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Chapter 18

Generating Inhibitors of P-Glycoprotein: Where to, Now?

Emily Crowley, Christopher A. McDevitt, and Richard Callaghan

Abstract

The prominent role for the drug efflux pump ABCB1 (P-glycoprotein) in mediating resistance to chemo-
therapy was first suggested in 1976 and sparked an incredible drive to restore the efficacy of anticancer 
drugs. Achieving this goal seemed inevitable in 1982 when a series of calcium channel blockers were dem-
onstrated to restore the efficacy of chemotherapy agents. A large number of other compounds have since 
been demonstrated to restore chemotherapeutic sensitivity in cancer cells or tissues. Where do we stand 
almost three decades since the first reports of ABCB1 inhibition? Unfortunately, in the aftermath of exten-
sive fundamental and clinical research efforts the situation remains gloomy. Only a small handful of com-
pounds have reached late stage clinical trials and none are in routine clinical usage to circumvent 
chemoresistance. Why has the translation process been so ineffective? One factor is the multifactorial 
nature of drug resistance inherent to cancer tissues; ABCB1 is not the sole factor. However, expression of 
ABCB1 remains a significant negative prognostic indicator and is closely associated with poor response to 
chemotherapy in many cancer types. The main difficulties with restoration of sensitivity to chemotherapy 
reside with poor properties of the ABCB1 inhibitors: (1) low selectivity to ABCB1, (2) poor potency to 
inhibit ABCB1, (3) inherent toxicity and/or (4) adverse pharmacokinetic interactions with anticancer 
drugs. Despite these difficulties, there is a clear requirement for effective inhibitors and to date the strate-
gies for generating such compounds have involved serendipity or simple chemical syntheses. This chapter 
outlines more sophisticated approaches making use of bioinformatics, combinatorial chemistry and struc-
ture informed drug design. Generating a new arsenal of potent and selective ABCB1 inhibitors offers the 
promise of restoring the efficacy of a key weapon in cancer treatment – chemotherapy.

Key words: Multidrug resistance, ABC drug efflux pump, Combinatorial chemistry, Drug design, 
Pharmacophore modeling, Homology modeling, High resolution structure, Pharmacokinetic 
interactions

Despite its widespread use and applicability in treating all stages 
of cancer, i.e. from front-line therapies to palliation, the efficacy 
of chemotherapy remains suboptimal. One of the main reasons 
for the underwhelming success of chemotherapy is the resistant 
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phenotype, which may be inherent to cancerous tissue or arise 
following drug administration (1–6). Resistance arises by virtue 
of the adaptability of cancer cells to a variable local environment 
(7–11). One of the types of adaptation is a network of often 
synergistic pathways that negate the efficacy of anticancer drugs 
(12, 13). These resistance pathways can range from individual factors 
through to the 3D tissue organization and impact on drug efficacy 
by alterations to drug distribution within solid tumors, affecting 
cellular uptake, increasing intracellular metabolism/excretion, 
specific mutations within target molecules, evasion of repair mech-
anisms, and dampening of pathways aimed at initiating cell death. 
Resistance mechanisms can be initiated by host factors such as 
high cell density, hypoxia, or stress response pathways.

One of the most widespread mechanisms of resistance is the 
expression of efflux pumps such as ABCB1 (P-glycoprotein), 
ABCC1 (MRP1) and ABCG2 (BCRP) (14–16). Expression of 
these proteins at the plasma membrane reduces intracellular drug 
concentration and is therefore a first line of cellular defense. The 
mechanism of resistance is a generic one owing to the ability of 
efflux pumps to transport an extraordinary number and range of 
chemicals (17–19). For example, the multidrug efflux pump 
ABCB1 is known to interact with over 200 compounds. The 
broad multispecificity of these transporters is a hallmark of their 
origin as environmental xenobiotic protection pathways. ABCB1 
is normally expressed in a number of healthy tissues, particularly 
those involved in secretory roles (e.g. liver and GI tract) or in a 
barrier capacity (e.g. blood–brain and blood–testes) (20–23). 
Expression of ABCB1 in these tissues is regulated by endogenous 
transcription factors such as the nuclear orphan receptor family 
(24). However, cancers arising from these tissues frequently dis-
play inherent resistance, which is present prior to chemotherapy 
exposure. Consequently, overexpression of ABCB1 in cancer cells 
following exposure to chemotherapy agents is thought to be 
achieved by virtue of stress response pathways rather than a clas-
sical induction process (24).

Overexpression of ABCB1 has been demonstrated to gener-
ate a resistant phenotype in cultured cancer cell lines and various 
tumor models (13, 17). In addition, expression of ABCB1 has 
been cataloged in a large number of human cancer types includ-
ing several leukemia types and solid tumors from the breast, 
colon, and adrenal tissues (25–28). A link between expression 
and a resistant phenotype is well established in acute myelogenous 
(AML), myelodysplastic syndrome (MDS), and acute lympho-
blastic (ALL) leukemias (29, 30). However, the role of ABCB1, 
and other multidrug efflux pumps, in conferring resistance in 
many solid tumors continues to be vigorously debated (4, 15, 31, 
32). The inability to unequivocally quantify the role of ABCB1 in 
clinical drug resistance has arisen for a number of reasons including: 
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(1) variability in the methods used to detect ABCB1 expression, 
(2) the presence of other, often synergistic resistance pathways, (3) the 
poor inhibition of its activity in vivo, (4) poor study design, and 
(5) variability of ABCB1 expression patterns in tumors. A compre-
hensive understanding of resistance pathways in the clinical setting 
is therefore required to confidently assign the relative contributions 
of specific resistance factors.

Despite the controversy surrounding the contribution of ABCB1 
to resistance in cancer, there is an apparent need to modulate its 
behavior. Inhibition of the efflux protein leads to increased drug 
accumulation in cultured cancer cells and improved intratumor 
distribution in animal models and patients (33–37). Consequently, 
the development of potent inhibitors of ABCB1 could prove 
highly beneficial in chemotherapeutic management of cancer. In 
addition, the ability of ABCB1 to influence drug pharmacokinet-
ics in a nononcology setting renders it a target for specific modu-
lation to regulate drug absorption, distribution, and elimination.

Inhibition of ABCB1 was first reported in 1982 using the 
calcium channel blocker verapamil and this strategy was rapidly 
progressed to clinical trials (38–40). Unfortunately, the use of 
verapamil was doomed owing to its poor potency to inhibit 
ABCB1, whereas its effects on calcium channels (particularly in 
cardiac tissue) occurred at low plasma concentrations. Similar 
effects were reported with a number of other ABCB1 “inhibitors” 
that were already in clinical usage for various unrelated settings 
(41–44). These compounds inhibited ABCB1 primarily by acting 
as substrates that could compete for transport by the protein. 
Unfortunately, drugs belonging to this class of ABCB1 inhibitor 
were united in displaying poor potency of action, which directly 
resulted in unacceptable levels of systemic toxicity (45–47). 
Subsequent generations of ABCB1 inhibitors (Fig.  18.1) have 
been explored using chemical modification of the first generation 
agents, combinatorial chemistry to identify new chemical moieties, 
and, more recently, the use of natural products to uncover novel 
lead compounds (48–56).

Despite these significant efforts, only a small selection of 
compounds have progressed through to late stage clinical trials; 
of particular note are Tariquidar (XR9576) (36, 57–59) and the 
nonimmunosuppresive cyclosporin A derivative, Valspodar (PSC833) 
(60–62). The various generations of ABCB1 inhibitors have failed 
to deliver a method of clinical intervention to restore sensitivity of 
chemotherapy for a number of reasons:
1.	 Poor selectivity leading to unwanted actions.
2.	 Low affinity for ABCB1 requiring high plasma concentrations, 

thereby producing toxic side-effects.
3.	 Interaction of drugs with other ABC transporters – for example, 

the perturbation of bile formation or toxicity to stem cells.
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4.	 Interaction with cytochrome P450, thereby producing elevated 
systemic concentrations of anticancer drug, which necessitates 
dose reduction.

5.	 Inability to modulate ABCB1 function in vivo.
6.	 Decreased elimination of anticancer drugs because of ABC 

transporter inhibitions in “physiological sites”.
The failure of clinical trials thus far has engendered a degree of 
pessimism regarding the ability to inhibit ABCB1 effectively 
in vivo, and some skepticism regarding its role in drug resistance. 
This does, however, seem rather premature given the small num-
ber of compounds that have been subjected to exhaustive charac-
terization. In addition, the power of combinatorial chemistry has 
not been fully exploited and the newest generation of compounds 

Fig. 18.1. Inhibitors of ABCB1. A flow-chart outlining the four generations of inhibitors against the multidrug efflux pump 
ABCB1 that have been developed over the last 30 years.
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(from natural sources) not yet fully characterized, although there 
have been suggestions that inhibitor development is redundant 
because of the recent emergence of novel nongenotoxic antican-
cer agents that are directed against specific cellular targets rather 
than the more generic proliferation process. However, the major-
ity of these compounds are cytostatic and many of these novel 
cytostatic anticancer drugs are themselves subjected to efflux by 
transporters such as ABCB1 (25, 63, 64). Consequently, the role 
of genotoxic drugs in cancer treatment in the near future should 
not be dismissed. Thus the problem of ABCB1 mediated trans-
port appears to be a phenomenon that must be dealt with and the 
desirability of a clinically useable and efficacious inhibitor remains 
high in oncological circles.

Providing a greater knowledge of the nature of drug–ABCB1 
interaction remains an important goal for future anticancer drug 
development. Understanding pharmacophoric elements of ABCB1 
substrates and elucidating the molecular interactions with protein 
structural elements in the drug binding site will prove useful to 
ensure new compounds can evade the influence of this protein. 
The focus of this review is twofold. First we shall compile the data 
available on defining the pharmacophoric elements of ABCB1 
substrates and strategies to improve the number of compounds 
available for testing. The second half of the review will focus on 
compiling data about the molecular properties of the drug binding 
sites of ABCB1 and exploring the possibilities for using structural 
data to inform inhibitor design.

Understanding the factors that determine substrate specificity is 
crucial for successful drug targeting and in the rationale for the 
design of novel inhibitors. High resolution structural data cou-
pled with the large volume of functional biochemical data on 
ABCB1 would serve as the ideal template for understanding 
drug–protein interaction with a view to create a design of novel 
inhibitors. However, the refractory nature of membrane proteins 
to atomic structure resolution studies has meant that high resolu-
tion data for ABCB1 has not yet been obtained. In its absence, 
two distinct lines of investigation have been employed to explore 
ABCB1–drug interactions. The first has extrapolated a molecular 
model of ABCB1 enabling docking studies to characterize the 
drug–protein interactions. This approach has been facilitated by 
high resolution structural templates, such as the bacterial ABC 
transporter Sav1866 (65), which have identical topology and a 
high level of sequence or structural homology. The homology 
modeling approach of protein-structure based drug design will 

2. Drug Design  
for Inhibition  
of ABCB1
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be addressed in Subheading 18.3 of this chapter. The second line 
of investigation is a protein-structure independent method that 
instead exploits knowledge of the different substrates, their physi-
cochemical parameters or affinities for the protein to generate a 
model of drug interaction.

The first explanation for substrate recognition was proposed by 
Emil Fischer in 1894 who provided a structural rationale for the 
interaction between an enzyme and its substrate (66). The ele-
gantly simple Lock-and-Key model postulated that the enzyme 
contained a rigid binding pocket that interacted with a specific 
ligand and allowed subsequent release of the enzymatic product. 
Although this model has been refined over the intervening 
decades, classic Lock-and-Key type ligand interactions cannot 
account for the broad multispecificity exhibited by tranporters 
such as ABCB1. Currently, there are three general models that 
address multispecific ligand interactions. The first, proposes that 
the binding pocket, although still an essentially rigid region, con-
tains different interaction sites that allow a range of structurally 
distinct ligands to bind (67). The second model, based on 
Koshland’s Induced-Fit model (68), proposes that conforma-
tional flexibility within the protein allows the binding pocket to 
reconfigure and accommodate structurally diverse ligands. The 
third and most recent model is based on the the observation that 
a single ligand may bind to a protein in multiple and different 
orientations (69). The Differential Ligand Positioning model 
proposes that a single ligand might be able to interact with a 
number of spatially distinct regions of the binding site thus allow-
ing multiple ligand molecules to bind simulatenously.

Although the precise mechanism(s) employed by ABCB1 to 
interact with ligands has not been elucidated the last three decades 
of biochemistry have provided significant insight. The multipilic-
ity of ABCB1 drug ligand binding sites was first shown by Tamai 
and Safa (70) and, to date, there are at least four known distinct 
drug binding sites (71–77). Biochemical studies have established 
that the drug binding sites show a range of different behaviors 
with noncompetitive inhibition for certain substrates, indicative 
of overlapping substrate specificities; competitive inhibition for 
other drug ligands, such as vinblastine and doxorubicin; and 
cooperative allostery between certain substrates, e.g. ATP, vin-
blastine and verapamil (73, 78–81). In addition there appear to 
be multiple binding sites on individual transmembrane segments 
that have the ability to simultaneously bind distinct drugs or mul-
tiple molecules of the same drug (71, 82–84). As a consequence, 
it is likely that the TM segments that contribute to the drug-
binding pocket have a high degree of conformational mobility to 
allow drug molecules to form the required binding sites and to 
allow for different orientations of drug molecules within the binding 

2.1. What Defines 
Substrate 
Recognition?
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pocket. Thus, it is likely that ABCB1 employs a combination of 
the general multispecific interaction models described above, 
thereby maximizing the range of ligands with which it can inter-
act. However, this mobility and flexibility in substrate binding 
creates unique challenges for inhibitor design.

Since ABCB1 was first discovered by Juliano and Ling (85), many 
studies have sought to clarify the basic functional and structural 
features of ligands that govern interaction. Identification of the 
basic chemical feature responsible for mediating ligand–protein 
interaction is key to developing a framework for interpretative 
and prognostic evaluations of new compounds. Structure–activity 
relationships (SAR) have exploited three decades of pharmaco-
logical studies on ABCB1 in an attempt to correlate substrate 
activity with specific molecular descriptors. However, interpreting 
the large volume of data collected on ABCB1 is highly complex 
due to a number of intrinsic issues. These stem from largely 
technical issues including the use of different assays, parameters 
reported (e.g. IC50, KD, KM & KI), drug solubilities, and variable 
drug partition coefficients. Despite this, some general features of 
ABCB1 substrates that were first noted remain relevant in that 
they tend to be lipophilic and amphiphilic, have a large molecular 
volume, contain electronegative and hydrogen bonding groups, 
and occasionally a weakly cationic group. More detailed molecu-
lar descriptors have since been revealed by a number of different 
approaches (for detailed reviews see (86–88)).

Prior to the introduction of automated and semiautomated 
computational pharmacophoric and 3D quantitative structure 
activity relationships (3D-QSAR), modeling techniques SARs 
were determined by correlation of substrate activities with molec-
ular descriptors. Zamora and coworkers provided one of the first 
SAR studies and described the requirement of a basic nitrogen 
atom and two planar aromatic domains based on investigations 
using verapamil, indole alkaloids, lysosomotrophic agents and 
amines (89). This feature set was further probed by Pearce and 
and coworkers in 1989 using a series of reserpine and yohimbine 
analogs that demonstrated that these domains also adopted well-
defined conformations (90). However, the requirement of the 
basic nitrogen atom was called into question by a number of 
studies that used a broader array of ligands and showed that 
compounds, such as steroid hormones, could also interact with 
ABCB1 (91–93).

In 1997 Bain and coworkers examined 44 compounds, 
mostly pesticides, and proposed that substrates and inhibitors 
could be differentiated on the basis of the number of rings, 
molecular weight, and hydrogen bonding potential (94). They 
suggested that transported substrates displayed higher molecular 
weight and hydrogen bonding potential than nontransported 

2.2. What Governs 
ABCB1–Drug Ligand 
Interactions?
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substrates. In addition, the transported substrates acted primar-
ily as hydrogen-donors rather than acceptors. A study by Seeling 
examined the structure of a hundred chemically diverse 
compounds and sought to more clearly define the number of 
electron donor groups and their fixed spatial distance (95). 
Seelig’s analysis proposed a general pattern for ABCB1 sub-
strate recognition comprising two or three electron-donor (or 
hydrogen-bonding acceptor) groups with a fixed spatial separation 
of 2.5 ± 0.3 Å (as a type-I pattern) or 4.6 ± 0.6 Å (as a type-II 
pattern), respectively. Ecker and coworkers (96) subsequently 
followed Seelig’s work and suggested a correlation between the 
total electron donating strength of a ligand and its potency as 
an inhibitor.

Ultimately, although SAR data has provided valuable insight 
into the molecular descriptors of known substrates and inhibitors, 
it has not provided a platform for the a priori development of novel 
ligands. SAR studies are constrained by the chemical data upon 
which they are constructed and, as a consequence, have a limited 
application for directing ligand screening beyond existing ABCB1 
SAR chemical space. This is an issue of critical importance for a mul-
tispecific transporter such as ABCB1 and has driven the develop-
ment of computational tools for applying substrate structure to 
new inhibitor design.

Substrate based inhibitor design exploits the “learnt” rules for 
ligand–protein interactions and applies them in inhibitor selec-
tion and design. But what are the rules for ABCB1, which has 
defied a simple classification for ligand recognition elements and 
demonstrated a breadth of acceptable substrate types? It con-
tains several distinct binding sites and may interact with a broad 
range of compounds without strict structural constraints. Various 
clinically used compounds were investigated for their ability to 
inhibit ABCB1 in vivo and a number of potential modulators 
were identified. Early attempts with these compounds to block 
ABCB1 in cultured cell lines and in vitro assays were highly suc-
cessful and led to the first phase I clinical trials in 1985 (38). 
However, this and many subsequent trials with first generation 
ABCB1 inhibitors were plagued by failure in restoring antican-
cer drug efficacy. The clinical failure of these inhibitors led to 
the first SAR studies and provided the first insight into the 
molecular features crucial for interaction with ABCB1. Zamora 
and coworkers (89) provided the first SAR derived descriptors, 
however, these were not sufficiently stringent to be applied to 
drug development. Although they had failed clinically, the first 
generation ABCB1 inhibitors were effective in vitro, and thus 
they were used as the templates for the second generation of 
inhibitors designed through quantitative structure relationships 
(QSAR) studies.

2.3. From Substrates 
to Templates – How 
Can We Design New 
Inhibitors?
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QSAR is based on the pharmacological principle that drug 
structure does not necessarily correlate with biological activity (97). 
QSAR studies examine a range of related compounds for their 
quantitative effects on a specific target (i.e. degree of agonism or 
antagonism). 3D-QSAR modeling determines a mathematical 
model that describes drug potency as a function of the three 
dimensional interactions with protein based on an aligned train-
ing set of compounds. The relationship between the change in 
the 3D spatial interaction fields and experimentally determined 
variations in the target feature is calculated by statistical analysis. 
A number of 3D-QSAR approaches are available and include 
comparative molecular field analysis (CoMFA) (98), comparative 
molecular similarity index analysis (CoMSIA) (99), and GOLPE 
(100) (for detailed discussion and reviews of these techniques 
see (101, 102)). Quantitative models such as 3D-QSAR can be 
applied to de novo computational screening to lead the synthesis 
of higher potency lead compounds. In combination with in vitro 
testing and analysis, for refinement of the quantitative model, this 
technique has been used in the design of improved inhibitors and 
higher affinity ligands (103). Activity predictions by 3D-QSAR 
models require that the ligands be accurately aligned and, conse-
quently, this limits their application in automated chemical com-
pound database screening. Although 2D-QSAR models can be 
used for database screening, they lack highly useful 3D informa-
tion crucial for subsequent drug design.

QSAR studies led to modified versions of several first genera-
tion lead compounds including indoles such as reserpine (104) 
and 1,4 dihydropyridines (53), phenothiazine derivatives such 
as transflupentixal (49), a nonimmunosuppresive cyclosporin A 
derivative PSC833 (56), and the verapmil derived, triazine-based 
S9788 (105). Detailed in  vitro assays provided information on 
the affinity of interaction with the drug and ABCB1 compared to 
first generation compounds and was used to further refine and 
optimize the design of second generation ABCB1 inhibitors.

Phase I and II clinical trials were undertaken with the most 
promising second generation ABCB1 inhibitors. However, unfa-
vorable pharmacokinetic interactions led to elevated drug plasma 
levels and reduced systemic clearance of anticancer drugs, pro-
ducing significant toxicity in patients (61, 106–108). This neces-
sitated a reduction in the administered dose of chemotherapeutic 
drugs, which in turn reduced the overall efficacy of anticancer 
drug treatment. Concomitant inhibition of ABCB1 and cyto-
chrome P450-3A isoform (CYP3A), which is responsible for the 
metabolism of almost 50% of all clinically employed drugs by the 
second generation inhibitors, resulted in higher and prolonged 
plasma levels of anticancer drugs because of impaired metabolism 
and elimination. It was subsequently determined that ABCB1 
and CYP3A have a considerable overlap in substrate specificities 

2.3.1. QSAR in Inhibitor 
Design
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and this highlighted one of the limitations of drug design method-
ologies, namely, the inability to predict undesirable pharmacoki-
netic interactions (109, 110). Consequently, although 3D-QSAR 
strategies led to an improvement of first generation compounds, 
the second generation compounds ultimately failed to provide an 
ideal route to ABCB1 inhibition without compromising anti-
cancer drug efficacy. Thus, it was necessary to approach inhibitor 
development from a broader chemical space approach such as 
pharmacophore modeling.

The pharmacophore concept was first introduced by Paul Erhlich 
in the early 1900s (111). The pharmacophore is a description of 
the molecular framework which contains the essential features 
responsible for a drug’s biological activity. With the benefit of 
nearly a century’s additional knowledge, the underlying concept 
has been expanded to include our understanding of three dimen-
sional substrate structures and the arrangement of their essential 
molecular features. In current terminology, the pharmacophore is 
a representation of the spatial arrangement of structural features 
required for biological activity. The determination of a pharma-
cophore requires knowledge of (1) the three dimensional struc-
ture and bioactive conformation of molecules, (2) key atomic 
features, and (3) the determination of the relationship between 
those features and biological activity. Once developed, pharma-
cophoric models can be highly valuable tools to provide insight 
into drug molecule interactions and aid in the design of higher 
potency inhibitors.

Seelig’s SAR data (95) was suggestive of a fairly simple phar-
macophoric distinction between substrates and inhibitors of 
ABCB1, whereas the spatial requirements would be indicative of 
discrete binding sites. SAR data can be analyzed and interpreted 
for small numbers of compounds (<500), but as datasets grow in 
size and complexity computational approaches are better suited 
to generating pharmacophore models. There are a range of 
programs that are widely used for pharmacophore generation 
including ALADDIN, COMPASS, SCAMPI, PARM, and DANTE 
(112); however, the most commonly used are DISCO (113), 
GASP (114), and Catalyst/HIPHOP (115). These software 
packages utilize different algorithms to determine a common set 
of molecular features on the basis of comparisons of interacting 
compounds (substrates or inhibitors). A consequence of this is 
that most of the pharmacophore models generated are based on 
the alignment of a small number (i.e. the training set) of energy 
minimized conformations of known substrates. However, this 
means that the dynamic nature of biologically active substrates 
cannot be fully predicted. One program, Catalyst/HypoGen, 
employs a combination of QSAR and pharmacophore methods 
(116). This requires a wide range of interacting and noninteracting 

2.3.2. What Is 
Pharmacophore Modeling?
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compounds combined with experimentally determined activity 
data, which provides a more robust pharmacophore. The Catalyst/
HypoGen pharmacophore is capable of predicting the potential 
capacity for a query compound to interact, as in a traditional 
pharmacophore model. However, it can also estimate its potential 
activity based on a regression of the training dataset, as with the 
3D-QSAR model. Many pharmacophore models reported in 
current literature claim to be reasonably accurate at predicting 
ABCB1 substrates. Ekins and coworkers generated pharmacoph-
ore-QSAR models to rank ABCB1 inhibitors on the basis of 
modulating substrate transport (117). A single substrate pharma-
cophore was produced by overlaying verapamil and digoxin based 
structures, followed by fitting vinblastine, and the generated 
pharmacophore revealed multiple hydrophobic and hydrogen-
bond acceptor features as important characteristics of ABCB1 
substrates. An ensemble model of 100 pharmacophores was 
generated by Penzotti and coworkers and consisted of a set of 
2, 3, and 4-point pharmacophores for discrimination between 
interacting and noninteracting ABCB1 compounds with poten-
tial ABCB1 ligands required to match at least 20% of the pharma-
cophores in the ensemble (118). Screening of ligands, also 
referred to as virtual screening, is a data mining approach that 
applies the pharmacophoric model to screen commercial chemi-
cal compound databases to identify molecules that can potentially 
interact with the protein. Potential compounds can then be pur-
chased and directly tested using in vitro assays. Consequently, this 
approach has become a frequently used strategy for the identifica-
tion of novel lead ligands. Several ABCB1 pharmacophores have 
been used in screening databases. Rebizter and coworkers used a 
propafenone based pharmacophore model to screen the Derwent 
World Drug Index (119). This identified 19 new potential ABCB1 
substrates but the study did not report subsequent experimental 
verification (120). More recently, a pharmacophore model gener-
ated from 131 propafenone ABCB1 inhibitors was used to screen 
the SPECS database (134,000 compounds) and successfully iden-
tified two lead compounds with submicromolar range affinities 
(121). Despite these promising leads, none of these compounds 
have yet made the transition from the laboratory to the clinic.

Regardless of the type of model used for drug/inhibitor design, 
the predictive and interpretative qualities are ultimately con-
strained by the dataset upon which they were constructed. 
Acquiring robust datasets is especially important in these studies, 
where a variety of expression systems and experimental models 
are available. The majority of QSAR and pharmacophore studies 
on ABCB1 have focused on datasets gathered from a single spe-
cies or cell type, and frequently from a single laboratory (122–
125). The promiscuity of transport exhibited by ABCB1 means 

2.3.3. Limitations of In 
Silico Approaches to 
Inhibitor Design
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that there are relatively few noninteracting compounds included 
in the development of pharmacophoric datasets. As a consequence, 
this has meant that the models generated have facilitated under-
standing of ABCB1–ligand interactions; they have not been 
highly effective in prospective ligand discoveries.

Despite this, the information gained from these in silico stud-
ies have improved the consensus picture for ABCB1 inhibitor 
design, although it still remains somewhat broad. Strong inhibi-
tors are characterized by high lipophilicity (and/or molar refrac-
tivity) and possess at least two H-bond acceptors. Other features, 
such as H-bond donors and p–p-stacking, are also proposed to 
serve as additional interaction features. Pharmacophoric models 
indicate that there are also steric constraints for interaction (120, 
126–130).

Combinatorial chemistry was responsible for the a priori develop-
ment of the third generation of ABCB1 inhibitors generated with 
the objective of improving potency without unwanted pharma-
cokinetic interactions. Four promising lead compounds (Elacridar 
(50), Zosuquidar (131), Tariquidar (54), and Ontogen (52)) were 
developed by high throughput screening approaches using SAR 
analyzes. Their nanomolar potency and efficacy in experimental 
systems (in vitro and in vivo) led to a rapid progression to clinical 
trials. Tariquidar garnered the greatest interest because of its high 
potency (100–1,000-fold greater than the previous generation 
inhibitors), its discrimination between ABCB1 and ABCC1, and 
its long effective duration (35, 132, 133). However, despite its 
success in phase I and II clinical trials, phase III trials were 
suspended due to unfavorable toxicity reports in the treatments 
of lung carcinoma and the future of this inhibitor is currently 
unclear. Clinical trials for other third generation ABCB1 inhibitors 
are proceeding and although the initial reports are promising, 
with minimal adverse pharmacokinetic interactions reported, 
these trials are still at relatively early stages with small patient 
sample sizes and no unambiguous reports on improvements in 
anticancer drug efficacy (134–137). Although the pharmaceutical 
armory is small, there remains a paucity of extensive inhibitor 
characterization in the clinical setting. More attention should be 
devoted to trials with large patient populations and a broad range 
of cancer types, with detailed information on the class of resis-
tance and greater use of surrogate assays.

Drug binding sites within the transmembrane domain of ABCB1 
have been the main target of substrate based inhibitor design. 
However the inherent plasticity of these sites has rendered it dif-
ficult to identify compounds that can modulate drug efflux by this 
route. However, targeting the drug binding site need not be the 
only strategy to attain pharmacological inhibition of ABCB1.

2.3.4. Combinatorial 
Chemistry

2.3.5. Nucleotide Binding 
Domain Targeted Inhibition
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The high conservation of the nucleotide binding domains 
(NBDs) amongst ABC transporters and their fundamental require-
ment to provide the mechanistic driving force for efflux indicates 
that they are ideal targets for the inhibition of ABCB1. This is 
underpinned by a wealth of biochemical and structural data which 
has meant that our understanding of the catalytic cycle of the 
NBDs is well understood (for review see (138–140)). For example, 
the distinct and specific motifs contained within the NBDs are 
amenable to in silico ligand design techniques. In addition, the 
presence of two NBDs per transporter also increases the number 
of potential sites for inhibitor binding, whereas inactivation of 
only a single NBD would be required to impair ABCB1 mediated 
drug transport.

Several classes of drug, such as the flavonoids, have been 
observed to interact with the NBDs (141–143). Flavonoids are a 
large class of naturally occurring compounds widely present in the 
green plant world with more than 6,500 different compounds 
described (143, 144). Some naturally occurring flavonoids and 
their hydrophobic derivatives (e.g. aurones) have been observed 
to inhibit the transport function of ABCB1 by interaction with 
NBD 2 and the cytosolic regions of the protein. It has been shown 
that although some flavonoids can inhibit the labeling of ABCB1 
with their photoactive substrates (145–147), indicating that they 
may bind directly to the substrate binding site, others bind directly 
to the purified recombinant C-terminal nucleotide-binding domain 
from mouse ABCB1 (NBD2). Moreover, it appears that the bind-
ing domain may overlap the ATP binding site and vicinal steroid 
binding site (142). However, flavonoids are also potent inhibitors 
of drug metabolizing enzymes (148, 149) and pharmacokinetic 
interactions with anticancer drugs are likely to prevent a clinical 
application in their current form.

Systematic chemical modification and combinatorial chemistry 
produced the first three generations of potent ABCB1 inhibitors. 
Unfortunately, the majority of these inhibitors have also been 
reported to have caused undesirable pharmacokinetic anticancer 
drug interactions thus limiting their clinical application. Rapid 
technological advancements have made automated and semiauto-
mated in silico approaches, such as pharmacophore and QSAR 
modelling, feasible for screening vast compound databases and 
developing higher potency inhibitors. However, despite the 
identification of a number of potential lead compounds these 
approaches have not yet led to the production of compounds for 
clinical trials. Because of these obstacles to ABCB1 inhibition 
some recent studies have returned to screening herbal and fruit 
extracts for lead compounds. These approaches are reminiscent of 
the first generation inhibitor screening methods of broadly sampling 
the existing chemical space in an attempt to identify lead compounds. 

2.4. ABCB1 Inhibitors 
– Where to Now?
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A more rational approach may be the utilization of protein 
structure modelling exploiting high resolution homologous 
template structures. By developing models of protein interac-
tion with potential ligands, in combination with complementary 
physicochemical (QSAR) and pharmacophoric descriptors this 
may offer a different platform for the design of potential lead 
inhibitors.

High resolution crystal structures have been used for rational 
drug design as they can provide detailed molecular information 
on interactions between the substrate and protein at the active 
site. This method was used to develop the well known antiinflu-
enza drugs Relenza and Tamiflu as well as the anticancer drug 
Imatinib. All three compounds function by targeting the active 
site of a critical protein involved in illness progression and are the 
success stories of structure-informed drug design.

The antiinfluenza drugs Relenza and Tamiflu target the 
enzyme neuraminidase, which is responsible for viral release from 
sites of infection such as the lungs (150). The enzyme cleaves 
sialic acid residues on a surface receptor involved in anchoring 
newly formed influenza viral particles, thereby facilitating virus 
release from infected cells. Several high resolution crystal struc-
tures of neuraminidase have been solved, but of particular signifi-
cance were those structures containing bound sialic acid substrate 
(151–153). This provided critical insight into specific residues 
that interact with sialic acid at the enzyme active site. A combina-
tion of computational chemistry and examination of the crystal 
structures of neuraminidase revealed that the C-4 hydroxyl group 
of sialic acid provided a significant contact point between the sub-
strate and the protein (154). Substitution of the C-4 hydroxyl 
group with a larger, basic guanidinyl group gave rise to 4-deoxy-
4-guanidino-Neu5Ac2en (commonly referred to as Zanamivir 
or Relenza), which displayed antiviral activity (155). Moreover, 
structural (156) and molecular modelling (157) data of the com-
plex demonstrated that Zanamivir bound directly at the active site 
of neuraminidase. Subsequent clinical trials demonstrated that 
Zanamivir is clinically effective for the treatment and prevention 
of influenza (158, 159).

The development and success of Zanamivir provided a plat-
form from which to produce other neuraminidase-targeted anti-
influenza drugs. Further structure–activity relationship studies 
with Neu5Ac-based derivatives led to a number of improvements 
to the compound (160, 161). These included mimicking the 
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sialic acid transition state, optimizing the hydrophobic nature of 
the drug thereby increasing membrane association, and, finally, 
the development of a prodrug form, converted to an active form 
in vivo. The final outcome was the antiinfluenza drug Oseltamivir 
or Tamiflu.

Structure-based drug design has therefore been successfully  
applied to therapy against influenza by virtue of the high resolution 
crystal structures of neuraminidase solved in complex with the 
substrate and the inhibitor. Furthermore, identification of neuramin-
idase as a target for structure-informed drug design was possible 
owing to a thorough understanding of both the viral lifecycle and 
the mechanism of substrate recognition by the protein.

The success of structure-based drug design relies upon having (1) 
high resolution protein structures (2) detailed information on 
the substrate binding site(s), and (3) an understanding of the sub-
strate–protein interactions. These three requirements are essential 
for the successful development of inhibitors and our progress 
towards these goals for ABCB1 will be discussed.

A myriad of challenges face structural biologists when attempting 
to crystallize membrane proteins. These include protein expres-
sion, efficient protein extraction from the lipid bilayer, high purity, 
and sample homogeneity. Such issues are responsible for the lack 
of crystal structures for any full-length eukaryotic ABC tranporters. 
In the interim however, electron microscopy (EM) and homology 
modelling have been used to provide low to medium resolution 
structural information of ABCB1.

Electron microscopy of ABCB1 in the presence and absence 
of nucleotides revealed that the protein undergoes a significant 
reorganization in the transmembrane domains (162–167). This 
was interpreted as corresponding to the opening of a central pore 
(167), thought to allow hydrophobic drug access to the extracel-
lular environment during the drug translocation process of ABCB1. 
Currently the highest resolution structure of ABCB1, determined 
using 2D crystals and cryo-electron microscopy, is approximately 
8 Å, which is too low for structure informed drug design (164–167). 
However, the use of EM to monitor multiple conformational 
states has been of great benefit in understanding the dynamic 
aspects of the drug translocation process and this structural infor-
mation still plays a crucial role in the validation of homology 
models.

To date EM has provided the only direct structural information on 
ABCB1. In constrast several high resolution crystal structures of 
prokaryotic ABC transporters have been solved in recent years 
(65, 168–172). These structures in conjuction with the parame-
ters obtained from EM studies have been avidly used to produce 
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homology models of ABCB1 (173–177). Homology models 
provide an invaluable starting point for the interpretation of 
biochemical data in the absence of high resolution structures 
(130, 173). The quality and accuracy of a model is entirely depen-
dent on the resolution of the template crystal structure and the 
template-sample sequence alignment. As a consequence, protein 
homology models are viewed as approximations of protein struc-
tures, comparable to medium resolution images and not suitable 
for use in structure-informed drug design. Furthermore, the reli-
ability of ABCB1 homology models was recently confounded by 
the withdrawal of three MsbA structures. In addition, the only 
available structure for an ABC multidrug efflux pump, namely 
Sav1866, revealed an unexpected domain organization (65). This 
called for the refinement and reinterpretation of all previous 
ABCB1 models (65, 177–179). Despite this, the quality of subse-
quent models has been improved owing to the higher resolution 
of the Sav1866 structure (~3 Å) and better sequence alignment 
with ABCB1 (56% and 52.8% for transmembrane domains 1 and 2 
of Sav1866 and ABCB1, respectively) (175). Furthermore, cross-
linking data suggest that the unusual “domain swapping” architec-
ture of Sav1866 is also adopted by ABCB1 (180). The crystal 
structure of Sav1866, therefore, appears to provide a more reliable 
template for the computational modelling of ABCB1.

Two groups have currently produced homology models of 
ABCB1 using the Sav1866 crystal structure as a template (173, 
175). Both homology models were qualitatively compared to the 
ABCB1 EM model and were shown to be in reasonable corre-
spondence (165). O’Mara and coworkers suggested that in the 
ATP bound state, the translocation pore is lined with polar 
residues. In contrast, the nucleotide free configuration has 
hydrophilic residues shifted to the interhelical regions with the 
hydrophobic residues being exposed to the translocation pore 
(175). This considerable molecular rearrangement is in agree-
ment with substantial biochemical data demonstrating dramatic 
conformational changes in the TMDs caused by ATP binding (for 
review (18)).

A large hydrophobic cavity within the transmembrane region 
of the protein was observed in the homology model created by 
Globisch and coworkers (173). Their study incorporated data 
from numerous investigations on cross-linking within ABCB1 
TM segments to validate the model. According to the cross-linking 
data the transition from the “open to inside” to “closed to inside” 
conformation is thought to occur during the early stages of the 
ATP hydrolytic cycle. In the latter state the main protein cavity, as 
determined by SiteID and SiteFinder programmes, has mainly 
hydrophobic to neutral surface properties.

It is tempting to postulate that based on both models ABCB1 
assumes a conformation corresponding to an intermediate stage 
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in the translocation process (driven by events at the NBDs) 
wherein the central pore develops a low/intermediate affinity for 
hydrophobic drugs. Such conformational changes in ABCB1 
could generate the changes in substrate affinity during drug trans-
location (80). However, the specific conformational transitions 
have yet to be shown experimentally. Therefore, whereas homol-
ogy models have thus far been unsuitable for structure-based 
inhibitor design, they have provided a means for interpreting 
conformational changes within the translocation pore of the pro-
tein. Such information can help in the quest to understand how 
ABCB1 can recognize and transport its vast array of substrates.

Although the homology models reveal topology and conforma-
tional shifts during translocation, they do not reveal molecular 
detail or location of the drug binding sites. Understanding the 
interaction between the protein and its substrate is crucial for 
structure-informed inhibitor design. The drug binding sites lie 
within the TM region of ABCB1 and multiple residues within the 
TM helices appear to contribute to the drug binding site(s) (181–
183). This section outlines our current understanding of the 
underlying mechanism for drug recognition by ABCB1.

Locating the drug binding site(s) in ABCB1 is complicated by its 
promiscuity and the complexity of the drug–protein interactions. 
For example, (1) how many sites are there, (2) are they located at 
distinct regions or within a single large domain, and (3) can drugs 
bind to more than one site? One technique that has proven invalu-
able in the quest to uncover the drug binding sites is cysteine-
scanning mutagenesis. This technique requires a cysteine-less 
protein template, and fortuitously, ABCB1 is fully functional in 
the absence of cysteine (184). The substitution of residues at 
specific positions in ABCB1 with cysteine was used to determine the 
residues that are critical for protein function and drug binding. 
Using an array of ABCB1 single-cysteine mutants and thiol-
reactive substrates, (e.g. MTS-verapamil and dibromobimane), 
Loo and Clarke outlined a potential drug binding domain within 
ABCB1 (83, 185–190). The investigations suggested that TM 
helices 4–6 of TMD1 and 9–12 of TMD2 contributed residues to 
a drug binding pocket in ABCB1 (Fig. 18.2). This was in agree-
ment with earlier findings, using photoaffinity labeling, which 
indicated that the N- and C-terminal ends of the TMDs are 
involved in drug binding (82, 181, 183). In addition, certain 
residues (e.g. residue Ser222) are within the binding site of more 
than one unrelated substrate, suggesting a degree of redundancy 
between regions of interaction. These combined studies provided 
the field with valuable information about the drug binding regions 
and the substrate-induced conformational changes. However, the 
highly reactive nature of the thiol-labeling compounds used, the 
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complexities of the substrate–ABCB1 interaction, and the confor-
mational flexibility of the protein make it difficult to distinguish 
between binding to the “true” sites from binding at intermediate 
stages of the translocation pathway.

An alternative method used to identify the drug binding sites 
of ABCB1 involved propafenone-analogs and matrix-assisted laser 
desorption-ionization-time-of-flight (MALDI-TOF) mass spec-
trometry. This technique identified residues in transmembrane 
helices 3, 5, 6, 8, 10, 11 and 12 as contributing to a putative 
drug-binding domain for propafenone analogs although the 
primary sites appear to be formed at the interfaces between TM5-8 
and TM3-11 (Fig. 18.2) (84, 191). The binding regions, although 
distinct for these compounds, also encompass residues proposed 
to be involved in the binding of other ligands such as vinblastine, 
cyclosporin, verapamil, and colchicine (192).

Predictive methods have also been used to locate the sub-
strate binding regions in ABCB1. Globisch and coworkers used 
3D structural information along with SiteID and Site Finder pro-
grams in an attempt to pinpoint binding regions and pockets 
(173). The programs located three binding regions and a central 
binding cavity. A number of residues in the vicinity of the pre-
dicted binding regions have previously been identified to contrib-
ute to the binding domain of propafenone and its chemical 
derivatives. Unfortunately, the binding sites identified are large, 
dispersed regions rather than distinct “sites” within ABCB1, 
thereby precluding any realistic attempts at drug-docking.

The substrate-induced fit model, in which substrate binding 
induces unique conformational changes in the flexible TMDs 
resulting in the formation of a unique drug binding site for that 

Fig. 18.2. Potential drug binding sites in ABCB1. A simplified view of the transmembrane helices that are suggested to 
contribute to the drug binding site(s) of ABCB1. The black circle represents the drug substrate. (a) Represents the helices 
demonstrated by Loo et al. to form the drug binding site. (b) Illustrates the helices demonstrated by Ecker et al. to be 
involved in drug binding. The dashed lines demonstrate the interface at which the drug is believed to interact.
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substrate, has been used to rationalize the large number of residues 
involved (189). Furthermore, an alternative substrate would induce 
a different conformational change creating a binding pocket 
specific for that substrate but within the same binding region. 
The model was supported by the fact that the TMs are quite 
flexible at 37 °C (from cross-linking data) and it was suggested 
that substrate binding reduces the flexibility of the TMs, there-
fore ensuring localisation of specific residues to the binding 
pocket(s) (193, 194). A challenge for the research field will be to 
verify, or refute, this intriguing potential mechanism.

The previous experiments suggested that there is one generic site 
in ABCB1 that accommodates many different compounds. 
However, a series of experiments, carried out by Dey and cowork-
ers, demonstrated that the ABCB1 inhibitor cis-(Z)-flupentixol 
binds to a site distinct from the substrate binding domain, thereby 
preventing translocation and promoting substrate dissociation 
(195). Furthermore, conformational changes generated by flupen-
tixol binding to ABCB1, as demonstrated by altered susceptibility 
to proteolytic digestion and UIC2 antibody binding, are distinct 
from that induced by ABCB1 substrates or competitive modulators 
(195–197). cis-(Z)-flupentixol does not interact with ABCB1 sub-
strates in a classical competitive manner. Given that it binds at a 
distinct site, the interaction with the substrates is defined as an 
allosteric one. Earlier radioligand binding studies also identified a 
site that bound nontransported modulators of ABCB1 (Nicardipine 
and GF120918), which was distinct from the [3H]-vinblastine 
interaction site (73). Similarly, studies on Hoechst33342 transport 
also identified a potential modulator specific site that recognizes 
prazosin and progesterone (198). The discovery of a potentially 
less promiscuous, allosteric modulator site(s) in ABCB1 may 
provide an alternative and possibly less complicated avenue along 
which structure-based inhibitor design may proceed.

Currently, there remains a certain degree of pessimism as to 
whether the activity of ABCB1 can be modulated pharmacologi-
cally to restore the efficacy of chemotherapy. The pessimism has 
intensified following the failure of the much vaunted Tariquidar in 
clinical trials. However, this was one of the very few molecules that 
have reached advanced clinical trials. The prominent role of this 
transporter in healthy tissue (pharmacokinetic regulator) and in 
disease (e.g. resistance in cancer and epilepsy) surely warrants 
greater efforts to produce novel inhibitors.

3.3.2. Modulator Sites – 
Are They Distinct from the 
Drug Binding Site(s)?

4. Conclusion
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The power of chemistry and bioinformatics appear to have met 
their match with the promiscuity exhibited by ABCB1 with respect 
to substrate binding. Identifying the pharmacophoric elements of 
substrates may prove untenable if the drug binding domain has a 
seemingly limitless plasticity or malleability. Generating detailed 
mechanistic information and protein elements of the binding 
domain are a priority for future rational inhibitor design.

Clearly, we cannot yet pinpoint the site of the drug or modu-
lator binding to ABCB1 with any surety. Similarly, the precise 
molecular mechanism by which the protein can recognize such a 
wide array of compounds remains elusive. Biochemical data has 
brought us to the cusp of this “holy grail” of information. 
Provision of a high resolution structure containing a bound sub-
strate/modulator would provide an enormous stimulus to reveal 
the hidden secrets of drug binding to ABCB1 and facilitate struc-
ture-informed inhibitor design.
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