofruc-
tokinase (PFK)-like superfamily, sharing the same pro-
tein fold with NAD kinases, diacylglycerol kinases
(DGKs), and ceramide kinases, but not other lipid kin-
ases, such as phosphatidylinositol-3 kinase (PI3K)
(Wang et al., 2013). Five motifs (C1-C5) are highly con-
served between SPHK1, -2 and ceramide kinase (CERK)
(Wang et al., 2013). Among these motifs, the C4 domain
varies the most, suggesting a possible molecular basis of
substrate specificity (Yokota et al., 2004; Wang et al.,
2013). SPHK1 exhibits the overall fold of two lobes, the
nucleotide-binding site in the N-lobe and a hydrophobic
lipid-binding pocket in the C-lobe, whereas the catalytic
motif (S/G)GDG is positioned in between (Figure 4(a)).
The lipid-binding pocket, a J-shape hydrophobic tunnel
that can accommodate substrates with 14 to 18
carbon alkyl chains, is largely buried inside the kinase

(Figure 4(b)). Although it is hard to distinguish the suit-
able length of the acyl chain from the omitted map
observed in the structure (PDB code: 3VZB), the head
group of sphingosine fits the density well and coordi-
nates with the surrounding residues through three pairs
of hydrogen bonds (Figure 4(c)). The nucleotide-binding
site is also varified by obtaining the SPHK1-ADP-
inhibitor complex structure (PDB code: 3VZD) (Wang
et al., 2013). The SPHK1 structural model, bound with
ATP and sphingosine, was generated based on the struc-
tures described above. The c-phosphate of the ATP, as a
nucleophile, attacks the primary hydroxyl group of
sphingosine, resulting in the phosphoryl transfer. The
conserved Asp81 in SPHK1 and -2, as a general base,
deprotonates and increases the nucleophilicity of the pri-
mary hydroxyl group of sphingosine (Wang et al., 2013).
Some molecular modeling works raised other possibili-
ties on the catalyzing mechanism of SPHK1, suggesting
D178 as the catalytic residue, since inhibitors may inter-
act with D81 (Baek et al., 2013a). Thus, an atomic
resolution complex structure of SPHK1 with both sphin-
gosine and ATP analog is needed to confirm the catalyt-
ic residues and reveal the precise catalyzing mechanism
of S1P phosphorylation.

SPHK1 inhibitors have been investigated with scruti-
ny since SPHK1 was identified as a potential therapeutic
target in many diseases (Lynch et al., 2016; Cao et al.,
2018). There are several types of SPHK inhibitors,
including lipidic, non-lipidic, and natural products,
which are in use or under development for different dis-
eases (Kono et al., 2000a; 2000b; French et al., 2003;
Salma et al., 2009; Pitman et al., 2015). Most of the
early developed inhibitors, such as Safingol (Buehrer
and Bell, 1992), dimethyl-sphingosine (DMS) (Yatomi
et al., 1996), and trimethyl-sphingosine (TMS) (Endo
et al., 1991), are sphingosine analogs with poor potency
and selectivity. Although Safingol showed the therapeu-
tic potential in certain solid tumors and was applied to
phase I clinical trials (NCT00084812) (Dickson et al.,
2011), it had severe off-targets on protein kinase C
(PKC) and ceramide synthase (CerS) (Schwartz et al.,
1995). DMS and TMS also showed cross activities
with SPHK2 (Liu et al., 2000a) and CERK (Sugiura
et al., 2002), making them difficult to decipher the role
of SPHK1. Soon afterward, four different types of non-
lipidic small molecules, named SKI-I, -II, -III, and -IV,
were developed with sub-micromolar to micromolar
inhibition of SPHK1 specifically (French et al., 2003).
These compounds, showing anti-tumor activities in vivo
without obvious toxicities, shed light on SPHK inhibi-
tors to be developed as anticancer drugs. Some other
non-lipidic SPHK1 inhibitors, such as PF-543 (Schnute
et al., 2012), compound 23 (Baek et al., 2013b), and
RB-005 (Baek et al., 2013b), have been identified
through different approaches as well. To date, three
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non-lipidic inhibitors, all occupying the sphingosine
binding pocket competitively, have been co-crystallized
with SPHK1. The superposition of SPHK1 structures
bound with different inhibitors suggests the convergent
inhibitory mechanism with unique interaction features

(Figure 4(d) and (e)). Although these inhibitors showed
significant inhibitions of SPHK1 activity in vitro and
favorable PK/PD properties, the therapeutic effects in
patients remain to be further explored. The first selective
SPHK2 inhibitor, ABC294640, reducing the total

Figure 4. Structures of human SPHK1. (a) Human SPHK1 exhibits the overall fold of two lobes, designated N-/C-lobe, with a hydro-
phobic lipid-binding pocket highlighted in gray shadow, and a nucleotide-binding site highlighted in orange shadow. (b) Surface repre-
sentation of sphingosine binding pocket. Sphingosine is shown in yellow sticks. (c) Detailed interactions between sphingosine and SPHK1.
Hydrogen bonds are highlighted in brown dashes. (d) Superposition of sphingosine and three competitive inhibitors in SPHK1 structures.
(e) Chemical structures of SPHK1 inhibitors.
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amount of S1P in the nucleus (Ebenezer et al., 2017),
also completed phase I clinical trials for the treatment
of advanced solid tumors (NCT01488513) (French et al.,
2010; Gestaut et al., 2014).

S1P Degradation by S1P Lyase

The degradation of S1P, mainly through interconversion
with sphingosine or irreversible degradation to phos-
phoethanolamine (PE) and trans-2-hexadecenal, syner-
gistically matches S1P synthesis according to the
metabolic demand (Kumar and Saba, 2009; Lucaciu
et al., 2020b). Dephosphorylation of S1P to form sphin-
gosine is mainly employed by two S1P phosphatases
(SGPP1/2). S1P lyase (SPL) and lipid phosphate phos-
phohydrolases (LPPs) act as the crucial enzymes for S1P
degradation in the intracellular and extracellular spaces,
respectively. Here we only focus on SPLs as their struc-
tures have been well characterized. Further structural
studies on SGPP1/2 and LPPs are needed.

Eukaryotic SPLs associate with the ER through the
N-terminal transmembrane helix. The catalytic domains
of eukaryotic SPLs are evolutionary conserved and oper-
ate on the cytosolic leaflet of the ER membrane (Ikeda
et al., 2004). Numerous bacterial and mammalian SPL
structures have been determined. The bacterial and yeast
homolog structures of StSPL (Symbiobacterium thermo-
philum SPL) (Figure 5(a)) and Dpl1p (yeast SPL) were
solved first to characterize the substrate and co-factor
binding sites to elucidate the mechanism of S1P degra-
dation (Bourquin et al., 2010). Unsurprisingly, the
human SPL exhibits the ideal dimerization state and,
for each protomer, an overall r.m.s.d (root-mean-square
deviation) of 0.8 Å over 400 Ca atoms in an overlay of
the human SPL and Dpl1p (Weiler et al., 2014). SPLs
are members of the pyridoxal phosphate (PLP)-depen-
dent superfamily. Here we use StSPL structures to pre-
sent the interaction of PLP and the catalytic reaction of
SPLs. PLP covalently links to the residue K311 in
substrate-free structures (Figure 5(b)). The phosphate
group of PLP is well coordinated by residues G168,
T169, H310 in one protomer, and S353 from the adja-
cent protomer through hydrogen bonds (Figure 5(c)).
The pyridinium ring forms a hydrogen bond with
D274 and faces H201 to form cation-pi interaction
(Figure 5(b)). The consistent phosphate ions, which are
close to PLP and interact with residues Y105 in one
protomer and N126, H129, and S353 in the adjacent
protomer, are observed in all structures and may
mimic the head group recognition of S1P (Bourquin
et al., 2010) (Figure 5(c)). The PE bound structure of
StSPL also demonstrates substrate-binding residues
such as A103, Y105, H129, and K317 (Figure 5(d)).
Besides, the Schiff base structure of PE-PLP unveils
the mechanistic convergence of S1P degradation with

the classic PLP-dependent decarboxylation reactions
(Figure 5(d)). The substrate S1P could replace K311 of
StSPL, which initially forms an internal aldimine with
PLP, to be a Schiff base partner of PLP. Then the retro-
aldol cleavage occurs by nucleophilic attack on S1P,
releasing hexadecenal. The following re-protonation of
the quinonoid intermediate will lead to the release of PE
and allows the active site to revert to the original state.

Since inhibition of SPL causes T cell sequestration
and immunosuppression (Schwab et al., 2005), SPL is
considered as an important therapeutic target in the
treatment of auto-immune diseases such as multiple scle-
rosis and rheumatoid arthritis (Bagdanoff et al., 2009;
Fleischmann et al., 2012; Billich et al., 2013). Several
SPL specific inhibitors have been developed and their
complex structures with SPL were determined in the
past few years, including compound 31 with human
SPL, and compound 1 and -2 with StSPL surrogate.
SPL dimer only leaves a narrow hydrophobic tunnel
linking to its active site, so the inhibitors bind at the
entrance of this tunnel through hydrophobic interactions
(Figure 5(e)). Because a structure of SPL in complex
with S1P is lacking, it is not clear if these inhibitors
occupy the S1P binding site competitively or block the
entry of S1P. The precise S1P binding mode may help in
designing small molecule inhibitors with improved
specificity and efficacy. Nevertheless, these structural
observations shed light on possibilities to study the
development of SPL inhibitors for therapeutic purposes.

Molecular Mechanism of Ceramidases

Ceramidases hydrolyze membrane ceramide into sphin-
gosine, which in turn is phosphorylated to form S1P, to
regulate S1P/ceramide ratio and multiple cellular pro-
cesses. Based on the primary sequences, subcellular
localizations, functions, and pH preferences, five ceram-
idases are classified into three categories (acid, neutral,
and alkaline). Neutral ceramidase (ASAH2) is crucial
for the digestion of dietary sphingolipids (Kono et al.,
2006), regulation of the level of sphingolipid metabolites
in the intestinal tract (Symolon et al., 2004), and protec-
tion against inflammatory cytokines (Kono et al., 2006).
Alkaline ceramidases, including ACER1-3, mediate cell
differentiation by controlling sphingosine and S1P (Sun
et al., 2008), DNA damage-induced cell death (Xu et al.,
2016), and cell proliferation (Hu et al., 2010). Acid
ceramidase (ASAH1), which hydrolyzes lysosomal cer-
amide into sphingosine, is the best-characterized
member of the family due to the association with
Farber disease, the extremely rare autosomal recessive
lysosomal storage disease (Schuchman, 2016). The struc-
tural characteristics of ceramidases were extensively
explored in the last decade. All three categories of
ceramidases exhibit different structural folds and
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perform ceramide hydrolysis activities through distinct
mechanisms. ASAH1 belongs to the N-terminal nucleo-
phile (Ntn) superfamily of hydrolases (Pei and Grishin,
2003; Schulze et al., 2007), which are synthesized as a
proenzyme and activated through auto-cleavage
(Brannigan et al., 1995). Three structures of mammalian
ASAH1 (Gebai et al., 2018) indicate that both proen-
zyme and active states of ASAH1 are similar regarding
overall structure and subunit organization. However,
auto-cleavage results in conformational changes that
uncover a hydrophobic groove (13 Å) leading to the
active site that probably accommodates ceramide
(Figure 6(a)). The deprotonated catalytic residue

Cys143 of human ASAH1 is employed for both auto-
cleavage and ceramide hydrolysis, although the precise
mechanisms are different. The active site exposure mode
was also observed in the human ASAH2 structure pre-
viously (Airola et al., 2015). The major difference is that
the larger tunnel (20 Å) uncovered in ASAH2
could accommodate ceramide with longer acyl chains
(Figure 6(b)). Besides, ASAH2 is a single-pass trans-
membrane protein on epithelial cell membranes and
functions at neutral pH (Kono et al., 2006). It belongs
to a unique structural family, which displays little
sequence homology to other proteins, and catalyzes cer-
amide hydrolysis mediated by Zn2þ ion. ACERs, the

Figure 5. Structures of bacterial S1P lyase StSPL. (a) Dimer structure of StSPL (PDB code: 3MAD) is shown, in which one protomer is in
cylindrical mode (white) and the other protomer is in surface mode (lightblue). (b) Detailed interactions between K311-PLP and the
surrounding residues. Hydrogen bonds are highlighted in brown dashes. (c) Detailed interactions between PLP, phosphate ion, and the
surrounding residues in one protomer of PE bound S1P lyase structure (PDB code: 2MAU). (d) Detailed interactions between PE-PLP and
the surrounding residues in the other protomer of PE bound S1P lyase structure (PDB code: 2MAU). (e) Compound 31 acts as an inhibitor
to block the narrow substrate entrance of StSPL (PDB code: 4Q6R). Two perpendicular views are shown, in which the protein is in surface
mode and compound 31 (yellow) and PLP (green) are in stick mode.
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integral membrane proteins comprised of seven trans-
membrane helices, are less well understood in part
because of the hydrophobicity nature. By analyzing the
structure of human ACER3, the large hook-shaped
cavity is entirely embedded in the membrane (Figure 6
(c)). Computational docking and molecular dynamic
simulation results suggest that the carbonyl group and
primary alcohol of ceramide could directly interact with
Zn2þ ion. Considering the function of crystallographic
water in the active site as a nucleophile attacking the
carbonyl of ceramide, a general acid-base catalytic
mechanism was proposed (Vasiliauskaite-Brooks
et al., 2018).

A number of ceramide-mimicking inhibitors of
ceramidase (first-generation inhibitors) have been devel-
oped in the past two decades. N-Oleoylethanolamide
(NOE) was first used to increase the cellular ceramide
level and induce apoptosis in various cell lines (Sugita
et al., 1975). However, the low potency and poor selec-
tivity limit its therapeutic use (Grijalvo et al., 2006;
Houben et al., 2007). Then, a series of NOE analogs
were developed as potent and selective lysosomal acid
ceramidase inhibitors (Grijalvo et al., 2006; Bedia
et al., 2008). Besides, some lipophilic aromatic ceramide
analogs, such as D-e-MAPP, B13, and LCL compounds,
were developed to induce apoptosis via inhibition of
ceramidases as anticancer agents (Bielawska et al.,
1992; Samsel et al., 2004; Szulc et al., 2008). The rational
design of first-generation inhibitors is limited by lacking
enough heteroatoms on ceramide, making it difficult to
increase much higher potency than their natural progen-
itor. The only exception is SABRAC, which is the irre-
versible inhibitor likely forming a covalent bond with the
enzyme (Camacho et al., 2013). The first-generation
inhibitors help to highlight the therapeutic potentials
of inhibiting ceramidases in cancer treatments. The
non-ceramide-like inhibitors (second-generation inhibi-
tors), usually obtained by high throughput screening,
are more likely potent and drug-like than ceramide-
mimicking compounds. Series of second-generation

inhibitors of ceramidases have been developed.
Cerenib-2, a representative quinolinone-based com-
pound showed dose-dependent inhibition to ceramidase,
led to ceramide accumulation, and sphingosine and S1P
reduction (Draper et al., 2011). Carmofur and its deriv-
atives, the novel acidic ceramidase inhibitors, act syner-
gistically with standard anti-cancer therapeutics to
inhibit cancer cell proliferation (Realini et al., 2013).
However, the short half-life times of these compounds
in vivo hinder their therapeutic use despite the strong
inhibition (Ouairy et al., 2015). Then, the benzoxazolone
carboxamide compounds are screened as the irreversible
inhibitors of intracellular acidic ceramidase. The repre-
sentative compound 17a efficiently inhibits acidic ceram-
idase activity and is metabolically stable in vivo
(Pizzirani et al., 2015).

Mechanism of S1P Transport

S1P prompts its physiological roles through two mech-
anisms, binding to its intracellular targets or by extracel-
lular secretion. In this review, the focus is drawn on the
secretion of S1P and its subsequent transport in the cir-
culation. Hematopoietic cells and endothelial cells com-
prise the major source of extracellular S1P (Fukuhara
et al., 2012; Vu et al., 2017). Since it contains a negative-
ly charged phosphate group, S1P cannot diffuse freely
but has to be transported across the cell membrane
through active transport. Several types of transporters
have been identified in the past two decades.

Mfsd2b, which belongs to the major facilitator super-
family (MFS), is an orphan transporter that is expressed
in erythrocytes and platelets (Vu et al., 2017). Mutations
of the conserved D97 and T159 in human Mfsd2b
resulted in a loss of S1P export activity (Vu et al.,
2017). About �42-54% of the S1P reduction in the
plasma was also observed in Mfsd2b-/- mice (Vu et al.,
2017). Through a comprehensive lipidomics analysis,
S1P was specifically accumulated in Mfsd2b knockout
red blood cells and platelets (Vu et al., 2017). As a

Figure 6. Ceramide binding pockets of ceramidases. (a) Human active ASAH1 structure (PDB code: 5U7Z) is shown on wheat surface.
The uncovered ceramide binding pocket is circled. The depth of the pocket is about 13 Å. (b) Human ASAH2 structure (PDB code:
4WGK) is shown on purple surface. The uncovered ceramide binding pocket is circled. The depth of the pocket is about 20 Å. (c) The
human ACER3 structure (PDB code: 6G7O) is shown on palegreen surface. The hook-like ceramide binding pocket buried in the
membrane is circled.
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blood-borne lipid mediator, S1P is more abundant in
circulatory fluids than tissue fluids (referring to the
S1P gradient) to facilitate lymphocyte egress both from
lymph nodes into the lymph, but also from the lymphatic
system into the blood system, respectively (Fukuhara
et al., 2012; Lucaciu et al., 2020a). However, the abol-
ishment of S1P export through Mfsd2b did not affect
lymphocyte egress and trafficking (Allende et al.,
2004), indicating a functional overlap with other means
of S1P export. In that regard, spinster homolog 2
(Spns2), originally identified in zebrafish as an S1P
transporter (Kawahara et al., 2009), contributes approx-
imately 25–50% to lymphatic S1P through lymphatic
endothelial cells in humans while it is dispensable for
contributing to plasma S1P (Fukuhara et al., 2012;
Nagahashi et al., 2013; Mendoza et al., 2017). It plays
a crucial role in S1P export that regulates lymphocyte
egress and trafficking (Mendoza et al., 2012) by creating
an S1P gradient (Schwab et al., 2005). Spns2 knockout
mice featured an increase in mature thymic T cells,
whilst decreased numbers of T cells in the hematopoietic
system and secondary lymphoid organs were observed
(Fukuhara et al., 2012). A possible reason is that the
export of S1P by SPNS2 is also essential for the survival
of circulating naive T cells (Mendoza et al., 2017).

Moreover, some ATP-binding cassette (ABC) family
transporters have been reported to export S1P, including
ABCA1 in astrocytes (Sato et al., 2007), ABCC1 in mast
cells (Mitra et al., 2006), ABCG2 in breast cancer cells
(Takabe et al., 2010), and others in platelets and eryth-
rocytes (Kobayashi et al., 2006; Kobayashi et al., 2009).
However, the downregulation of these ABC transporters
did not decrease the S1P levels in plasma, rendering
them debatable in terms of physiological contribution
to S1P transport. Another ABC transporter, the cystic
fibrosis transmembrane regulator (CFTR), was also
reported to be involved in the uptake of S1P, dihydros-
phingosine 1-phosphate (dhS1P), and lysophosphatidic
acid (Brown et al., 2014).

The structural and biochemical studies of transmem-
brane proteins have been drawn attention to but difficult
to study because of the technical challenges in the past
decades. Thus, the molecular basis of S1P export cross-
ing the membrane remains unclear. Recently, a crystal
structure of HnSPNS, the bacterial homolog from
Hyphomonas neptunium shared 18% of sequence identity
and 29% similarity with human Spns2, was reported at
3.1 Å in an inward-facing conformation (PDB Code
6E9C) (Zhou et al., 2019) (Figure 7(a)). Similar to
other MFS transporters, HnSPNS consists of 12 trans-
membrane a-helices, assembling two structural repeats
with pseudo-symmetry: the N- and C-terminal domains
by TM1-6 and TM7-12, respectively (Figure 7(a)).
Among species from bacteria to mammals, the most con-
served residues gather in the N-terminal domain of

Spinster proteins (Zhou et al., 2019). Notably, the con-
tacts between TM2 and -4 in the inner cavity, where the
best-characterized residues E129 and R122 are located,
are significantly conserved. Besides, 13 of 25 residues
composing this cavity are highly hydrophobic. There is
an obvious and continuous omitted density in the center
of the cavity surrounded by those conserved residues,
such as R42, R122, F71, Y277, and Y371. Taken
together, an acidic hydrophobic small molecule may be
accommodated into the evolutionarily conserved cavity
(Figure 7(b)), suggesting S1P may serve as a potential
substrate for eukaryotic Spinster proteins.

Once exported from cells, S1P must bind to apolipo-
proteins and albumin in the bloodstream, due to the
hydrophobic characteristics, to be effectively trans-
ported. More than half of the S1P molecules are
occupied by the apolipoprotein M (ApoM), associated
with high-density lipoprotein (HDL) in the plasma
(Christoffersen et al., 2011; Blaho et al., 2015). From
the crystal structure of ApoM in complex with S1P,
the hydrophilic groups of S1P are mainly recognized
by R98, W100, and R116 via direct hydrogen bonds,
whereas other water-mediated interactions also contrib-
ute to the interactions (Christoffersen et al., 2011). As a
similar strategy of inhibiting S1P transporters, targeting
S1P, ApoM, or S1P-ApoM complexes in the plasma are
possible ways for anti-angiogenic therapeutics. Some
antibodies targeting plasma S1P have been developed.
However, it is controversial to deplete plasma S1P
due to its possible athero-protective effects (Poti et al.,
2014), antihypertensive functions via S1P1/3 signaling
(Cantalupo et al., 2017), endothelial-sealing effect
through signaling to endothelial junctions (Xiong and
Hla, 2014), and cardio-protective functions in several
cardiovascular diseases such as hypertrophic heart dis-
ease, myocardial infarction and chronic heart failure
(Cartier and Hla, 2019; Jozefczuk et al., 2020).
Therefore, the balance of S1P in both cancer and car-
diovascular disease models still needs to be better
characterized.

S1P Signaling via S1P Receptors

There are five S1P receptors, designated as S1P1–5,
encoded in the human genome and activated by the
endogenous ligand S1P. All five S1P receptors belong
to the cell surface class A G protein-coupled receptor
(GPCR) family, but regulate different cellular responses,
such as cell proliferation, apoptosis, cell adhesion, cell
motility, angiogenesis, and inflammation, by coupling
different downstream heterotrimeric G proteins
(Takabe et al., 2008). Among S1P1-5, S1P1 stands out
due to its non-redundant functions. In particular, S1P1

mediates the egress of T and B cells from the thymus and
secondary lymphoid tissues (Ebenezer et al., 2017;
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Lucaciu et al., 2020a), making it a potential therapeutic

target similar to SPL. Thus, the structure and biochem-

ical properties of S1P1 have been studied extensively.
The crystal structure of S1P1 was yielded using the

classic lipidic cubic phase crystallization method with

the addition of a T4-lysozyme fusion, which stabilizes

the conformation of the intracellular side of the receptor

(Thorsen et al., 2014) and increases the possibility of

crystal contacts (Chun et al., 2012; Hanson et al.,

2012). The receptor was co-crystallized in complex

with the sphingolipid mimic antagonist ML056, which

is selected to stabilize the receptor by constraining the

extracellular side of the receptor. Multiple microcrystal

datasets are merged to reach the acceptable complete-

ness to determine the S1P1 structure at 2.8 Å resolution.

S1P1 adopts the identical fold of typical inactive GPCRs

(Figure 8(a)), which are composed of seven transmem-

brane helices (TMs) (Figure 8(b)). However, the struc-

tural analysis reflects some unique features for lipid

binding. Firstly, the extracellular loops ECL1-3 and

the N-terminal region are coordinated to exclude the

antagonist ML056 from the extracellular solvent.

Meanwhile, there is a cleft between TM1 and TM7

facing the membrane bilayer. Similar structural features

are also observed in other lipid receptors, such as can-

nabinoid receptors and CRTH2 (Pei et al., 2008; Hurst

et al., 2010; Wang et al., 2018a) (Figure 8(a)). These

observations suggest a common mechanism that these

lipidic molecules, such as S1P, cannabinoid, and prosta-

glandins, are first integrated into the lipid bilayer before

binding to the receptor occurs (Hua et al., 2016; Shao

et al., 2016; Wang et al., 2018a). ML056 mimics the

zwitterionic nature of S1P and forms equivalent contacts

in the orthosteric binding pocket of S1P1 (Figure 8(b)).

The benzene ring and acyl chain of ML056 are sur-

rounded by numbers of hydrophobic residues, such as

F125, F210, W269, and F273 on TM3 and TM5-7,

respectively (Figure 8(b)). Residues N101 and E201

interact with the amine group of ML056, while Y29,

K34, and R120 coordinate the phosphate group

Figure 7. Structure of bacterial spinster homolog HnSPNS. (a) The overall architecture of HnSPNS (PDB code: 6E8J) is shown in two
perpendicular views, in which the side view is in cylindrical mode and the periplasmic view is in electrostatics mode. The N-/C-domains are
colored wheat and lightblue, respectively. The inner cavity is circled in orange. (b) Conserved residues in the inner cavity of spinster
homologs’ are shown in the yellow stick mode. The putative S1P binding pocket is shadowed in orange.
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(Figure 8(b)). Together, these interactions provide a

high-affinity binding site for ML056 or S1P (Hanson

et al., 2012). Considering the similar structures of S1P

and ML056 but distinct functions as agonist or antago-

nist, the activation of S1P1 may depend on the confor-

mations of the acyl chain as well as the lengths of

ligands. Besides, S1P1 is reported to be activated by

CD44 and aPC (activated Protein C), whilst inhibited

by CD69, S1P2, and LPA1 (Lucaciu et al., 2020b).

However, determination of the structure only in an inac-

tive conformation, is insufficient to elucidate the activa-

tion mechanism of S1P1. Taking advantage of the recent

development of cryo-electron microscopy, several

GPCR structures in complex with G proteins and

b-arrestin have been determined (Scheerer and

Sommer, 2017; Hilger et al., 2018; Huang et al., 2020).

The S1P1 structure in complex with agonist and G

proteins is worth studying to better understand the

mechanism of activation.
Currently, the therapeutic molecules targeting S1P1

can be divided into two classes: the lipid-like S1P

mimic such as FTY720-P or the non-lipid-like molecules

such as BAF-312 (Siponimod) and RPC-1063

(Ozanimod) (Zemann et al., 2006; Pan et al., 2013;

Scott et al., 2016). S1P1-5 show complete conservation

of residues (N101 and E201 in S1P1) for S1P head group

recognition, which is reflected in the lack of selectivity of

S1P mimicking drugs. For instance, FTY720 is an ago-

nist for receptors S1P3-5 as well, causing severe off-target

side effects like bronchoconstriction and cardiovascular

dysfunction (Guerrero et al., 2010). In contrast, the res-

idues in interacting with the acyl chain of S1P among

five S1P receptors are significantly distinct, making a

promising strategy to screen the selective molecule

Figure 8. Structure of human S1P1 (a) The S1P1 structure is shown in surface mode. The palegreen color represents the N-terminal helix
as a “lid” to make the orthosteric binding site occluded. The cleft toward the cell membrane is shadowed in orange. Two perpendicular
views are shown. (b) The detailed interaction of ML056 with the surrounding residues. ML056 is colored yellow. The aromatic residues
that interact with the hydrophobic tail of S1P are highlighted in purple. The polar residues that interact with the hydrophilic head of S1P are
highlighted in magenta. The hydrophobic and hydrophilic regions of the orthosteric binding site are shadowed in purple and wheat,
respectively.
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targeting the specific S1P receptor(s). Notably, the bind-
ing pockets of S1P1 and S1P5 are nearly identical, result-
ing in the lack of ligand specificity between the two
receptors. For instance, Siponimod and Ozanimod
target both S1P1 and S1P5. By improving the specificity,
allosteric modulators rather than orthosteric agonists
should be better choices. Recently, an increasing
number of S1P1 agonists have been developed, including
ponesimod (ACT-128800, Actelion), cenerimod (ACT-
334441, Idorsia), mocravimod (KRP-203, Kyorin
Pharmaceutical and Novartis), CS-0777 (Daiichi
Sankyo), AUY954, CS-2100, CYM5442, GSK1842799,
RP001, SEW2871, Syl948, Amgen 8 (TC-G 1006), and
Amgen 14 (TC-SP 14) (Pan et al., 2006; Zhang et al.,
2009; Gaire et al., 2018). Notably, Novartis developed
NIBR-0213 as a potent and selective S1P1 antagonist
with an IC50 value of 2.5 nM to human S1P1

(Quancard et al., 2012).
Moreover, S1P1 is essential for endothelial cell func-

tions (Xiong and Hla, 2014), indicating its potential as
an agent for endothelial protection. However, the acti-
vation of S1P1 by commercialized drugs causes receptor
over-desensitized and a long-lasting internalization. This
results in the damage of endothelial function and limits
the therapeutic potential of these molecules on the endo-
thelial axis. A recently identified biased S1P1 agonist
SAR247799 may act as a possible S1P1-targeted
endothelial-protective agent. SAR247799 can activate
S1P1 in a G protein-biased manner instead of recruiting
b-arrestin, which will minimize the receptor internaliza-
tion. The amelioration of coronary endothelial dysfunc-
tion in a pig model and the protection of renal function
in a rat model were observed (Poirier et al., 2020).
Although more characterizations are needed, the discov-
ery of a biased S1P1 agonist shows great potential to
expand indications via distinct S1P signaling transduc-
tion pathways.

Summary and Discussion

The sphingolipid metabolism has attracted the attention
of structural biologists for the past three decades. On the
one hand, the available structural information unveils
the recognition specificities of S1P to different targets
demonstrating possible reactions, transportation, and
mechanisms of sensing. This explains the biochemical
and clinical observations at the atomic level and sheds
light on the prospect of developing therapeutic mole-
cules. On the other hand, we have only obtained limited
structural snapshots of executors in the sphingolipid
metabolism. Many questions concerning the regulation
of the metabolism of sphingolipids and the impact of this
information in the development of therapeutics remain
unanswered. It is needed to build the whole picture of
sphingolipid metabolism from a structural viewpoint.

To begin, a mass of data shows that SPHK isoforms
differ not only in cellular locations and in regulations,
but also exhibit distinct substrate specificities. What is
the structural basis for SPHK substrate selectivity? What
is the stereochemical nature of inhibitor head groups in
SPHK inhibition? Although biochemical data suggest
that SPHK2 may be more tolerant of changes in hydro-
philic groups than SPHK1 (Adams et al., 2020), the
detailed conformations of SPHKs and organizations of
surrounding residues are not revealed. From a wider
perspective, the determination of substrate and inhibitor
selectivity of SPHKs confers specific targeting in various
cancers with elevated expression levels of both SPHK1
and SPHK2. It also facilitates the investigation of the
physiological roles in the homeostatic regulation of S1P-
dependent signaling.

After that, as we reviewed above, ceramidases and
ceramide synthases are critical regulators that maintain
intracellular ceramide, sphingosine, and S1P homeosta-
sis. Although crystal structures and catalytic residues of
all acid, neutral and alkaline ceramidases have been
characterized, the structural based therapeutic inhibitor
development is lagging behind. The development of
novel inhibitors of ceramidases is boosted by the avail-
ability of high-throughput ceramidase assays. However,
too little is known about the exact functions of ceramide
in triggering downstream cellular signaling. The novel
inhibitors may promote the solid mechanistic study of
ceramide biology, which is the prerequisite for the devel-
opment of therapeutics.

Then, none of the ceramide synthases’ structures have
been determined yet. In mammals, ceramides are synthe-
sized by a family of six ceramide synthases (CerSs), each
of which uses acyl-CoAs of distinct chain lengths for N-
acylation(Raichur, 2020). From a metabolic perspective,
these enzymes occupy a unique niche in that they cata-
lyze the synthesis of ceramide via both de novo and sal-
vage pathways. Although numbers of mutagenesis study
and in silico predictions demonstrated the importance of
the Lag1p motif in CerS activity (Turpin-Nolan and
Bruning, 2020), detailed structures and topology of
CerSs are needed to verify many unclear questions,
including the precise functional domains accommodat-
ing acyl-CoAs and sphingosines, the substrate specificity
of CerS isoforms, and regulation and inhibition mecha-
nisms of CerSs. In addition, several studies have
suggested that CerS activity can be modulated by
homo- and heterodimer formation (Laviad et al.,
2012), hence the interface of CerS dimers also awaits
to be characterized.

Furthermore, there are still plenty of chances for S1P
transportation studies from a structural viewpoint.
Firstly, the structural information of Spinster proteins
is still limited. The alternating access model of MFS
transporters, the well-accepted hypothesis in explaining
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the transportation crossing the membranes, suggests at
least three conformations including outward open,
occluded, and inward open as intermediate states.
Without obtaining complete structural information in
the transporting cycle, it is impossible to unveil the
transportation mechanism at the molecular level. Thus,
more structures of Spinster proteins, especially in
humans, are still worth getting due to the low sequence
similarity among HnSPNS and other species. Secondly,
the incomplete omitted electron density in HnSPNS is
most likely the contaminant from the cell-culturing
medium. Lacking the detailed recognition of S1P with
its transporters, the rational design of specific inhibitors
targeting S1P transportation crossing the membrane
is contrived. Moreover, the structural information
and biochemical characterizations of Mfsd2b and
those ABC transporters with S1P are even less.
Pharmacologically targeting S1P transporters would be
an alternative way of inhibiting the activation of S1P to
its receptors or intracellular responses if uptake was
inhibited. These inhibitors may act as anti-angiogenic
and anti-lymphangiogenic drugs in cancers or inhibit
the “inside-out signaling” of the SPHK1/S1P axis
(French et al., 2003; Anelli et al., 2010). It is of great
importance to elucidate these structures to guide rational
drug design as well as provide insight into the underlying
mechanisms.

Besides, compared to S1P1, functions of S1P2-5 are
less characterized. For instance, it is reported that con-
jugated bile acids (CBAs) and FAM19A5 were other
activators of S1P2 (Studer et al., 2012; Wang et al.,
2018b). For better elucidating the functions of these
receptors, numerous selective agonists and antagonists
targeting S1P2-5 were developed. JTE-013, a selective
antagonist targeting S1P2 with an IC50 of 17 nM, was
widely used to study possible functions of S1P2 (Ikeda
et al., 2003). AB1, the analog of JTE-013 with improved
potency, inhibited the growth of neuroblastoma xeno-
grafts more effectively (Li et al., 2015). There is a lack
of in vivo studies of S1P2 selective agonists, such as
CYM5520, CYM5478, and XAX-126 (Satsu et al.,
2013). The S1P3 antagonists, such as CAY10444
(Koide et al., 2002), TY-52156 (Murakami et al.,
2010), SPM-354 (Sanna et al., 2016) were also devel-
oped. However, the function of S1P3 in inflammation
remains controversial, as both pro- and anti-
inflammatory effects were observed (Hirata et al.,
2014; Zhao et al., 2016). The physiological function of
S1P4 is also poorly understood. So the selective agonists
ML178, ML248 (Guerrero et al., 2010), CYM50260
(Onuma et al., 2017), and benzo-thiophene analogs
(Hur et al., 2017) or S1P4 antagonists CYM50358 and
compounds ground on a 5-aryl furan-2-arylcarboxamide
scaffold (Guerrero et al., 2011; Hur et al., 2017) are
expected to provide insights into the functional studies

of S1P4. Besides, A-971432 is a selective S1P5 agonist
(Hobson et al., 2015). Since the structure-based optimi-
zations of orthosteric and allosteric modulators have
been applied to many GPCRs (Congreve et al., 2017;
Christopher et al., 2019; Xu et al., 2020), it is vital to
obtain more structures of S1P receptors in different con-
formations bound with diverse ligands.

At last, the importance and complexity of sphingoli-
pids are also exemplified by recent studies, such as
the divergent impact of sphingolipid species and
pathological backgrounds (Saville and Fuller, 2020)
and the linkage of SPHKs and S1P receptors to the
level of various blood cell traits (Astle et al., 2016).
With the discoveries of novel physiological and patho-
logical roles of sphingolipids, the importance of the
molecular mechanistic understandings will get increased
over time.

Table 1. Abbreviations.

Abbreviation Full name

ABC ATP-binding cassette

ACER Alkaline ceramidase

ApoM Apolipoprotein M

ASAH Acid ceramidase

CERK Ceramide kinase

CerS Ceramide synthase

CFTR Cystic fibrosis transmembrane

conductance regulator

CRTH2 Prostaglandin D2 receptor 2

DGK Diacylglycerol kinase

DMS Dimethyl-sphingosine

Dpl1p Dihydrosphingosine-1-phosphate lyase

GPCR G protein-coupled receptor

HDL High-density lipoprotein

LPP Lipid phosphate phosphohydrolase

MFS Major facilitator superfamily

MS Multiple sclerosis

NAD Nicotinamide adenine dinucleotide

Ntn N-terminal nucleophile

PE Phosphoethanolamine

PFK Phosphofructokinase

PI3K Phosphatidylinositol-3 kinase

PK/PD Pharmacokinetics/pharmacodynamics

PKC Protein kinase C

PLP Pyridoxal phosphate

r.m.s.d Root-mean-square deviation

sER Smooth endoplasmic reticulum

SGPP Sphingosine-1-phosphate phosphatases

SPHK Sphingosine kinase

SPL Sphingosine-1-phosphate lyase

SPNS2 Spinster homolog 2

StSPL Symbiobacterium Thermophilum

sphingosine-1-phosphate lyase

TMs Transmembrane helix

TMS Trimethyl-sphingosine
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Data

All structural coordinates are downloaded from Protein
Data Bank (www.rcsb.org). The figures representing
structures are generated by PyMOL (The PyMOL
Molecular Graphics System, Version 2.0 Schr€odinger,
LLC.)

See Table 1 for abbreviations and Table 2 for
definitions.
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Table 2. Definitions.

Terminology Definition

Protomer The structural unit of an oligomeric protein in structural biology. It is the minimal

unit, which assembles a larger homo-oligomer by the association of two or more

copies of this unit.

Orthosteric and allosteric ligands There are two types of ligands: orthosteric, which binds to the active site of the

protein; and allosteric, which binds somewhere else on the protein surface, and

allosterically changes the conformation of the orthosteric-binding pocket.

Similarity It defines the “likeness” of two different residues upon sequence alignment. The

residues with similar structures would possess similar functions.

Identity It describes that the residues are identical with the corresponding positions upon

sequence alignment.

Apo-enzyme The protein part of an enzyme without its characteristic co-factor, prosthetic

group, substrate, and inhibitor.

Protein fold It is defined by the arrangement of the secondary structure elements of the protein

relative to each other.
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