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1   |   INTRODUCTION

46, XY female is a genetic disorder characterized by gonad 
gender not consistent with chromosomal sex, which is 
caused by an abnormality of sexual differentiation. The 
patient's chromosome karyotype is 46,XY, and the clinical 

manifestations are female appearance. The majority of pa-
tients are nonsyndromic, and abnormal phenotypes only 
exist in the reproductive system; abnormal gonad of 20%–
30% of patients may deteriorate into the gonadal tumor. 
They inherited from their parents in an autosomal dom-
inant, autosomal recessive, X-linked, or Y-linked manner, 
but most of them acquired by spontaneous mutation.
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Abstract
46,XY female is a genetic disorder characterized by gonad gender not consist-
ent with chromosomal sex. The SRY gene mutation is a common cause of 46,XY 
reversal type 1 (OMIM: 400044). Peripheral blood was collected from a 46,XY 
female patient and her father. Sex chromosomes were confirmed by karyotype 
analysis and fluorescence in situ hybridization (FISH) detection of the specific 
probe of sex chromosomes with cultured lymphocytes. After extracting blood 
genomic DNA, SRY characteristic fluorescence peak was detected by quantitative 
fluorescence PCR (QF-PCR) method. Whole exome was sequenced with NGS, and 
SRY gene was sequenced by Sanger sequencing, respectively. The chromosomes 
X and Y of the patient were confirmed by karyotype of 46,XY, and FISH specific 
probe of chromosome X and Y. SRY specific fluorescence peak was observed by 
QF-PCR. The whole-exome sequencing results showed chrY: 2655352(GRCh37): 
c.293G>A hemizygote mutation, confirmed by Sanger sequencing. The de novo 
mutation resulted in the mRNA encoding the tryptophan codon of 98 (UGG) 
change into a termination codon (UAG) (P.Trp98ter), and the translation process 
was terminated prematurely. The discovery of this novel mutation in the SRY 
gene helps elucidate the molecular mechanism of 46,XY female sex reversal and 
enriches such patients’ genetic mutation spectrum.
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In 1959, the study of Jacobs P.A and Ford C.E showed 
for the first time that the determinant of male sex in hu-
mans is the chromosome Y1,2. Only until 1990, Sinclair 
AH et al.3 cloned the SRY gene mapping to Yp11.3. SRY 
acts as a switch for male sexual differentiation by regu-
lating other genes’ expression, so it is considered the best 
candidate gene for testis-determining factor (TDF) and a 
significant inducer of testis development in mammals.4

SRY gene is only briefly expressed in the primary go-
nadal tissue of early embryo in a manner of tissue and 
temporal specificity, leading to the differentiation of the 
primary gonadal tissue into testicular tissue. SRY gene 
mutation is a common cause of 46,XY reversal type 1 
(OMIM: 400044)5–7 and about 10%–15% of 46,XY female 
sex reversal patients with complete or partial gonadal dys-
plasia associated with loss of function mutation of SRY 
gene8–12. In the complicated biological process of sexual 
determination and differentiation, the SRY gene is the 
core role of many genes in a concert performance in an 
orchestrated way.13 Therefore, it is of great significance to 
study the SRY gene to understand the physiological mech-
anism of human sex determination and the pathological 
mechanism of sex reversal. In this study, we proceed with 
a molecular genetic analysis of the SRY gene in a 46,XY 
female patient, expect to find out the pathogenic genetic 
factors.

2   |   MATERIALS AND METHODS

2.1  |  Ethical compliance

The research was approved by the Institutional Committee 
for the Protection of Human Subjects (Institutional 
Review Board of Sichuan Provincial Hospital for Women 
and Children), and the patient's parents signed the in-
formed consent.

2.2  |  Sample collection

Peripheral blood was collected from the patient and her 
parents and anticoagulated with heparin sodium and 
EDTA-Na2, which store at 4℃ for use.

2.3  |  Case report

The patient, who was raised as a girl, presented at our 
clinic for the first time at the age of 14 years with primary 
amenorrhea and absence of secondary sex characteristics. 
She was 156.5 cm tall, weighed 50.3 kg, and had a BMI of 
18.8 kg/m2. Her clinical manifestations were as follows: no 

abnormal in mental and motor development, fair and deli-
cate skin, no beard, no Adam's apple, grade 2 development 
of both breasts, no pubic hair, no axillary hair, normal 
vaginal length, and no uterus touched by anal examina-
tion. Ultrasonography showed a 2.7 × 0.7 × 1.1 muscular 
echo in the pelvic cavity, which was suspected to be the 
primary uterus. Neither ovarian and accessories, testicu-
lar was found in the abdominal cavity, inguinal region 
or vulva. Moreover, bilateral adrenals and ureteral blad-
ders abnormalities were not observed. The azoospermia 
factor (AZF) representative of Y chromosome microdele-
tion showed no abnormality. Magnetic resonance imaging 
(MRI) of the pituitary with plain scanning and enhance-
ment showed no obvious abnormalities. The results of 
laboratory analysis were as follows: Testosterone was 
0.10 nmol/L (reference value range was from 0.21 to 2.85), 
prolactin 1.59 nmol/L (reference value range 0.64–4.45), 
estradiol 18.35  pmol/L (reference value range 99.46–
191.57), luteinizing hormone 22.6  IU/L (reference value 
range 1.70–8.60), follicle-stimulating hormone 79.82 IU/L 
(reference value range 1.50–12.40), Anti-Muller-tube hor-
mone <0.43 pmol/L (the reference value range for women 
is 0.43–128.52), and cortisol 567 nmol/L (reference value 
range 186.11–627.78). The results of thyroid hormone 
showed no abnormalities. Her parents were nonconsan-
guineous, and there was no remarkable family history and 
genetic disorder history. Both parents were 25 years old 
when the patient was born, and the mother did not show 
any abnormalities during pregnancy. The patient was 
born naturally at 38 weeks and 5 days, with a birthweight 
of 3,200 g and a length of 50 cm.

2.4  |  Analysis of karyotype and fish

Chromosomes were prepared, and karyotype analysis was 
proceeded by conventional techniques.14 The chromo-
somes X and Y were confirmed with probes specific for 
the centromeres of the chromosomes X and Y15 (CEP X 
with spectrum green and CEP Y with spectrum red,from 
Jinpujia company). The FISH test was performed with lym-
phocyte cultured as per the manufacturer's instructions.

2.5  |  DNA extraction

According to the manufacturer's instructions, blood 
genomic DNA was extracted from EDTA anticoagulated 
blood using the Qiagen QIAamp DNA Blood Kit (Qiagen 
Company). DNA was qualified when the DNA concentra-
tion was above 20 ng/uL, and the ratio value of OD260/280 
ranged from 1.8 to 2.0, determined by Nanodrop 1C spec-
trophotometer (Thermo Scientific Company).



      |  3 of 7QIN et al.

2.6  |  Detection of the sry gene by QF-
PCR

The STR of the SRY gene was detected by a multi-STR 
of chromosome 13/18/21/X/Y genotyping kit (fluores-
cence PCR capillary electrophoresis method) (Guangzhou 
Darui Company) as per the manufacturer's instruc-
tions. 10–20  ng DNA was taken for multiple PCR am-
plification. The forward primer of the SRY gene is 
5′-AGTAAAGGCAACGTCCAGGA-3′, and the reverse 
primer is 5′-TTCCGACGAGGTCGATACTT-3′. The prod-
uct length of the SRY gene was 248 bp. The 5′ end of the 
forward primer is labeled with VIC green fluorescence. 
PCR amplification conditions were as follows: a cycle of 
95℃ for 5 min; 25 cycles of 95℃ for 30 s, 58℃ for 40 s, 
72℃ for 50 s, and a cycle of 72℃ for 10 min. Amplification 
products were detected by capillary electrophoresis with 
ABI 3500Dx genetic analyzer, and data were analyzed by 
ABI GeneMapper software.

2.7  |  Sequencing of whole exome 
with NGS

Exome captured sequencing library was produced from 
NimbleGen SeqCap EZ MedExome kit. All exomes were 
prepared by fragmenting 1  μg of DNA using sonica-
tion technology followed by end-repair and adapter li-
gation, including incorporating Illumina TruSeq index 
barcodes. The library was subsequently sequenced 
by a 2  ×  150  bp double-ended method on an Illumina 
Novaseq 6,000 high-throughput sequencer according to 
the manufacturer's instructions. The data of sequenc-
ing were analyzed by Polyphen-2, SIFT, and Mutation 
Taster software.

2.8  |  SRY point mutation was verified by 
PCR combined with sanger sequencing

Sanger sequencing was adopted to verify the results of 
point mutations of the SRY gene after high-throughput 
sequencing. First, a 10  ng DNA template was taken 
for PCR amplification with a pair of specific primers 
(Forward Primer: 5′-GCATTCATCGTGTGGTCT-3′, 
Reverse primer: 5′-TTCTTCGGCAGCATCTTC-3′, 
primers were synthesized by Shanghai Biotechnology 
Company). Amplification conditions were as follows: a 
cycle of 95℃ for 10 min; 35 cycles of 95℃ for 30 s,58℃ 
for 30 s,72℃ for 30 s, and a cycle of 72℃ for 7 min. The 
length of the product was 229 bp. Second, the PCR prod-
ucts were purified by ExosAP-IT. Third, sequencing PCR 
amplification was performed with purified PCR products. 

Amplification conditions were as follows: a cycle of 96℃ 
for 1 min; 35 cycles of 96℃ for 10 s, 50℃ 5 s, and 60℃ 
4  min. Fourth, sequencing PCR products were purified 
with BigDye XTerminator Bead. Purified sequencing 
PCR products were detected by capillary electrophoresis 
with ABI 3500Dx genetic analyzer, and the sequencing 
data were analyzed by ABI Sequencing Analysis 5.2 soft-
ware. The experimental operations were performed by 
referring to BigDye Direct Cycle Sequencing Kit and 
BigDye X-Terminator Purification Kit (Life Technologies 
Corporation) instructions.

2.9  |  The online database resources used 
for analysis

The online database resources used for analysis mainly in-
clude the following: OMIM (https://omim.org/), PubMed 
(https://pubmed.ncbi.nlm.nih.gov/), ClinVar (https://
www.ncbi.nlm.nih.gov/clinv​ar/), ClinGen (https://dos-
age.clini​calge​nome.org/), Decipher (https://decip​her.
sanger.ac.uk/), HGMD (http://www.hgmd.cf.ac.uk/ac/
index.php), gnomAD (https://gnoma​dhome.com/), UCSC 
(http://genome.ucsc.edu/index.html), SIFT (http://sift.
jcvi.org), Polyphen-2 (http://genet​ics.bwh.harva​rd.edu/
pph2/), MutationTaster (http://www.mutat​ionta​ster.
org/).

3   |   RESULTS

3.1  |  Confirmation of sex chromosomes

The sex chromosomes of the patient were confirmed 
as 46,XY by chromosomal karyotyping analysis of 
metaphase lymphocytes and FISH analysis of the spe-
cific fluorescence signal of X and Y chromosomes in 
interphase and metaphase lymphocytes. The chromo-
some karyotype of the patient, as shown in Figure  1. 
Figure  2  showed the result of FISH on the metaphase 
chromosomes. The sex chromosomes of the parents 
were consistent with their gender, and no abnormalities 
were observed.

3.2  |  Results of sry gene measured by QF-
PCR

The patient and her father's father-son relationship was 
proved by comparing STR loci of chromosomes. A specific 
SRY fluorescence peak, green fluorescence-labeled and 
length of 248 bp, was observed in the patient's electropho-
retogram of sex chromosomes, as shown in Figure 3.

https://omim.org/
https://pubmed.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/
https://dosage.clinicalgenome.org/
https://dosage.clinicalgenome.org/
https://decipher.sanger.ac.uk/
https://decipher.sanger.ac.uk/
http://www.hgmd.cf.ac.uk/ac/index.php
http://www.hgmd.cf.ac.uk/ac/index.php
https://gnomadhome.com/
http://genome.ucsc.edu/index.html
http://sift.jcvi.org
http://sift.jcvi.org
http://genetics.bwh.harvard.edu/pph2/
http://genetics.bwh.harvard.edu/pph2/
http://www.mutationtaster.org/
http://www.mutationtaster.org/
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3.3  |  Results of exome high-
throughput sequencing

The sequencing data volume was 17.61G, coverage rate 
99.82%, specificity 70.98%, homogeneity 91.45%, >30X 
accounted for 92.17%, and average depth 161.44X. The 
data meet WES quality requirements. The gene muta-
tion (HGVS) of chrY:2655352 (GRCh37) and SRY gene 

c.293G>A (p. Trp98ter) was found after analyzing the se-
quencing data with relevant software.

3.4  |  Verification of mutation point in 
SRY gene by sanger sequencing

The SRY gene c.293G>A verified by Sanger sequenc-
ing was consistent with high-throughput sequencing. 
Furthermore, this patient base was different from his 
father's c.293G; namely, the patient's mutation was a de 
novo mutation not inherited from his father. The results 
of sequencing are shown in Figure 4.

3.5  |  The result of the analysis of the 
mutation site

The analysis of multiple online databases and soft-
ware shows that the hemizygote mutation of SRY gene 
c.293G>A located in the exon region is a nonsense mu-
tation, resulting in the protein-coding termination po-
sition of tryptophan 98(p. Trp98ter). According to the 
ACMG genetic variation (2015 edition), the mutation is 
judged as pathogenic variation (PVS1+PS2+PM2+PP4). 
The pathogenic variation including in causing impaired 
protein function (PVS1), a de novo mutation with the 
disease and no family history (PS2), the mutation occurs 
at a shallow frequency in the average population (PM2), 
and the clinical phenotype is highly consistent with 
46,XY reversal (PP4). After querying multiple databases 

F I G U R E  1   Chromosome karyotype 
diagram of 46, XY female patient. The 
arrow shows the Y chromosome

F I G U R E  2   FISH picture of the patient in metaphase 
chromosomes. The chromosomes X, Y, and 18 are labeled by green, 
red, and blue signal, respectively, as the arrow indicated
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and previous literature, the SRY gene of c.293G>A (p. 
Trp98ter) mutation has not been reported, so it is a 
novel mutation.

4   |   DISCUSSION

The SRY gene's mRNA full length is 828 bp (NM_003140. 
3) with a single exon and coding protein containing 204 
amino acids (NP_003131. 1). SRY protein contains an 
important domain, high mobility group box (HMG box), 
binding with DNA sequence.5,11 HMG box, including 72 
amino acids (from codon 59 to codon 130), a particular 3D 
structure of the "L" shaped consisted of three α-screw, is 
the structural basis of Sry binding activity. SRY gene se-
quence is highly conserved among mammals. If a base re-
placement, mutation, translocation, or deletion happens 
in the SRY gene of a 46,XY male, the SRY protein activity 
would be reduced or even inactivated, and he would be 

phenotypic of 46,XY female. HMG box is a hot spot muta-
tion region of the SRY gene, and most of the mutations 
occurred in this region previously.

Our study analyzed the whole-exome sequence of a 
46,XY female patient. The SRY c.293G>A (p. Trp98ter) 
was a nonsense mutation, also located in the HMG box. 
It was a pathogenic mutation judged by the 2015 ACMG 
standard. The patient's mutation was a de novo mutation 
because of nonpaternal origination by comparing their 
SRY gene sequences. The c.293  loci of SRY gene muta-
tion has not been found in some online databases such as 
OMIM, HGMD, and reported literature, so the mutation 
of SRY gene c.293G>A (p. Trp98ter) is a novel one.

The SRY protein binds to the DNA sequence cored by 
AACAAAG, which can be recognized by T cell–specific 
DNA binding protein (TCF-1) in a sequence-dependent 
manner, and regulates its coding controlled genes16,17. The 
binding of SRY and DNA has specific characteristics of se-
quence and structure.18 SRY binds to the particular target 
DNA sequence containing AACAAAG while contacting 
the minor groove of linear double-helix DNA, resulting 
in the structural rearrangement of both SRY protein and 
target DNA and the formation of sharp angle structure. If 
the target sequence DNA is distorted, the affinity between 
HMG-1 like protein and distorted site is higher than that of 
SRY and malformed site. The DNA sequence AACAAAG 
lost its binding ability to SRY, while the mutation occurred 
at the critical bases at the second, fourth, fifth, and sixth 
positions and appeared critical for this interaction. SRY 
protein activity is too weak to launch the male testicular 
development, leading to the XY female sex reversal19,20. 
Meanwhile, the change of amino acids in the SRY gene's 
coding region will prevent Sry protein from binding to 
DNA or reduce its affinity with DNA by 1 to 3 orders of 
magnitudes, eventually causing gonadal dysplasia21,22. 
Several nonsense mutations of SRY result in 46, XY female 
sex reversal reported previously. Such as, the mutation of 
A>T at base 684 in the open reading frame (ORF) changed 
lysine (AAG) into termination codon (UAG)23, a new non-
sense mutation of C>T at base 686 turned the glutamine 
coding codon (CAG) into the terminating codon (TAG).24 
The mutation of c.291C>T (the locus of c.291C>T in that 
paper is the locus of c.289C>T in NM_003140. 3) trans-
formed glutamine codon (CAG) into termination codon 
(UAG) (Gln97X).25

F I G U R E  3   The electrophoretogram of sex chromosomes of the patient. Specific SRY fluorescence peak, green fluorescence-labeled, and 
length of 248 bp were observed in the electrophoretogram of sex chromosomes

F I G U R E  4   Sequence diagram of SRY gene by Sanger 
sequencing. The base of c.293 in the father's SRY gene sequence 
is G, and the patient is A, as shown in ⓐ and ⓑ indicated by the 
arrow, respectively
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A new mutation type of SRY gene (c.294G>A) turned 
the mRNA encoding the UGG of tryptophan 98 to the 
stop codon (UGA) (Trp98X),26 and the mutation of 
c.293G>A also turned the mRNA encoding the UGG of 
tryptophan 98 to the stop codon (UAG) (Trp98X) in our 
study. However, the mutant base is different between 
the mutation of c.293G>A in our research and that of 
c.294G>A reported by Preeti Paliwal,26 but both make 
the mRNA encoding the UGG of tryptophan 98 change 
into the termination codon (UAG and UGA) (Trp98X), 
and produce the truncated protein of the same length. 
Tryptophan at position 98 is located on the second α-
helix of the HMG box, and the truncated protein may 
not be able to bind to DNA, resulting in the loss of func-
tion of the mutant. Theoretically, the molecular mech-
anism of the mutation of c.293G>A leading to the sex 
reversal of 46,XY females should be the same as that of 
c.294G>A.

Two different nuclear localization signals (NLSs), nNLS 
and cNLS, are located at both ends of the SRY HMG box. 
These two NLSs are also highly conserved in mammals, 
and their structural integrity is necessary for nuclear lo-
calization function27–29. Among the above nonsense muta-
tions (including this study), each single-base substitution 
mutation formed one termination codon in the conserva-
tive HMG domain and translated it into a truncated pro-
tein of different lengths. All truncated proteins lacking 
cNLS neither be recognized by the nuclear input recep-
tor protein IMPβ1 nor be located in the nucleus to bind 
to the target DNA.30 Therefore, they would be nonfunc-
tional or inactive protein products,9,17,21 resulting in the 
male sex determination's failure to be switched. Clinically, 
the above patients with truncated proteins present 46,XY 
female phenotype.

Our report provides evidence for a pathogenic role of 
the SRY gene c.293G>A mutation in 46, XY female indi-
viduals and enlarges the spectrum of molecular diagnosis 
for such condition, which can also be associated with mu-
tation of SRY, a recognized testis-determining gene.
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