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Abstract: Telomere shortening can result in cellular senescence and in increased level of genome
instability, which are key events in numerous of cancer types. Despite this, few studies have focused
on the effect of nanomaterial exposure on telomere length as a possible mechanism involved in
nanomaterial-induced carcinogenesis. In this study, effects of exposure to multiwalled carbon
nanotubes (MWCNT) on telomere length were investigated in mice exposed by intrapleural injection,
as well as in human lung epithelial and mesothelial cell lines. In addition, cell cycle, apoptosis,
and regulation of genes involved in DNA damage repair were assessed. Exposure to MWCNT
led to severe fibrosis, infiltration of inflammatory cells in pleura, and mesothelial cell hyperplasia.
These histological alterations were accompanied by deregulation of genes involved in fibrosis and
immune cell recruitment, as well as a significant shortening of telomeres in the pleura and the lung.
Assessment of key carcinogenic mechanisms in vitro confirmed that long-term exposure to the long
MWCNT led to a prominent telomere shortening in epithelial cells, which coincided with G1-phase
arrest and enhanced apoptosis. Altogether, our data show that telomere shortening resulting in cell
cycle arrest and apoptosis may be an important mechanism in long MWCNT-induced inflammation
and fibrosis.

Keywords: manufactured nanomaterials; MWCNT; telomere instability; long-term exposure;
inflammation; fibrosis; mesothelial hyperplasia; carcinogenicity

1. Introduction

Multiwalled carbon nanotubes (MWCNT) are classified as biopersistent high-aspect
ratio nanomaterials (HARN) with at least one dimension below 100 nm. Due to their fibre-
like shape and high durability, concerns have been raised regarding their potential health
hazard as exposure to some HARN induce pulmonary and mesothelial pathologies, and
tumours similar to the asbestos-like pathogenicity [1,2]. Malignant pleural mesothelioma,
which is an aggressive cancer of the pleural membrane covering the lungs, is strongly linked
to occupational exposure to asbestos [3]. Furthermore, workers exposed to asbestos and
MWCNT show dysregulation in target genes linked to several pathways involved in cancer,
fibrosis, and respiratory and cardiovascular diseases [3]. In 2014, the International Agency
for Research on Cancer (IARC) classified the rigid and fibre-like Mitsui-7 (MWCNT-7)
as possibly carcinogenic (group 2B; Monograph Volume 111) to humans based on evi-
dence from animal and mechanistic experiments [4]. However, due to lacking data and
large physiochemical heterogeneity, other types of carbon nanotubes were not classified.
Data show that MWCNT may share several key characteristics of carcinogenesis such as
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oxidative stress, chronic inflammation, epigenetic alterations, genotoxicity, cellular immor-
talisation, altered cell proliferation, and cell death mechanisms, as reviewed in the work of
Barbarino et al. [3]. Animals exposed to some MWCNT develop pulmonary inflammation,
fibrotic lesions, and tumorigenesis [3,5–7]. Furthermore, MWCNT exposure in vitro may
lead to increased levels of reactive oxygen species (ROS), trigger DNA damage, induce
apoptosis, alter the cell cycle, and affect the secretion and production of inflammatory
mediators such as IL8, TNF, IL6, and IL1B [8–10]. In addition to these well-established
mechanisms, cellular senescence, which is known as an irreversible form of proliferative
arrest, was recently identified as an emerging hallmark of cancer [11]. Fibrotic lung disease
is believed to be mediated by senescent cells [12]. Moreover, cellular senescence can be
caused by several cellular stress processes including telomere dysfunction [13].

Telomere structures at the end of linear chromosomes are important for preventing
genome instability [13]. The maintenance of telomeres requires telomerase activity, which
is a ribonucleoprotein complex consisting of telomerase reverse transcriptase (TERT), and
a telomerase RNA component (TERC), in addition to a network of telomere-associated
proteins [14]. Dysregulation in telomerase or other proteins and enzymes involved in the
maintenance of the telomeres can result in abnormal telomere length and ultimately cell
cycle arrest, senescence, telomere end fusion, and increased chromosome instability, which
in turn is an important event in several cancer types [15,16]. Pulmonary fibrosis is associated
with a reduction in telomere length [17]. Furthermore, it is believed that exposure to various
occupational hazards may lead to telomere length alterations [18]. Limited studies have
shown an association between MWCNT-exposure and telomere length; however, with
inconclusive results. One study showed that exposure of human lung epithelial cells to
MWCNT can result in telomere shortening and onset of cellular senescence [19]. Another
study showed that long-term exposure of murine lung epithelial cells to MWCNT led to
increased telomere length after 10 weeks of exposure [20]. Similarly, workers exposed
to carbon nanotubes had increased telomere lengths in peripheral blood cells compared
to the non-exposed control group [21]. Thus, more studies investigating telomere length
alterations as a possible mechanism in MWCNT-induced fibrosis and carcinogenesis are
warranted. This study aimed to investigate if the two MWCNT, Mitsui-7and NM-401,
which share similar physical and chemical properties, may provoke similar effects involved
in fibrosis and mesothelioma. Moreover, we aimed to investigate alterations in telomere
length as a potential mechanism involved in MWCNT-induced inflammation, fibrosis, and
carcinogenesis using both in vivo animal experiments and in vitro cell culture studies.

2. Results
2.1. Effects of MWCNT on Animal Growth and Histopathology

After week 14, MWCNT high dose exposed mice had decreased body weights com-
pared to sham animals (Figure S1). The histological assessment showed accumulation of
MWCNT fibres in exposed animals with severe histopathological pleural lesions, similar
for both types of MWCNT. The lesions were multifocal and included prominent fibrosis,
mononuclear cell infiltrates, granulomas, and hyperplasia of mesothelial cells (Figure 1).
Exposed animals had significantly higher leukocyte infiltration and more fibrosis, granu-
lomas, and mesothelial cell hyperplasia in the pleura when compared to the unexposed
sham animals. Furthermore, exposed animals occasionally had focal and mild increase in
interstitial fibrous tissue. When present, these changes were found in superficial parts of
the lungs, underneath areas with severe pleural lesions. Histopathological lesions were not
observed in the liver, spleen, or kidney of exposed animals (data not shown). The presence
of granulomas was significantly severe in the high dose MWCNT groups compared to low
dose and control groups (Table 1).
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Figure 1. Pleural lesions in mice injected with MWCNT. (a) Thickening of parietal pleura with pro-
liferation of fibrous tissue and multifocal infiltration of macrophages, multinucleated giant cells, 
plasma cells, and lymphocytes. Black arrows indicate macrophages and giant cells with visible 
MWCNT fibres. (b) Irregularly thickened visceral pleura with severe fibrosis. Asterisk indicates fo-
cal leucocyte aggregates. (c) Visceral pleura with proliferation of fibrous tissue and diffuse infiltra-
tion of inflammatory cells dominated by macrophages, multinucleated giant cells (arrows), and 
plasma cells. A granuloma with MWCNT-containing macrophages and giant cells is present (aster-
isk). An area with mild hyperplasia of mesothelial cells is found on the surface. (d) Severely thick-
ened visceral pleura with proliferation of fibrous tissue (asterisks), mononuclear cell infiltrates, and 
hyperplasia of mesothelial cells (arrows). L: lung tissue, PP: parietal pleura, VP: visceral pleura, SM: 
skeletal muscle. 

Table 1. Effects of the MWCNT Mitsui-7 and NM-401 on morphological endpoints. 

  Presence of Fibres Infiltration of Leukocytes Hyperplasia of Mesothelial Cells Presence of Granulomas 
Exposure n Mean ± SE Mean ± SE Mean ± SE Mean ± SE 

Sham 14 0 a 0 a 0 a 0 a 
Mitsui-7 LD 15 1.57 b ± 0.15 2.47 b ± 0.11 2.03 b ± 0.12 0.00 a ± 0.00 
Mitsui-7 HD 17 2.62 c ± 0.16 2.68 b ± 0.11 1.85 b ± 0.15 1.41 b ± 0.24 
NM-401 LD 17 0.94 d ± 0.09 2.71 b ± 0.11 2.29 b ± 0.18 0.06 a ± 0.06 
NM-401 HD 14 2.11 bc ± 0.13 2.82 b ± 0.10 1.89 b ± 0.22 1.15 b ± 0.27 

Overall effects of fibre exposure on morphological endpoints for the presence of infiltration of in-
flammatory cells, granulomas, and fibrotic responses, in pleura of sham animals and mice exposed 
to multiwalled carbon nanotubes (MWCNT) Mitsui-7 or NM-401 at 5 or 50 μg/mouse (LD and HD, 
respectively). Results are means of semiquantitative scores (Grading 0–4). Levels not connected by 
the same letter (a,b,c,d) are significantly different (p < 0.05; the Steel–Dwass method). Low dose expo-
sure group (LD); high dose exposure group (HD). 

2.2. Effects of MWCNT on Genes Involved in Fibrosis and Inflammation 
Intrapleural injection of Mitsui-7 and NM-401 manifested in alterations in the expres-

sion patterns of several genes involved in fibrotic processes. Overall, exposure to the two 

Figure 1. Pleural lesions in mice injected with MWCNT. (a) Thickening of parietal pleura with
proliferation of fibrous tissue and multifocal infiltration of macrophages, multinucleated giant cells,
plasma cells, and lymphocytes. Black arrows indicate macrophages and giant cells with visible
MWCNT fibres. (b) Irregularly thickened visceral pleura with severe fibrosis. Asterisk indicates focal
leucocyte aggregates. (c) Visceral pleura with proliferation of fibrous tissue and diffuse infiltration of
inflammatory cells dominated by macrophages, multinucleated giant cells (arrows), and plasma cells.
A granuloma with MWCNT-containing macrophages and giant cells is present (asterisk). An area
with mild hyperplasia of mesothelial cells is found on the surface. (d) Severely thickened visceral
pleura with proliferation of fibrous tissue (asterisks), mononuclear cell infiltrates, and hyperplasia of
mesothelial cells (arrows). L: lung tissue, PP: parietal pleura, VP: visceral pleura, SM: skeletal muscle.

Table 1. Effects of the MWCNT Mitsui-7 and NM-401 on morphological endpoints.

Presence of Fibres Infiltration of Leukocytes Hyperplasia of
Mesothelial Cells Presence of Granulomas

Exposure n Mean ± SE Mean ± SE Mean ± SE Mean ± SE

Sham 14 0 a 0 a 0 a 0 a

Mitsui-7 LD 15 1.57 b ± 0.15 2.47 b ± 0.11 2.03 b ± 0.12 0.00 a ± 0.00
Mitsui-7 HD 17 2.62 c ± 0.16 2.68 b ± 0.11 1.85 b ± 0.15 1.41 b ± 0.24
NM-401 LD 17 0.94 d ± 0.09 2.71 b ± 0.11 2.29 b ± 0.18 0.06 a ± 0.06
NM-401 HD 14 2.11 bc ± 0.13 2.82 b ± 0.10 1.89 b ± 0.22 1.15 b ± 0.27

Overall effects of fibre exposure on morphological endpoints for the presence of infiltration of inflammatory
cells, granulomas, and fibrotic responses, in pleura of sham animals and mice exposed to multiwalled carbon
nanotubes (MWCNT) Mitsui-7 or NM-401 at 5 or 50 µg/mouse (LD and HD, respectively). Results are means of
semiquantitative scores (Grading 0–4). Levels not connected by the same letter (a,b,c,d) are significantly different
(p < 0.05; the Steel–Dwass method). Low dose exposure group (LD); high dose exposure group (HD).
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2.2. Effects of MWCNT on Genes Involved in Fibrosis and Inflammation

Intrapleural injection of Mitsui-7 and NM-401 manifested in alterations in the expres-
sion patterns of several genes involved in fibrotic processes. Overall, exposure to the two
MWCNT resulted in very similar expression patterns in fibrosis genes, independent of dose
(Figure 2a). Similar patterns were also observed for the lung and pleura, except for Il10
and Cdkn2a, which were not expressed in the pleura. Of the 17 genes involved in fibrosis
and inflammation investigated in this study, nine genes had the same pattern of regulation
for both materials in pleura and lung of exposed animals, with the highest expression
for Ccl12 (high dose; pleura: 18-fold, lung: fourfold), Cxcl2 (high dose; pleura: sevenfold,
lung: twofold), and Timp1 (high dose; pleura: Mitsui-7: eightfold, NM-401: 14-fold; lung:
fourfold). Fold changes and p-values are shown in Table S1. Furthermore, Mitsui-7- and
NM-401-exposure resulted in an increased expression of Ccl11 (high dose: twofold), Cdkn2a
(high dose: fourfold), Il10 (high dose: fourfold), Col1a2 (high dose: sixfold), in the lung.
Similarly, both materials resulted in significant upregulation of Ccl3 (high dose: Mitsui-7:
sixfold, NM-401: 10-fold), while the expression of Timp4 was downregulated (high dose:
0.3-fold for both materials) in the pleura. Furthermore, Bcl2 (0.3-fold) was only down-
regulated in Mitsui-7 low dose-exposed animals in pleura, while Il1a was significantly
downregulated in Mitsui-7 low dose (0.4-fold)- and in NM-401 high dose (0.4-fold)-exposed
animals in the lung. Selected genes involved in inflammation and fibrosis were run on
HBEC-3KT and Met-5A exposed cells to NM-401 (Figure S2). Results from these selected
genes supported the observation from animal experiment with a deregulation of genes
involved in fibrosis and inflammation (Figure 2b). An upregulation was observed for
CXCL2 and MMP2 in NM-401-exposed HBEC-3KT cells, as well as in the pleura and lung
of exposed animals. Similarly, CDKN2A was upregulated following exposure of HBEC-3KT
cells and in the lung tissue of exposed mice, while CCL3 was upregulated following expo-
sure of HBEC-3KT cells and in the pleura. Moreover, IL8 expression was highly induced
following NM-401-exposure in both HBEC-3KT (2000-fold) and Met-5A (fivefold) cells.
However, none of the other genes analysed in this study were affected in NM-401-exposed
Met-5A cells.

2.3. Effects of MWCNT-Exposure on Telomere Length

Telomere length in the pleura and lung of exposed animals and cells was determined
by absolute qPCR (Figure 3a). In the pleura, a reduction in the telomere length of 2466 bp
for low dose (p = 4.80 × 10−2) and 7374 bp for high dose (p = 8.00 × 10−6) was observed
in Mitsui-7-exposed animals compared to sham. Moreover, telomere lengths in lung
tissue were shortened by 8900 bp for low dose (p = 3.00 × 10−3) and a similar, however, not
significant trend was observed for the high dose. Similarly, the telomere length was reduced
by 4850 bp (low dose; p = 3.90 × 10−8) and 1729 bp (high dose; p = 1.10 × 10−2) in pleura
of NM-401-exposed animals compared to sham animals. No effects of NM-401-exposure
on the telomere length were observed in the lung tissues. On the other hand, in HBEC-3KT
bronchial cells, NM-401-exposure led to a 1000 bp reduction in telomere length for both
doses (Figure 3b). This reduction started already after 4 weeks and gradually increased
until week 13 of exposure, with approximately 1200 bp shorter telomeres measured at week
13 for both doses. Accordingly, exposed cells had a higher percentage of short telomeres
(<3000 bp), already at 4 weeks of exposure, and >60% of the telomers were shorter than
3000 bp at week 13 of NM-401-exposure (Figure 3c). In Met-5A cells, slightly longer
telomeres (400 bp) were observed after 4 and 8 weeks of NM-401 high dose exposure, but
no changes were observed after 13 weeks.
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Figure 2. Effects of multiwalled carbon nanotubes (MWCNT)-exposure on genes involved in fibrosis
and inflammation in vitro and in vivo. (a) Heatmap illustrating median fold changes in gene expres-
sion in pleura and lung following intrapleural injection of MWCNT Mitsui-7 and NM-401. Low dose
(LD), high dose (HD); n = 12–18. (b) Selected genes following exposure to NM-401 high dose. Cellular
data are merged data from all time points (n = 6). Data indicate mean ± 5 percentile.

2.4. Effects of NM-401 on Pathway-Based Gene Expression Patterns in HBEC-3KT Cells

To study the effects of NM-401-exposure on HBEC-3KT cells, the expression of key
regulatory genes important in the development of carcinogenesis were measured after 4, 8,
and 13 weeks of exposure. Interestingly, a time-dependent regulation of genes involved
in inflammation, cell cycle, and cell death mechanisms, such as IL8, CXCL2, DRAM1,
CYCS, and SOD2, was observed following 13 weeks of NM-401-exposure (Figure 4a).
Fold changes and p-values are shown in Table S2. IL8 was highly upregulated following
NM-401-exposure, with a 2430-fold (low dose) and a 4027-fold (high dose) increase in
expression at week 4, and a subsequent smaller increase in expression at week 13. Similarly,
the expression level of CXCL2 was 30-fold (low dose) and 45-fold (high dose) increased
at week 4, and threefold (low dose) and sixfold (high dose) enhanced at week 13 of
exposure. Moreover, DRAM1 expression was 10-fold (low dose) and 12-fold (high dose)
upregulated at week 4, and fivefold upregulated for both doses at week 13 of exposure.
SOD2 also showed a similar expression pattern, with an initial 12-fold upregulation at week
4 and 8, and a subsequent sevenfold upregulation at week 13 of exposure, independent of
dose. Additionally, genes involved in cell death mechanisms were deregulated following
MWCNT-exposure. Accordingly, BAX was found upregulated independent of dose at
all times measured, while CYCS was downregulated independent of dose at week 8 of
exposure (Figure 4b). In addition, we observed an upregulation in TERT at both doses and
all time points and a downregulation in TERC from week 8 independent of dose (Figure 4b).
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length of merged data from all weeks measured (n = 6). (c) Percentage of telomeres in HBEC-3KT 
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Figure 3. Effects of multiwalled carbon nanotubes (MWCNT)-exposure on telomere length. (a) Violin
plots with relative telomere lengths in MWCNT Mitsui-7- and NM-401-exposed animals compared
to sham animals (pleura: Mitsui-7 LD: n = 15 and HD: n = 14; NM-401 LD: n = 18 and HD n = 17;
lung: Mitsui-7 LD: n = 7 and HD: n = 8; NM-401 LD: n = 10 and HD n = 9). (b) Box plot with relative
telomere length in NM-401-exposed cells. Data indicates mean ± 5 percentiles of telomere length of
merged data from all weeks measured (n = 6). (c) Percentage of telomeres in HBEC-3KT cells with
a length below 3 kbp was measured after 4, 8, and 13 weeks of exposure to NM-401. Data indicate
mean ± 5 percentiles (n = 2). Low dose (LD), high dose (HD).
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Figure 4. Regulation of gene expression in multiwalled carbon nanotubes (MWCNT)-exposed HBEC-
3KT cells. (a) Heatmap illustrates mean fold changes in expression at 4 (W4), 8 (W8), and 13 (W13)
weeks of NM-401-exposure. (b) Regulated genes at 4, 8, and 13 weeks of exposure to the LD and HD
of NM-401. Low dose (LD), high dose (HD). Data indicates mean ± SD (n = 2). Dotted lines indicate
log2 fold change 1 (red) and −1 (green).

2.5. Effects of NM-401-Exposure on Cell Cycle and Apoptosis in Lung Epithelial Cells

Changes in cell cycle and apoptosis were assessed at week 4, 8, and 13 in NM-401-
exposed cells. NM-401-exposure led to an increase in cells in the G1-phase at week 13,
independent of dose (Figure 5a), while no changes were observed at 4 and 8 weeks of expo-
sure. No effects were observed in Met-5A cells (Figure 5b). Furthermore, NM-401- exposure
led to an increase in the number of apoptotic/necrotic HBEC-3KT cells, independent of
dose and time, while a smaller increase in apoptotic/necrotic fraction of Met-5A cells was
observed at week 4 and 13 only (Figure 5c).



Int. J. Mol. Sci. 2022, 23, 6005 8 of 16

Int. J. Mol. Sci. 2022, 23, 6005 8 of 17 
 

 

Figure 4. Regulation of gene expression in multiwalled carbon nanotubes (MWCNT)-exposed 
HBEC-3KT cells. (a) Heatmap illustrates mean fold changes in expression at 4 (W4), 8 (W8), and 13 
(W13) weeks of NM-401-exposure. (b) Regulated genes at 4, 8, and 13 weeks of exposure to the LD 
and HD of NM-401. Low dose (LD), high dose (HD). Data indicates mean ± SD (n = 2). Dotted lines 
indicate log2 fold change 1 (red) and −1 (green). 

2.5. Effects of NM-401-Exposure on Cell Cycle and Apoptosis in Lung Epithelial Cells 
Changes in cell cycle and apoptosis were assessed at week 4, 8, and 13 in NM-401-

exposed cells. NM-401-exposure led to an increase in cells in the G1-phase at week 13, 
independent of dose (Figure 5a), while no changes were observed at 4 and 8 weeks of 
exposure. No effects were observed in Met-5A cells (Figure 5b). Furthermore, NM-401- 
exposure led to an increase in the number of apoptotic/necrotic HBEC-3KT cells, inde-
pendent of dose and time, while a smaller increase in apoptotic/necrotic fraction of Met-
5A cells was observed at week 4 and 13 only (Figure 5c). 

 
Figure 5. Effects of NM-401-exposure on cell cycle and apoptosis/necrosis. Cell cycle and apoptosis 
were assessed by flow cytometry. (a) Changes in cell cycle at week 13 of continuous exposure to 
NM-401 in HBEC-3KT cells. (b) Changes in cell cycle at week 13 of continuous exposure to NM-401 
in Met-5A cells. (c) Apoptotic/necrotic cells at 4, 8, and 13 weeks of exposure to NM-401 in HBEC-

Figure 5. Effects of NM-401-exposure on cell cycle and apoptosis/necrosis. Cell cycle and apoptosis
were assessed by flow cytometry. (a) Changes in cell cycle at week 13 of continuous exposure to
NM-401 in HBEC-3KT cells. (b) Changes in cell cycle at week 13 of continuous exposure to NM-401 in
Met-5A cells. (c) Apoptotic/necrotic cells at 4, 8, and 13 weeks of exposure to NM-401 in HBEC-3KT
and Met-5A cells. Single cells were gated, and data are presented as % of gated cells. Low dose (LD),
high dose (HD). Data indicate mean ± SD (n = 2).

3. Discussion

Several studies have reported evidence for development of fibrosis and cancer in
animals exposed to some carbon nanotubes [9]. Accordingly, exposure to MWCNT leads to
DNA damage, disruption of normal cell proliferation, cell cycle, and induction of genomic
instability [9,10]. In this study, effects on fibrosis were assessed following exposure to the
long and rigid MWCNT Mitsui-7 and NM-401 by intrapleural injection in mice. While this
exposure model is not representative for pulmonary exposure, it is a known experimental
method used to investigate pathological effects of fibres in the pleural space [22,23]. Here,
both Mitsui-7- and NM-401-exposed animals showed accumulation of the MWCNT fibres
in the pleura with accumulation of inflammatory cells and prominent fibrosis. In addition,
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we observed mesothelial hyperplasia in exposed animals, which is considered a precursor
stage towards mesothelioma [24]. The malignant pleural mesothelioma, an aggressive
cancer of the pleural membranes, has been strongly linked to asbestos exposure [3]. The
pleural histopathological changes observed in the two MWCNT-exposed animals were
associated with deregulation of genes involved in fibrosis and inflammation such as an
upregulation of C-C motif chemokine 12 (Ccl12), eotaxin (Ccl11), and metalloproteinase
inhibitor 1 (Timp1). Sustained inflammatory response following carbon nanotube exposure
is thoroughly described in the work of Kuempel et al. [9]. Thus, while only Mitsui-7 has
been classified as possibly carcinogenic [4], our data indicate that other long MWCNT of
similar physiochemical properties and aspect ratio may hold similar potential carcinogenic
properties. Moreover, NM-401-exposed HBEC-3KT cells revealed alteration in expression
of several genes involved in fibrosis and inflammation, such as tumour necrosis factor
(TNF), interleukin 8 (IL8), C-X-C motif chemokine 2 (CXCL2), gelatinase (MMP2), and
C-C motif chemokine 3 (CCL3). In agreement with our results, IL8, which is an early
pro-inflammatory biomarker, was highly expressed during nanomaterial-induced inflam-
mation [10,25]. Previous studies reported that exposure to MWCNT induced persistent
and chronic inflammation and fibrotic lesions in lungs, which coincide with deregulation
of a number of genes associated with hallmarks of cancer [3,25,26]. However, while NM-
401-exposure provided similar effects in animals and HBEC-3KT cells, no effects were
observed in the mesothelial Met-5A MWCNT-exposed cells, except for an upregulation of
IL8. Difference in deposited dose between the two cell lines could be a contributing factor as
the elemental carbon measured in the low dose of HBEC-3KT exposed cells corresponded
to the high dose of exposed Met-5A cells, and with higher number of seeded cells of Met-5A
in mind, it results in much lower deposited dose compared to HBEC-3KT cells.

While inflammation, fibrosis, oxidative stress, DNA damage, cell proliferation, cell cy-
cle, and genomic instability are acknowledged as well-established mechanisms of MWCNT-
induced carcinogenesis, cellular senescence which generally is defined as a stable cell cycle
arrest has been linked to MWCNT-exposure [27,28]. Increased cellular senescence may
be linked to telomere shortening, which is an important event involved in carcinogenesis
and in fibrotic pulmonary disease [11,13]. To clarify the involvement of telomere length
alterations in MWCNT induced pathological and molecular alterations, the telomere length
was measured in exposed animals to the MWCNT Mitsui-7 and NM-401 and in long-term
NM-401-exposed cells in vitro. We observed that telomere length was reduced signifi-
cantly in the pleural and lung tissues of both MWCNT-exposed animals. This effect was
also observed in the long-term NM-401-exposed HBEC-3KT cells which had prominent
telomere shortening and significantly higher percentage of telomeres shorter than 3 kbp
compared to the controls. Loss of telomeres may lead to increased levels of recombination
at chromosome ends, fusion of chromosomes, instability of the genome, growth arrest,
and cell death [29]. The instability in telomere length is associated with increased cancer
risk and other diseases such as pulmonary fibrosis [17,30]. Indeed, occupational expo-
sures may disrupt telomere maintenance [18]. Exposure to welding fume and silica have
been shown to affect the telomere length [18]. Moreover, asbestos exposure may cause
telomere shortening in pleural mesothelial cells [31]. Similarly, TiO2 and vegetable carbon
have been reported to induce telomere shortening in lung tissue and in epithelial cell
lines [32,33]. Furthermore, shorter telomeres have been observed in A549 cells exposed to
the MWCNT NM-400 after 48 h of exposure [19]. Our data are in concordance with these
studies, as long-term exposure to MWCNT resulted in shorter telomeres in both animals
and in pulmonary epithelial cells. On contrary, longer telomeres have been observed
both in FE1-MutaTMMouse lung epithelial cells [20] and in peripheral whole blood from
MWCNT-exposed workers [21]. Together, our study and previous studies indicate that
exposure to MWCNT leads to telomere alterations, but the exact effect and the mechanisms
behind this are still not clear and require further investigation. To our knowledge, this
is the first study showing that telomere shortening may be an important mechanism in
MWCNT-induced fibrosis.
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Critically short telomers result in activation of DNA damage response proteins, such
as the phosphorylated forms of ataxia telangiectasia mutated (ATM), H2A histone fam-
ily member X (H2A.X), and RAD17 checkpoint clamp loader component (RAD17) [34].
While many studies have shown that exposure to MWCNT leads to increased levels of
DNA strand breaks and increased DNA repair activity and DNA damage [9,19,25], other
studies did not observe genotoxicity following MWCNT-exposure [5,35,36]. In this study,
we did not observe a regulation of genes involved in DNA damage or repair (i.e., ATM,
ATR, RAD17, NIEL3, XPA, ALKBH1, ALKBH5, or OGG1) in HBEC-3KT cells exposed to
NM-401. However, cells with critically short telomeres might reactivate the telomerase
enzyme, allowing genome instability and immortalisation, which is a major hallmark of
cancer [29]. In fact, the NM-401-exposed epithelial cells had an upregulation in TERT, but a
downregulation of the TERC gene compared to unexposed cells. It is important to note that
the HBEC-3KT cell line is a TERT immortalised cell line, and thus this mechanism requires
further confirmation in other cell types. In mice, TERT or TERC deletion leads to telomere
shortening, genomic instability, aneuploidy, telomeric fusion, and aging-related pheno-
types [37–39]. However, overexpression of TERT induces constitutive telomerase activity
and contributes to immortalisation in cells [40]. The downregulation of the TERC gene
may explain the shortening in the telomeres observed in this study, but the upregulation in
TERT gene remains unclear.

It has been widely acknowledged that telomere shortening results in senescence or
apoptosis. However, when these mechanisms fail, carcinogenesis ensues [41]. There is
also increasing evidence indicating that a single short telomere may be sufficient to start
tumorigenesis, and telomerase activity might act upon only the shortest telomeres [30].
Recently, cellular senescence was included as a hallmark of cancer [11]. In this study,
we observed a reduction in cell proliferation and altered cell cycle in NM-401-exposed
HBEC-3KT cells. Accordingly, a G1-phase arrest was observed at week 13 of exposure to
NM-401. This indicates that long-term exposure to NM-401 negatively affects the entry into
S-phase, resulting in G1/S checkpoints activation. Furthermore, exposed HBEC-3KT cells
had a gradual upregulation of cyclin-dependent kinase inhibitor 2A (CDKN2A) and a stable
upregulation of cyclin dependent kinase inhibitor 1A (CDKN1A), suggesting cell cycle arrest
in G1-phase. Similarly, an increased expression level of Cdkn2a was observed in exposed
animals compared to sham animals. CDKN2A was significantly upregulated within lung
samples in pulmonary fibrosis individuals, and this upregulation increased with disease
severity [12]. An upregulation in CDKN2A is a classical feature of cellular senescence [42].
Cellular senescence is known for contributing to aging and tumour suppression, but in
recent years, it has also been implicated in several pathological processes, including tumour
promotion and lung fibrotic disease [12,43,44]. In addition, senescent cells may over time
exhibit neoplastic conversion, senescence-associated secretory-phenotype-related chronic
inflammation, and cell cycle re-entry of stemness-reprogrammed senescent cancer cells [45].
Recent studies have demonstrated that cellular senescence occurs as a response to MWCNT-
exposure in human mesothelial cells and lung epithelial cells [27,28]. Furthermore, cells that
reach critical short telomers may undergo apoptosis or cell senescence [46]. In fact, other
studies revealed that exposure to MWCNT result in reduction of cell proliferation, cell arrest
in G1-phase of cell cycle, and increased apoptosis [10]. In this study, we observed that the
long-term exposure to NM-401 also increased the fraction of cells in late apoptosis/necrosis
in HBEC-3KT. In agreement, an upregulation in BAX and DRAM1 was observed in exposed
cells compared to the control, while cytochrome c (CYCS) was downregulated. Although it
is generally accepted that release of CYCS protein from the mitochondria is an important
event in apoptosis, this could be prevented by a proteasomal degradation of CYCS in the
cytosol [47].

In summary, our results indicate that animals exposed to MWCNT, Mitsui-7 and
NM-401 developed fibrosis and infiltration of inflammatory cells in the pleura as well as
mesothelial cell hyperplasia. This was accompanied by deregulation of genes involved
in fibrosis and inflammatory responses. In addition, the pleural injection of MWCNT led
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to significant shortening of telomeres in the pleura and lung tissues in MWCNT-exposed
animals. Further, in vitro long-term exposure to MWCNT NM-401 in lung epithelial cells
led to shorter telomeres, which coincided with G1-phase arrest and enhanced apoptosis.
These results may indicate that telomere shortening may be a potential mechanism involved
in MWCNT-induced chronic inflammation and fibrosis.

4. Materials and Methods
4.1. Nanomaterials

Two high-aspect-ratio MWCNT were chosen for intrapleural injection, Mitsui-7
(MWCNT-7, NRCWE-006) and NM-401 (JRCNM04001a). The MWCNT were dispersed
in DPBS (Mg2+ and Ca2+ free) supplemented with 5.5 mM D-glucose, 0.6 mg/mL serum
albumin, 3% Tween-20, and 0.01 mg/mL 1,2 dipalmitoyl-sn-glycero-3 phosphocholine
(DPPC) and sonicated on ice-bath at 30% duty cycles for 6 s on and 4 s off using a Branson
SLPe probe sonicator (Branson Ultrasonic Corp., Danbury, CT, USA). The MWCNT used in
this study were previously characterised by scanning electron microscopes (SEM) and by
dynamic light scattering (DLS) [48,49]. Accordingly, Mitsui-7 fibres have a reported length
of 5000 ± 4500 (nm ± SE) and diameter of 88 ± 5 (nm ± SE), NM-401 length of 4048 ± 2371
(nm ± SE), and diameter of 67 ± 24 (nm ± SE) [50,51]. Size distribution of Mitsui-7
measured by DLS had a hydrodynamic distribution of 1006 ± 42 nm (Polydispersity Index
(PdI): 0.81 ± 0.02), while the hydrodynamic distribution of NM-401 was 1116 ± 54 nm
(PdI: 0.79 ± 0.03) in an animal study. In vitro studies were performed with only NM-
401 according to the NANOGENOTOX dispersion protocol [52]. NM-401 had a size
distribution of 714 ± 82 nm (PdI: 0.35 ± 0.06) in dispersion media used for cell exposure.
The hydrodynamic distribution of NM-401 nanomaterial differed in size between the
different cell media, showing a higher length in the media used for HBEC-3KT cells (0 h:
1304 ± 307 nm, PdI: 0.40 ± 0.04; 72 h: 1466 ± 195 nm, PdI: 0.40 ± 0.07) than in media used
for Met-5A (0 h: 682 ± 142 nm, PdI: 0.49 ± 0.1; 72 h: 772 ± 208 nm, PdI: 0.50 ± 0.05).

4.2. In Vivo Experiments

The study was approved by the Institutional Animal Care and Use Committee at
the Norwegian University of Life Sciences (NMBU) and the Norwegian Food Safety Au-
thority (application ID: 7503; Licence ID: 2015/60942-2). It was conducted in accordance
with The Norwegian Regulation on Animal Experimentation at the Section for Experimen-
tal Biomedicine, NMBU-Faculty of Veterinary Medicine, in Oslo, Norway. The animals
were health-monitored according to recommendations by the Federation of European
Laboratory Animal Science Association (FELASA) and kept under specific-pathogen-free
(SPF) conditions.

4.2.1. Intrapleural Injection of the MWCNT

C57BL/6 mice were exposed by intrapleural injection in groups of 19 animals as
described in our previous study [7]. Briefly, the animals were injected under anaesthesia
with 100 µL of dispersed MWCNT to the achieved doses of 5 µg/mouse (low dose) or
50 µg/mouse (high dose). Sham exposed animals were injected to the equivalent volume
of dispersion medium. The animals were kept for a total of 29 weeks, whereafter they were
sacrificed using CO2. At sign of discomfort or illness, the mice were prematurely sacrificed.

4.2.2. Collection and Preparation of Biological Samples for Histological and Molecular Analysis

Blood was collected from the vena cava inferior. Tissue specimens for histology
were collected from pleura, lungs, liver, spleen, and kidneys; fixed in 4% formaldehyde;
routinely processed; and embedded in paraffin. Tissue sections (3 µm) were stained with
haematoxylin–eosin–safranin (HES) or haematoxylin and eosin (HE) and examined by light
microscopy for (a) the presence of fibres, (b) leukocyte infiltration, (c) the proliferation of
fibrous tissue, (d) mesothelial cell hyperplasia, and (e) the presence of granulomas. Lesions
were assessed semi-quantitatively for each animal using a scoring system ranging from 0
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(no changes) to 4 (severe changes). For gene expression analysis, lung and pleura samples
were collected in RNAlater® Stabilization Solution (Ambion, Thermo Fisher Scientific,
Waltham, MA, USA) for RNA or DNA extraction.

4.3. In Vitro Cell Culture Experiments

Two human cell lines, a bronchial and a mesothelial cell line, were used. Human
bronchial epithelial cells (HBEC-3KT, ATCC® CRL-4051™) were obtained from ATCC, and
the human mesothelial cells (MeT-5A, ATCC® CRL-9444™) were received as a kind gift
from Prof. Hannu Norppa (Finnish Institute of Occupational Health, Helsinki, Finland).
Both cell lines were controlled for mycoplasma contamination and authenticated in 2020 and
2021 using DNA fingerprinting (Deutsche Sammlung von Mikroorganismen und Zellkul-
turen, Braunschweig, Germany). The HBEC-3KT cell line was maintained in a 1:1 mixture
of LHC-9 (Gibco, Thermo Fisher Scientific; Waltham, MA, USA) and RPMI-1640 (Thermo
Fisher Scientific). The Met-5A cell line was maintained in RPMI-1640 (Thermo Fisher
Scientific) containing 10% FBS (Gibco). Both cell culture media contained 100 units/mL
penicillin and 100 µg/mL streptomycin, and cells were maintained in a humidified 5% CO2
atmosphere at 37 ◦C. For cell experiments, 2.5 × 105 (HBEC-3KT) and 5.0 × 105 (Met-5A)
cells were seeded in 152 cm2 cell culture plates (Sarstedt; Nümbrecht, Germany). The
cells were exposed to 0.96 µg/cm2 (low dose) and 1.92 µg/cm2 (high dose) NM-401 twice
a week for 13 weeks continuously, and sub-cultured once per week. Control (Ctrl) cells
were exposed to the dispersion media only. Exposure experiments were performed once
with two replicates in each exposure group. Cell proliferation and cytotoxicity were as-
sessed using trypan blue and LDH-release assay (Lactate Dehydrogenase Activity Assay
Kit; Thermo Fisher Scientific) (Figure S3). The doses were selected on the basis of the
recommended exposure limit (REL) of 1 mg/m3 proposed by NIOSH (Cincinnati, OH,
USA) [53]. The low dose was calculated to correspond to the lifetime dose accumulated by
a worker 5 workdays/week, 48 weeks/year, for 20 years. The calculations were made on
assumptions of an accumulation of breathing volume of 3 m3 in 8 h, a lung surface area
of 140 m2, and around 30% alveolar deposition efficiency depending on particle size. The
selected high dose is two times the low dose.

4.3.1. Assessment of In Vitro Deposited Dose

NM-401 deposition was assessed by elemental carbon analysis essentially as described
by Devoy et al. (2020) [54] with some modifications. In brief, 16,000 cells/well for HBEC-
3KT and 32,000 cells/well for Met-5A were seeded in a 6-well plate and exposed twice
for one week for NM-401 low or high dose. Cells were scraped in SolvableTM (Perkin-
Elmer; Courtaboeuf, France), incubated at 56 ◦C overnight, and centrifuged at 35,000× g
for 10 min. The pellet was washed twice with MQ-H2O and transferred to a Pallflex
2500QAT-UP quartz filter (Pall Corporation, Port Washington, NY, USA). The filters were
dried at 50 ◦C overnight, and elemental carbon content was assessed using a Sunset
Laboratory Inc. OCEC Dual Optical Analyzer (Birch and Canary, NIOSH Method 5040).
The instrumental method is based on the evaporation of organic carbon in a helium
atmosphere followed by the subsequent oxidation of elemental carbon into CO2. The
distinction between detected organic and elemental carbon was autoset and assured by
incorporated calibration of the instrument with CH4 gas after every run. The elemental
carbon levels were measured to 0.99 ± 0.26 µg/cm2 for low dose- and 1.63 ± 0.44 µg/cm2

for high dose- exposed HBEC-3KT cells. For Met-5A cells, elemental carbon was measured
to 0.60 ± 0.12 and 1.05 ± 0.36 µg/cm2 for low- and high dose-exposed cells, respectively.
Control cells had undetectable levels of elemental carbon.

4.3.2. Assessment of Cell Cycle and Apoptosis

Flow cytometry was used to assess cell cycle and apoptosis after 4, 8, and 13 weeks of
exposure to NM-401 nanomaterials. The cell cycle and the apoptosis including interference
measurements were performed and analysed as described previously [32]. Briefly, cell
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cycle was determined by propidium iodide (PI) staining, while the apoptosis was detected
by annexin V–APC conjugate and necrotic cells by PI staining (Invitrogen, Thermo Fisher
Scientific). For both experiments, cells were filtered using 70 µm cell strainers (VWR,
Radnor, PA, USA) to eliminate larger cell aggregates and particle aggregates/agglomerates.
Furthermore, 1 × 106 cells/mL were used to assess the different end points following
standard protocols provided by the manufacturers unless otherwise stated. A sample run
was performed using a CytoFLEX Flow Cytometer (Beckman Coulter, Brea, CA, USA),
with 10,000 events recorded for further analysis. The FSC express 7 Flow Cytometry
software (De Novo, Glendale, CA, USA) was used for gating and analysis. Small fragments
and nanoparticles were gated out in the FSC/SSC scatter plot and excluded from further
analysis. Nanoparticle interference with the flow cytometry analyses were assessed and
data are included in Figures S4 and S5.

4.4. Gene Expression

RNA from homogenised lung and pleura tissue samples was extracted using an
Animal Tissue RNA Purification kit (Norgen Biotek Corp., Thorold, ON, Canada), and
from cells by a AllPrep DNA/RNA Mini Kit (Qiagen, Düsseldorf, Germany) according
to the manufacturers’ instructions. For assessment of candidate gene expression profiles,
RNA was reverse-transcribed using a qScript cDNA synthesis kit (Quanta BioSciences,
Beverly, MA, USA) and expression analysed by real-time qPCR using Perfecta SYBR
Green Fastmix Low ROX (Quanta Biosciences). qPCR analyses were performed on a
QuantStudio 5 Real-Time PCR System (Applied Biosystems, Thermo Fisher Scientific).
Gene expression analysis was normalised to the geometric mean of beta-2-microglobulin
(B2M), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and 60S acidic ribosomal
protein P0 (RPLP0). Relative expression was assessed using the ∆∆CT approach. CT
values > 33 was set as non-detectable.

4.5. Telomere Length Assessment

DNA was extracted using an Animal Tissue DNA Purification kit (Norgen Biotek) from
the homogenised lung and pleura tissue samples, and by an AllPrep DNA/RNA Mini Kit
(Qiagen) from cells according to the manufacturers’ instructions. Absolute telomere length
measurement was assessed using a standard curve approach by qPCR. The method was
performed and analysed as described in the work of O’Callaghan et al. (2011) [55]. In addi-
tion, alterations of telomere length in HBEC-3KT cells exposed for 4, 8, and 13 weeks with
NM-401 nanomaterials was verified by high-throughput Q-FISH at Life Length Company
(Madrid, Spain), as previously described [32].

4.6. Statistical Analysis

In the animal study, gene expression fold change values and absolute values for telom-
ere length measurements were log-transformed prior to analysis to ensure approximately
normally distributed residuals. Each outcome was analysed by means of linear regression,
adjusted for total exposure time and sex. The combined effect of dose and treatment
on the outcome was studied using sham animals as reference. Changes in expression
values > twofold and p < 0.05 were considered significant. The analysis was performed in
R (version 4.1.2). The statistical analysis of the pathological data was performed using the
Steel–Dwass non-parametric test. Long-term exposure study in vitro was only performed
once, but with two biological replicates, due to practical limitations in performing such
studies. Therefore, statistical analysis was not performed on data from the cell exposure
studies. Figures were made using GraphPad Prism 9 software (GraphPad Software, San
Diego, CA, USA).

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/ijms23116005/s1.
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