Cohesin: an emerging master regulator at the heart of cardiac development

Michael G. Mfarej, Caitlin A. Hyland, Annie C. Sanchez, Matthias M. Falk, M. Kathryn Iovine*, and Robert V. Skibbens*

Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015

ABSTRACT Cohesins are ATPase complexes that play central roles in cellular processes such as chromosome division, DNA repair, and gene expression. Cohesinopathies arise from mutations in cohesin proteins or cohesin complex regulators and encompass a family of related developmental disorders that present with a range of severe birth defects, affect many different physiological systems, and often lead to embryonic fatality. Treatments for cohesin-opathies are limited, in large part due to the lack of understanding of cohesin biology. Thus, characterizing the signaling networks that lie upstream and downstream of cohesin-dependent pathways remains clinically relevant. Here, we highlight alterations in cohesins and cohesin regulators that result in cohesinopathies, with a focus on cardiac defects. In addition, we suggest a novel and more unifying view regarding the mechanisms through which cohesinopathy-based heart defects may arise.

Monitoring Editor

Kerry Bloom University of North Carolina at Chapel Hill

Received: Dec 19, 2022 Revised: Mar 10, 2023 Accepted: Mar 17, 2023

INTRODUCTION

Cohesinopathies are a family of related multispectrum developmental disorders. While the first identified cohesinopathies were Roberts syndrome (RBS; MIM 268300), also known as SC phocomelia (MIM 269000), and Cornelia de Lange syndrome (CdLS; MIM 122470), cohesinopathies may extend to related developmental abnormalities such as Warsaw Breakage syndrome (WBS; MIM 613398), Mungan syndrome (MGS; MIM 611376), Mullegama–Klein–Martinez syndrome (MKMS; MIM 301022), Juberg–Hayward syndrome (JHS; MIM 216100), developmental epileptic encephalopathy (DEE; MIM 308350), Baller–Gerold syndrome (BGS; MIM 218600), chronic atrial and intestinal dysrhythmia (CAID; MIM616201), Diamond–Blackfan anemia (DBA; MIM 105650), Treacher–Collins syndrome (TCS; MIM 154500), and CHARGE (coloboma, heart defects, atresia choanae, retardation of growth, genital hypoplasia, and ear abnormalities) syndrome (MIM 214800; omim.org).

Cohesinopathic phenotypes can include growth retardation, phocomelia (shortened, flipper-like appendages), malformed and/or missing digits, craniofacial abnormalities and cleft palate, sei-

zures, intellectual disabilities, hearing loss, renal defects, gastrointestinal defects, and in severe cases, spontaneous abortion or stillbirth (omim.org). Of particular interest here are the incidence and range of heart defects in both RBS and CdLS individuals. For instance, postmortem examinations, primarily of RBS fetuses, highlight a wide range of cardiac abnormalities. These include ventricular septal defects, atrial septal defects, patent ductus arteriosus, hypoplastic ascending aortas, interrupted aortic arches, left ventricular outflow tract obstruction, aortic stenosis, and patent foramen ovale (Herrmann et al., 1969; Freeman et al., 1974; Song and Chi, 1996; Paladini et al., 1996; Vega et al., 2006; Goh et al., 2010). CdLS individuals and mouse models of CdLS exhibit high frequencies (up to 50%) of cardiac abnormalities that include atrial septum defects, sick sinus syndrome, ventricular septal defect, pulmonary stenosis, aortic displacement, right ventricular hypertrophy, valvular abnormalities, and patent ductus arteriosus (Kline et al., 2014, 2018; Piche et al., 2019). Zebrafish embryo models of either RBS or CdLS similarly exhibit a suite of cardiac defects that include cardiac edema, reduced or absent left jogging/looping of the heart, loss of blood flow, cardia bifida, septal defects, and ventriculobulbar and atrioventricular valve malformations (Barresi et al. 2010; Rhodes et al. 2010, Mönnich et al. 2011; Muto et al., 2011; Thomas et al. 2014; Percival et al., 2015; Schuster et al., 2015, Xu et al., 2015). The extent to which heart defects occur in cohesinopathies highlights the importance of investigating the molecular etiologies of and possible therapies for these disorders, as surgical interventions remain the most common treatment for surviving RBS and CdLS patients.

DOI:10.1091/mbc.E22-12-0557

^{*}Address correspondence to: M. Kathryn Iovine (mki3@lehigh.edu and Robert V. Skibbens rvs3@lehigh.edu).

^{© 2023} Mfarej et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial-Share Alike 4.0 International Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0).

[&]quot;ASCB®," "The American Society for Cell Biology®," and "Molecular Biology of the Cell®" are registered trademarks of The American Society for Cell Biology.

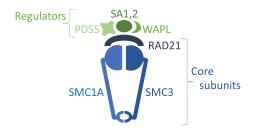


FIGURE 1: Core cohesin subunits (blue) SMC1A and SMC3 contain ATPase globular head domains and associate via hinge/dimerization domains located distally at the end of long antiparallel coiled coils. RAD21 (blue) caps the ATPase heads and in turn recruits auxiliary factors (green) PDS5, WAPL, and either SA1 or SA2. DNA (not shown) is thought to reside with the lumens of SMC coiled coil domains.

Cohesin complexes and effectors

Cohesins are DNA-binding ATPase ring-like complexes (Figure 1). Cohesin structure and putative functions of cohesin and its regulators are reviewed in depth elsewhere (Rudra and Skibbens, 2013b; Jeppsson et al., 2014; Marston, 2014; Skibbens, 2019). Briefly, the cohesin complex in part contains ATPase subunits SMC1A and SMC3 (structural maintenance of chromosomes 1A and 3), in which SMC1,3 ATPase globular heads extend from elongated coiled coil domains that associate at their distal tips. RAD21 (radiation-sensitive 21 homolog protein) is positioned atop of the two SMC1,3 ATPase domains, forming a trinary ringlike structure (Skibbens, 2016). An auxiliary complex that contains SA1 or SA2 (stromal antigen proteins 1 and 2), PDS5A or PDS5B/APRIN (precocious dissociation of sisters A and B), and WAPL (wings apart-like) associates stably with the core ringlike structure by binding RAD21 (Figure 1 and Table 1; Rudra and Skibbens, 2013b; Jeppsson et al., 2014; Marston, 2014; Nichols and Corces, 2018; Skibbens, 2019; Marko et al., 2019; Davidson et al., 2019; Kim et al., 2019; Banigan and Mirny, 2020; Golfier et al., 2020; Mayerova et al., 2020; Higashi et al., 2021; Matityahu and Onn, 2021). While SA and PDS5 are both required to maintain sister chromatid tethering and cohesindependent changes in DNA architectures (described below), WAPL instead helps drive cohesin release from DNA (Figure 2). Conversely, cohesin deposition onto DNA requires the effector heterodimer comprising NIPBL (nipped-B-like protein) and MAU2 (maternal effect uncoordinated; Figure 2; Rollins et al., 1999, 2004; Ciosk et al., 2000). Once bound to DNA, NIPBL and MAU2 typically dissociate from cohesins. Breaking the cycle of cohesin deposition/release from DNA is a second effector factor, the acetyltransferase ESCO2 (establishment of sister chromatid cohesion 2, also named EFO2 for establishment factor ortholog 2), which modifies SMC3 (Bellows et al., 2003; Hou and Zou, 2005; Kueng et al., 2006; Zhang et al., 2008a; Rolef Ben-Shahar et al., 2008; Ünal et al., 2008). SMC3 acetylation blocks WAPL-dependent cohesin release, converting cohesins into a stable DNA-bound state (Figure 2). In response to DNA damage, however, ESCO2 can instead acetylate RAD21, which similarly stabilizes cohesin binding to DNA (reviewed in Mfarej and Skibbens, 2020a). ESCO1/EFO1, a paralog of ESCO2, also regulates cohesin dynamics, but primarily functions during the G1 portion of the cell cycle (Skibbens et al., 1999; Toth et al., 1999; Ivanov et al., 2002; Bellows et al., 2003; Hou and Zou, 2005; Kueng et al., 2006; Zhang et al., 2008a; Rolef Ben-Shahar et al., 2008; Ünal et al., 2008; Sutani et al., 2009; Rowland et al., 2009; Minamino et al., 2015; Alomer et al., 2017). As described below, the interplay of these factors provides a diverse array of DNA architectures that impact almost all facets of DNA metabolism (Rollins et al., 1999, 2004; Gillis

Human	Yeast
SMC1A	Smc1
SMC3	Smc3
RAD21	Mcd1/Scc1
SA1 or SA2	Scc3/Irr1
PDS5A or PDS5B/APRIN	Pds5
WAPL	Rad61
Sororin	N/A
ESCO2 or ESCO1	Eco1/Ctf7
NIPBL	Scc2
MAU2	Scc4

TABLE 1: Table of cohesin and cohesin regulator names in humans and yeast. Core subunits in yellow, auxiliary cohesin core-associated complex in blue, other regulators in gray.

et al., 2004; Krantz et al., 2004; Tonkin et al., 2004; Hou and Zou, 2005; Schüle et al., 2005; Vega et al., 2005; Musio et al., 2006; Deardorff et al., 2007, 2012; Horsfield et al., 2007; Gordillo et al., 2008; Stedman et al., 2008; Kawauchi et al., 2009; Dorsett, 2010; Rhodes et al., 2010; Bose et al., 2012; Gimigliano et al., 2012; Dorsett and Merkenschlager, 2013; Pistocchi et al., 2013; Remeseiro et al., 2013; Yan et al., 2013; Marsman et al., 2014; Minor et al., 2014; Muto et al., 2014; Mannini et al., 2015; Schuster et al., 2015; Yuan et al., 2015; Banerji et al., 2016, 2017; Fazio et al., 2016; Boudaoud et al., 2017; Muto and Schilling, 2017; Gu et al., 2021; Weiss et al., 2021).

Cohesin is a pleiotropic regulator of genome biology

Cohesin and cohesin effectors are involved in a wide range of biological processes. The first and best-understood function of cohesin is to tether together the products of DNA replication, termed sister chromatid cohesion (SCC). During S phase, cohesins are loaded, via transient association of NIPBL-MAU2 (yeast Scc2, Scc4), onto each nascent sister chromatid as they emerge from the DNA replication fork (Skibbens et al., 1999; Ciosk et al., 2000; Lengronne et al., 2006; Moldovan et al., 2006; Rudra and Skibbens, 2013a; Nasmyth, 2017; Murayama et al., 2018; Zheng et al., 2018). ESCO2 (yeast Eco1/Ctf7—hereafter ESCO2/Eco1) is recruited to the fork via PCNA, MCM, and other DNA replication factors (Skibbens et al., 1999; Moldovan et al., 2006; Ivanov et al., 2018; Minamino et al., 2018; Yoshimura et al., 2021). Once recruited, ESCO2 acetylates SMC3 subunits on each of the newly deposited cohesins (Ünal et al., 2008; Rolef Ben-Shahar et al., 2008; Zhang et al., 2008b). SMC3 acetylation precludes WAPLdependent dissociative activity, thereby converting cohesins to a tethering competent dimeric or oligomeric state (Zhang et al., 2008b; Cattoglio et al., 2019; Shi et al., 2020; Kulemzina et al., 2012; Tong and Skibbens, 2015; Eng et al., 2015; Xiang and Koshland, 2021). In this way, the establishment of cohesion is intimately coupled to DNA replication. The maintenance of cohesion identifies the products of DNA replication as sister chromatids until mitosis. At anaphase onset, RAD21 (Mcd1/Scc1 in yeast) is degraded, allowing sister chromatids to move apart and into the newly forming daughter cells, thus ensuring high-fidelity chromosome segregation (Figure 2; Guacci et al., 1997; Michaelis et al., 1997; Uhlmann and Nasmyth, 1998; Ciosk et al., 1998; Uhlmann et al., 1999).

A second role for ESCO2 and cohesins is to promote chromosome condensation. Condensation occurs during prophase, early

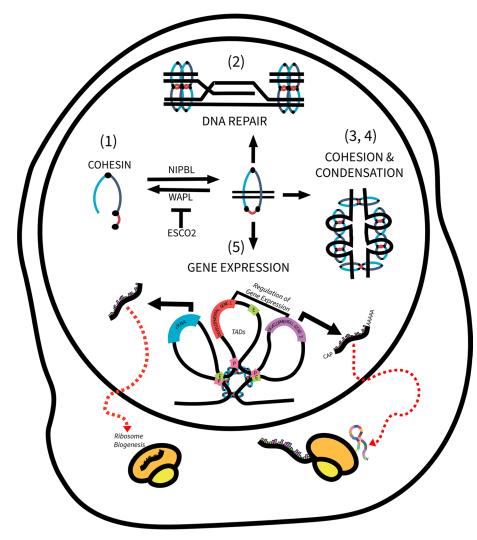


FIGURE 2: Cohesins regulate central processes that promote genome structure and function. Cohesin binds to DNA in an NIPBL-dependent manner and releases from DNA via the WAPL release factor (step 1). The ESCO2 acetyltransferase promotes stable binding of cohesin to DNA, converting cohesin into a WAPL-refractory state (step 1). Once bound to DNA, cohesin regulates a variety of cellular processes, including cohesion, which drives DNA repair through homologous recombination (step 2), sister chromatid cohesion (step 3), chromosome condensation (step 4), and regulation of gene expression (step 5). Cohesin-dependent gene expression occurs through formation of topologically associated domains (TADs), chromatin looping, and rRNA transcription to promote RNA biogenesis (lower portion of figure). Evidence implies that all of these processes contribute to the etiologies of cohesinopathies.

during mitosis, packaging chromosomes into discrete units that can be segregated faithfully during anaphase (Figure 2). Mutation of ESCO2/ECO1, or most cohesin subunit genes, results in significant chromosome condensation defects (Guacci et al., 1997; Skibbens et al., 1999; Hartman et al., 2000; Gard et al., 2009; Orgil et al., 2015). Notably, ESCO2/Eco1 activities are limited to S phase (Skibbens et al., 1999), becoming a substrate for ubiquitinationbased proteolysis at the end of S phase (Lyons and Morgan, 2011; Lyons et al., 2013). Thus, ESCO2/Eco1-dependent acetylation of cohesins during S phase appears to license mitotic condensation reactions that occur much later in the cell cycle (Guacci et al., 1997; Skibbens et al., 1999; Toth et al., 1999; Ivanov et al., 2002; Rolef Ben-Shahar et al., 2008; Ünal et al., 2008). The role that cohesins play in condensation remains unclear, but they may act indirectly, for instance, by licensing (recruitment or activation) condensins.

Condensins are closely related SMC-type complexes that are central to chromatin compaction during mitosis (Guacci et al., 1997; Lavoie et al., 2002, 2004; Gard et al., 2009; Ding et al., 2018). Notably, mutation or knockdown of WAPL/RAD61 instead results in hypercondensed chromosomes, likely due to persistent and increased levels of chromatin-bound cohesins (Lopez-Serra et al., 2013; Shen and Skibbens, 2017, 2020).

Reinforcing cohesion between sister chromatids ensures a ready template if DNA double-strand breaks occur. Thus, a third role for cohesin and ESCO2/Eco1 is to produce a special form of cohesion that occurs outside of S phase, termed damageinduced cohesion (DIC). In this case, DNA damage induces a new wave (post-S phase) of ESCO2/Eco1 expression, which in turn acetylates RAD21 (yeast Mcd1/Scc1) to promote close spatiotemporal positioning of sister chromatids. This DIC pathway promotes strand-invasion reactions and is critical for error-free DNA repair via homologous recombination (Figure 2; Ström et al., 2004, 2007; Ünal et al., 2004, 2007; Ström and Sjögren, 2007; Mfarej and Skibbens, 2020b, 2022).

A fourth role of cohesins involves several mechanisms that impact gene expression (Skibbens et al., 2010; Bose et al., 2012; Xu et al., 2013; Lu et al., 2014; Xu et al., 2016; Banerji et al., 2016, 2017). During the G1 portion of the cell cycle, cohesins extrude DNA to form large loops, or topologically associated domains (TADs), that can span megabases of DNA (Figure 2). As opposed to cohesion-dependent loading reactions that occur during the S phase, in which NIPBL and MAU2 rapidly dissociate, loop extrusion appears to occur in response to continued NIPBL-MAU2 association. The extent of DNA extrusion by cohesins, and thus loop size, appears limited in part by ESCO1,2 and genome organization factors such as CTCF and Mediator (Wendt et al., 2008; Hadjur et al., 2009; Kagey et al.,

2010; Vos et al., 2021). Once terminated, cohesins remain at the DNA loop base (cis interactions), but can also cross-link loops across different chromosomes (trans interactions) to produce large TADs that may contain hundreds of genes. Genes contained within individual TADs can be induced or repressed by chromatin-modifying complexes, producing spatially defined and unique transcriptional domains (Figure 2; Hansen, 2020; Rao et al., 2014; Merkenschlager and Nora, 2016; Wutz et al., 2017; Gassler et al., 2017; Rowley and Corces, 2018; Davidson et al., 2019; Kim et al., 2019). In contrast to large TADs, small-scale cohesin-dependent looping can bring into registration DNA regulatory elements such as enhancers, insulators, and promoters, through which individual genes or gene clusters can be regulated (Figure 2). Several examples, described below, support TAD and gene-specific transcriptional regulation by cohesins.

Models for cohesinopathies

Understanding how mutations in cohesin and cohesin regulators give rise to cohesinopathies remains complex. For instance, RBS was originally posited to occur due to mitotic failure and proliferative stem cell loss (Mönnich et al., 2011; Gordillo et al., 2008; Morita et al., 2012; Whelan et al., 2012; Percival et al., 2015). This mitotic failure model only gained traction due to early studies finding that yeast cell eco1 mutants and RBS cells (ESCO2 mutated) both exhibit SCC defects (Skibbens et al., 1999; Hou and Zou, 2005; Vega et al., 2005). Notably, mitotic defects do not underlie CdLS, which exhibits a suite of phenotypes similar to those of RBS (Mönnich et al., 2011; Banerji et al., 2016; Dorsett and Krantz, 2009). Instead, transcriptional dysregulation mechanisms for both RBS and CdLS are now well established (Xu et al., 2013; Lu et al., 2014; Xu et al., 2016; Banerji et al., 2016, 2017).

This emerging model for RBS is predicated on compelling evidence that ESCO2 (and cohesins) regulates gene transcription programs that are critical for normal development in a number of model systems. For example, Drosophila studies of wing development were the first to reveal dysregulation of cut and ultrabithorax genes by nipped B (NIPBL/Scc2) mutation (Rollins et al., 1999, 2004). Evidence from zebrafish further revealed that defects in bone regeneration, obtained upon either Esco2 or cohesin subunit knockdowns, are coincident with reduced expression of connexin43 (cx43; Banerji et al., 2016, 2017). cx43 encodes a gap junction protein that, among other things, regulates bone growth and joint formation (lovine et al., 2005; Hoptak-Solga et al., 2008). Notably, exogenous expression of cx43 partially rescues the bone growth defects that otherwise arise due to Esco2 or cohesin knockdown (Banerji et al., 2016, 2017). More recent evidence reveals that Esco2 and cohesin also regulate expression of DNA damagebinding protein 1 (ddb1; Sanchez et al., 2022). Ddb1 is a key subunit of CRL4 E3 ligase complex that is in part composed of Ddb1, Cullin4 (CUL4), and Ddb1-CUL4-associated factors (DCAFs) complex. CRL4-dependent ubiquitination provides for well-defined cessations of sequential developmental programs so that CRL4 gene mutations result in a wide array of birth defects. Notably, CRL4 is targeted by the highly teratogenic drug thalidomide (Ito et al., 2010). Formally, this raises the possibility that Esco2-cohesindependent dysregulation of CRL4 (via ddb1) in RBS and CdLS maladies is coupled to the teratogenic effects of thalidomide poisoning. This model is supported by findings that exogenous expression of ddb1 rescues many of the phenotypes that otherwise arise upon SMC3 knockdown in zebrafish embryos (Sanchez et al., 2022). While speculative in that this recent study awaits independent corroboration, the link between RBS/CdLS genetic mutations and pharmacological pathways such as CRL4/thalidomide may provide new avenues for strategies to reduce birth defect severity. Finally, defects in cohesin-dependent transcription of rRNA genes and ribosome biogenesis are also well documented (Skibbens et al., 2010; Bose et al., 2012; (Bose et al., 2012; Xu et al., 2015; Herdman et al., 2017; Gu et al., 2021). rRNA is critical for ribosome biogenesis and protein synthesis (Figure 2). In turn, reduced ribosome function, downstream of reduced rRNA levels, results in numerous developmental maladies that include CHARGE, Treacher-Collins syndrome, and Blackfan anemia (Choesmel et al., 2007; Nakhoul et al., 2014; Vincent et al., 2016; Merkuri and Fish, 2019). Notably, the severity of phenotypes that arise from cohesin mutation in zebrafish embryos are reduced by increasing translation rates, which in part bypasses ribosome deficiencies (Bose et al., 2012; Xu et al., 2013, 2015; Yuen et al., 2016; Xu et al., 2016; Mfarej and Skibbens, 2020a).

An emerging body of evidence also implicates oxidative stress and DNA damage (possibly upstream of gene expression defects) as contributing to RBS phenotypes (Mfarej and Skibbens, 2020a). Recent findings indeed document that RBS and CdLS cell models exhibit heightened genotoxic agent sensitivity and dysregulated intracellular redox states (Berg and Francke, 1993; Ren et al., 2005; Vrouwe et al., 2007; Gordillo et al., 2008; Xu et al., 2013; Perkins et al., 2016, 2019; Cukrov et al., 2018; McKay et al., 2019; Olley et al., 2021; Mfarej and Skibbens 2022). Consistent with a role for redox stress in cohesinopathies, the up-regulation of Eco1 during the DNA damage response relies on the transcription factor yeast AP-1 5 (Yap5). Yap5 responds to stressors (such as elevated iron levels) and in turn regulates cell oxidative states (Pimentel et al., 2012; Mfarej and Skibbens, 2020b). In fact, simply mutating either cohesin genes or cohesin regulator genes is sufficient to produce elevated levels of reactive oxygen species. Notably, genotoxic phenotypes that occur in response to cohesin or ECO1 gene mutation can be ameliorated by exposure to antioxidants such as N-acetylcysteine or riboceine (Cukrov et al., 2018; Mfarej and Skibbens, 2022). In light of this, it may not be surprising that mutation of DNA repair pathways results in a suite of birth defects that overlap with those in RBS and CdLS individuals (Mfarej and Skibbens, 2020a).

CARDIAC ABNORMALITIES IN COHESINOPATHIES: WHICH FACTORS ARE TO BLAME?

Congenital heart defects are the most common source of perinatal lethality. Cardiac defects also contribute to early mortality in individuals with cohesinopathies (Parker et al., 2010; de Koninck et al., 2020). In fact, cardiac defects are associated with cohesinopathictype maladies such as Warsaw breakage syndrome, Mungan syndrome, Mullegama-Klein-Martinez syndrome, Baller-Gerold syndrome, and related disorders (Diamond-Blackfan anemia and CHARGE syndrome; omim.org). Thus, cohesins appear centrally positioned as key regulators of heart development. Zebrafish and mouse embryos provide relevant models through which mutations in genes that encode for ESCO2/Esco2, NIPBL/Nipbl, and cohesin subunits, and that give rise to heart malformations, cardiac edema, and other defects, can be studied (Kawauchi et al., 2009; Rhodes et al., 2010; Mönnich et al., 2011; Remeseiro et al., 2013; Xu et al., 2013; Percival et al., 2015; Schuster et al., 2015; Singh and Gerton, 2015; Xu et al., 2015; Santos et al., 2016; Cukrov et al., 2018; Liu et al., 2021; Kamel et al., 2022; Sanchez et al., 2022).

Mouse models of CdLS are particularly informative, as well as perplexing. Using Nipbl as an example, only 20% of heterozygous mice survive 3 wk past birth. Intriguingly, survivor tissues contain roughly 70% of NIPBL protein levels, indicative of a compensatory pathway which otherwise might render mice inviable (Kawauchi et al., 2009). These findings suggest Nipbl haploinsufficiency, so subsequent phenotypic analyses are based in part on specimens in which additional genetic complexities may be required to support viability. Regardless, roughly 30-60% of Nipbl ± survivor mice exhibit heart abnormalities (such as atrial septal defects), along with numerous other skeletal and craniofacial deformities (Kawauchi et al., 2009, 2016; Santos et al., 2016). Heart defects predominate in CdLS individuals—why is there such poor penetrance of heart defects in mouse models? The coupling of heterozygous Nipbl and Nkx2 (and early determinant of cardiac development—see below) in mice is particularly informative. Nkx2 heterozygous mice typically form normal hearts. Double heterozygotic Nkx2 and Nipbl mice, however, exhibit significantly increased (over 80%) incidence of heart defects (Santos et al., 2016). These findings suggest that the penetrance of heart defects in Nipbl ± mice depends in part on synergistic

participation of other genes. Mice heterozygous for either Rad21, Smc3, or Smc1a at first blush appear to tell a different story. Collectively, mice heterozygous for these genes exhibit a suite of phenotypes that include aberrant stem cell renewals through IFN, HOXa and Lgr5 signaling pathways (Deng et al., 2022; Fisher et al., 2017; Chen et al., 2019; Xu et al., 2014), myeloid-based hematopoiesis dysregulation (Viny et al., 2015; Wang et al., 2019), accelerated lymphoma progression via loss of plasma cell terminal differentiation (Rivas et al., 2021a, 2021b), DNA damage response deficiencies (Xu et al., 2010), meiosis defects and decreased spermatogenesis (Biswas et al., 2018), and a change in over 78,000 Rad21-binding cis-regulatory modules (Faure et al., 2012). Notably, heart/cardiovascular defects are not reported in any of these studies—but neither are normal hearts documented or commented upon. Certainly, organ development is not necessarily affected equally across species, depending on the amount of gene product needed for function. Moreover, there are clear instances of different gene essentiality and phenotypic penetrance between mice and humans (Bartha et al., 2018). Future studies on this specific line of inquiry may thus provide exciting new insights into heart development.

Tissue changes that occur during heart and vasculature system developments are well characterized. Briefly, linear heart tube remodeling gives rise to an arched structure, trabeculations that generate distinct chambers, "electrification" to produce a conduction system, and finally additional cell proliferations required to form atrial and ventricle septa (reviewed in Brand 2003; Buijtendijk et al., 2020; Tan and Lewandowski, 2020; Kemmler et al., 2021; Martin and Waxman 2021). Not surprisingly, the perturbation of numerous mechanisms can give rise to cardiovascular defects or disease. Possibilities include alterations during organogenesis that stem from death and/ or migration defects of early progenitor stem cell populations, transcriptional dysregulation of cardiovascular morphogenic genes, and increased levels of reactive oxygen species (Muto et al., 2011; Schuster et al., 2015; Santos et al., 2016; Cukrov et al., 2018; de Koninck et al., 2020; Mfarej and Skibbens, 2020b). These mechanisms are not mutually exclusive, so different combinations may give rise to a wide variety of heart defects. Here, we concentrate on cohesinopathic cardiac defects observed primarily in mice and zebrafish embryos.

Transcriptional dysregulation mechanisms of cohesinopathic cardiac abnormalities

A simple model for cohesinopathic cardiac defects that might interfere with heart development is that cohesin pathway mutations simply alter the expression of genes critical for heart development. ESCO2/esco2 mutation, for instance, alters the expression of numerous genes (DDB1/ddb1, CX43/cx43, RUNX1/runx1, etc.) critical for both cardiovascular development and early steps in stem cell generation (Horsfield et al., 2007; Banerji et al., 2016, 2017; Sanchez et al., 2022; Guo et al., 2018). NIPBL/Nipbl knockdown in mice and zebrafish embryos similarly reduces expression of numerous cardiac morphogenic factors (Tbx5/tbx5, Nkx2.5/nkx2.5, Hand1/2/hand1,2 and GATA4/5/gata4,5) described below (Muto et al., 2011, 2014; Santos et al., 2016). The impact of cohesins on transcription also extends to WNT and WNT effectors such as the OCT4, NANOG, and SOX17 cardiomyocyte differentiation factors (Figure 3; Kagey et al., 2010; Muto et al., 2011; Nitzsche et al., 2011; Zhang et al., 2013; Pistocchi et al., 2013; Schuster et al., 2015; Abboud et al., 2015; Chin et al., 2020). In mice embryos, the WNT-dependent β-catenin intracellular signal transducer orchestrates paracrine signaling from the endoderm to the mesoderm. Once established, mesodermal signaling promotes cardiomyogenesis (Liu et al., 2007; Stefanovic et al., 2009; Afouda and Hoppler, 2011).

Transcription factors control many facets of heart development, including identity of cardiac chambers, terminal differentiation in cardio myocytes, and establishment of patterning boundaries (Olson, 2006; Srivastava, 2006). TBX5 (T-box transcription factor 5) is a potent transcription activator that interacts with zinc-finger protein GATA4 (GATA binding protein 4) and NKX2.5 (NK2 homeobox 5). GATA factors, including GATA4, control the onset of cardiac differentiation (Zhao et al., 2008), while all three factors (TBX5, GATA4, and NKX2.5) are required for proper heart development (Hiroi et al., 2001; Lickert et al., 2004; Mori et al., 2006; Lou et al., 2011; Stelmle and Moskowitz, 2017). In fact, coexpression of GATA4, NKX2.5, and TBX5 is sufficient to differentiate embryonic carcinoma cells into cardiac-like myocytes (leda et al., 2010; Afouda and Hoppler, 2011; Qian et al., 2012). Other transcription factors, such as the basic helix loop helix (bHLH) transcription factors HAND1/2 (Heart and Neural Crest Derivatives Expressed 1 and 2) and SALL4 (Spalt Like Transcription Factor 4), either augment TBX5 transcription directly or function downstream of TBX5 (Stelmle and Moskowitz, 2017). Not surprisingly, mutations in either HAND1/2 or SALL4 similarly result in heart and/or chamber differentiation defects (Srivastava et al., 1997; Firulli et al., 1998; Kohlhase et al., 2003; Koshiba-Takeuchi et al., 2006; Stelmle and Moskowitz, 2017). Downstream of transcriptional regulation, intercellular communication also is critical for proper heart development. For instance, channel proteins connexin 40 and 43 (CX40/ GJA5 and CX43/GJA1, respectively) mediate gap junction intercellular communication (GJIC) that is essential for proper cardiac development and function (Figure 3). Mutations in either CX40/ Cx40/cx40 or CX43/Cx43/cx43, both of which are transcriptionally dependent on cohesins (Figure 3), result in a variety of cardiac phenotypes that include both morphological malformations (septal and looping abnormalities) and functional defects (arrhythmias and cardiomyopathies; Huang et al., 1998; Lo and Wessels, 1998; Alcoléa et al., 1999; Dasgupta et al., 1999; Lo et al., 1999; Nishii et al., 2001; Li et al., 2002; Sohl and Willecke, 2003; Severs et al., 2004, 2006; Duffy et al., 2006; Delmar and Makita, 2012; Salameh et al., 2013; Ahir and Pratten, 2014; Molica et al., 2014; Boengler and Schulz, 2017; Hyland et al., 2021).

Intersection of thalidomide, CRL4, and cohesinopathic cardiac development models

Recent lines of evidence now point to roles for both thalidomide and CRL4 E3 ubiquitin ligase in cardiovasculature development. The complexity of the impact of CRL4 and thalidomide on cardiac development may best be examined through the pathway centered on the TBX5. Balanced TBX5 protein levels are critical for proper heart development: TBX5 haploinsufficiency results in Holt-Oram syndrome (bradycardia and/or cardiac fibrillation, defects in atrial/ ventricular septal formation, cardiac conduction, etc.), while either elevated expression or autosomal dominant TBX5 mutations produce embryonic lethal heart defects (omim.org/entry/142900).

Cohesin and ESCO2-dependent regulation of CRL4, as well as thalidomide effects, appear to impact cardiac development by additional mechanisms. On one hand, thalidomide binds TBX5 directly (Figure 3), and specifically within the T-box domain required for DNA binding (Khalil et al., 2017). Thus, thalidomide inhibits TBX5dependent deployment of cardiovascular transcription programs. Thalidomide also disrupts TBX5-HAND2 interactions (but not, for instance, TBX5-GATA4 binding), augmenting the adverse effect on heart development (Khalil et al., 2017). On the other hand, thalidomide impacts heart development through CRL4 function. In the absence of thalidomide, CRL4 ubiquitinates G-protein receptor kinase

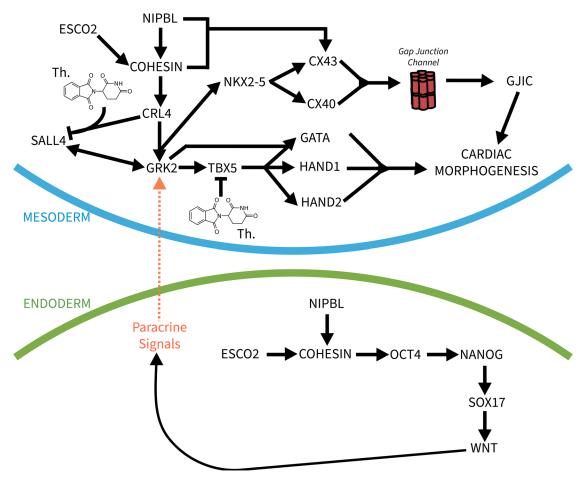


FIGURE 3: Models that describe how cohesins may function as master regulators in embryonic stages of cardiac development. Cohesin-dependent signaling occurs in the mesoderm to promote cardiac morphogenesis, whereby CRL4 and SALL4 funnel through TBX5 to mobilize heart development. In turn, TBX5 regulates two outputs that promote heart development: induced transcription of cardiac morphogenesis genes and transcription of factors required for gap junction intercellular communication (GJIC). Separately, WNT signaling in the endoderm occurs through the differentiation factors OCT4, NANOG, and SOX17. WNT outputs induce paracrine mechanisms that reinforce signaling to TX5 upstream of cardiac morphogenic programs. Lewis structure labeled with "Th." indicates the effect of thalidomide on the above factors.

2 (GRK2/Grk2), the turnover of which is critical for proper heart development in mice and zebrafish (Philipp et al., 2014; Zha et al., 2016). GRK2 also regulates GATA gene-dependent transcription, expanding CRL4-dependent effects on developmental pathways (Franco et al., 2018). Thalidomide, however, redirects CRL4 to ubiquitinate SALL4 (Donovan et al., 2018; Matyskiela et al., 2018), leading to increased GRK2 levels and decreased SALL4 levels—the latter of which likely impact TBX5 function (Figure 3). Interestingly, thalidomide patient genome analysis shows a correlation between severity of cardiac defects and both TBX5 or SALL4 allele variations (Gomes et al., 2019). While these findings suggest that thalidomide and CRL4 influence TBX5 and cardiac effectors through mechanisms separate from those of cohesin/ESCO2 described above, the convergent outcomes highlight the importance of the way in which these pathways interact and may be pharmacologically ameliorated (Figure 3).

Cohesin-based cardiac connections via connexins?

Proper deployment of cardiac developmental programs hinges on cell–cell communication, which is mediated by the gap junction proteins Cx40 and Cx43. Specifically, CX43 mutations result in oculodentodigital dysplasia (ODDD), which, in addition to limb,

digit, and craniofacial/eye malformations, includes irregularities in heart structure and function (Debeer et al., 2005; Flenniken et al., 2005; McLachlan et al., 2005, 2008; Shibayama et al., 2005; Vasconcellos et al., 2005; Gong et al., 2006; Kelly et al., 2006; de la Parra and Zenteno, 2007; Himi et al., 2009; Paznekas et al., 2009; Gabriel et al., 2011; Huang et al., 2013; Jamsheer et al., 2014; Laird, 2014; Kelly et al., 2016; Merrifield and Laird, 2016; Porntaveetus et al., 2017; Pace et al., 2019; Wang et al., 2019). Esco2 and/or cohesin knockdown in zebrafish fins results in both downregulated cx43 mRNA levels and reduced bone segment regeneration (Banerji et al., 2016, 2017), thereby implicating cohesin in regulation of GJIC. Based on findings that cohesins bind the upstream promoter region of cx43, Esco2 likely modifies cohesins to affect chromatin looping and promote cx43 transcription. Knockdown of either Esco2 or cohesin (Smc3) also reduces mRNA levels of semaphorin3d, a factor downstream of CX43/Cx43 and critical for proper skeletal and heart development (Jin et al., 2006; Sato et al., 2006; Sanchez-Castro et al., 2015; Banerji et al., 2016, 2017; Lupu et al., 2020). This indicates that cohesin regulation of CX43 and GJIC communication is an additional mechanism required for proper heart development and one that, when mutated, contributes to cohesinopathic phenotypes (Figure 3). In addition,

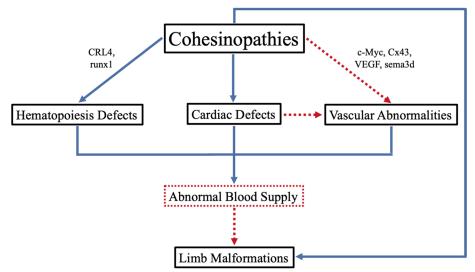


FIGURE 4: Model that describes how cardiac defects may give rise to the birth defects typically observed in cohesinopathies. Prior data substantiate a role for cohesin in both hematopoiesis defects due to CRL4 and RUNX1 dysregulation and cardiac defects. However, another possibility is that other known cohesin targets (e.g., c-Myc, CX43, VEGF, and SEMA3d) contribute to vascular abnormalities in parallel. In turn, these three affected pathways may result in abnormalities in the genesis and delivery of blood tissue. In turn, defective blood tissue function may play an important role in limb malformations that are hallmark birth defects in cohesinopathies, possibly reflecting an interconnected model that unifies the etiologies of cohesinopathy birth defects.

cx40 transcription is regulated not only directly via cohesins, but indirectly through CRL4 and downstream targets of CRL4 such as TBX5, SALL4, and NKX2.5 (Figure 3; Bruneau et al., 2001; Kasahara et al., 2001; Wakimoto et al., 2002, 2003; Linhares et al., 2004; Koshiba-Takeuchi et al., 2006). Thus, cx40 is likely to be one of many dysregulated genes in cohesinopathies.

The mechanism of GJIC dysregulation in cohesinopathies may be simple in concept but complex in reality. For instance, cx43 mRNA levels are up-regulated as a result of Esco2 knockdown yet down-regulated as a result of rad21 mutation during zebrafish embryogenesis (Rhodes et al., 2010; Mönnich et al., 2011; Schuster et al., 2015). These results suggest that connexins, and many other gene products, are differentially affected depending on the nature of the cohesin pathway deficiency (for instance, reduced cohesin acetylation compared with reduced cohesin levels). One interpretation of these findings is that abolishing cohesin acetylation, while retaining cohesin and cohesin binding to DNA, affects transcriptional profiles differently from abolishing cohesins completely. An alternate possibility is that ESCO2 fulfills complex transcriptional roles independent of cohesin acetylation. In fact, numerous noncohesin factors are targeted by ESCO2/Eco1-dependent acetylation (PCNA, MPS3, Rad30; Moldovan et al., 2006; Ghosh et al., 2012; Billon et al., 2017, Chen et al., 2017). Regardless of the mechanism, dysregulation of gap junction levels or function can produce cardiomyopathies, arrhythmias, heart malformations, and/or ischemia (Severs, 1994, 2004, 2008; Gros and Jongsma, 1996; Thomas et al., 1998; van der Velden and Jongsma, 2002; Dhein, 2006; van Rijen et al., 2006; Chaldoupi et al., 2009; Delmar and Makita, 2012; Kato et al., 2012; Salameh et al., 2013; Ahir and Pratten, 2014; Gemel et al., 2014; Molica et al., 2014; Lambiase and Tinker, 2015; Michela et al., 2015; Boengler and Schulz, 2017; Leybaert et al., 2017; Delmar et al., 2018; Zu et al., 2018; Hyland et al., 2021), all of which are likely to contribute to cohesinopathic lethality.

LARGER IMPLICATIONS FOR **COHESIN-BASED HEART DEFECTS**

The heart is the first organ to develop and provides the blood supply that supports metabolism throughout the entire embryo. This suggests that cardiac defects present in cohesinopathic maladies are likely to enhance systemwide developmental abnormalities. In support of this prediction, cohesin and ESCO2 are known regulators of a number of vasculogenic and angiogenic factors that include CX43, c-Myc transcription factor, VEGF, and SE-MA3d (Jin et al., 2006; Sato et al., 2006; Rhodes et al., 2010; Mönnich et al., 2011; Muto et al., 2011; McEwan et al., 2012; Pimentel et al., 2012; Pocrnich et al., 2012; Wuestefeld et al., 2012; Wang and Simons, 2014; Nimlamool et al., 2015; Sanchez-Castro et al., 2015; Banerji et al., 2016, 2017; Hamm et al., 2016; Santos et al., 2016; Lupu et al., 2020; Hyland et al., 2021). Moreover, numerous reports document that cohesins regulate the hematopoietic differentiation transcription factor runx1 (Horsfield et al., 2007; Marsman et al., 2014; Mullenders et al., 2015; Viny et al., 2019; de Koninck et al., 2020; Ketharnathan et al., 2020). In combina-

tion, these findings imply that production and circulation of blood are severely abrogated in cohesinopathies and likely contribute to cohesinopathic lethality (Figure 4). Findings in thalidomide studies, for instance, raise the possibility that cardiac defects, vasculature abnormalities, and abnormal hematopoiesis may be sufficient to produce limb malformations, independent of dysregulation of limb development transcription programs (Figure 4; D'Amato et al., 1994; Therapontos et al., 2009). Cohesin pathway mutation effects, however, are not limited to heart abnormalities, as numerous lines of evidence reveal that ESCO2 is also aberrantly expressed in RBS as well as in various cancers (Ryu et al., 2007; van der Lelij et al., 2009; Lu et al., 2010; Chen et al., 2018; Guo et al., 2018; Wang and Liu, 2020; Zhu et al., 2020).

FUTURE DIRECTIONS

Given the numerous mechanisms that may, singly or in combination, produce severe birth defects, how should researchers pursue cohesinopathic etiologies? One avenue is to focus on dysregulated genes. There is strong evidence that transcriptional dysregulations give rise to organ malformations, so that genetic engineering (gene editing/expression, KD of dysregulated transcripts, etc.) or immunomodulatory molecules that redirect CRL function may provide remedies that can ameliorate the severity of those abnormalities. Other insights may be derived from comparing mechanisms of known disorders that phenocopy cohesinopathies. For instance, similarities between cohesinopathies and other developmental maladies such as TE, Holt-Oram syndrome, Duane radial ray syndrome, and ODDD may provide important insights into shared pathways and mechanisms. Similarities in developmental disorders rarely arise due to simple coincidence ignoring nature's cues can only delay our understanding of molecular pathogenesis.

REFERENCES

- Abboud N, Morris TM, Hiriart E, Yang H, Bezerra H, Gualazzi M-G, Stefanovic S, Guénantin A-C, Evans SM, Pecéat M (2015). A cohesin– OCT4 complex mediates Sox enhancers to prime an early embryonic lineage. Nat Commun 6, 6749.
- Afouda BA, Hoppler S (2011). Different requirements for GATA factors in cardiogenesis are mediated by non-canonical Wnt signaling. Dev Dyn 240, 649–662.
- Ahir BK, Pratten MK (2014). Structure and function of gap junction proteins: role of gap junction proteins in embryonic heart development. Int J Dev Biol 58, 649–662.
- Alcoléa S, Théveniau-Ruissy M, Jarry-Guichard T, Marics I, Tzouanacou E, Chauvin J-P, Briand J-P, Moorman AFM, Lamers WH, Gros DB (1999) Downregulation of Connexin 45 gene products during mouse heart development. Circ Res 84, 1365–1379.
- Alomer RM, da Silva EML, Chen J, Piekarz KM, McDonald K, Sansam CG, Sansam CL, Rankin S (2017). Esco1 and Esco2 regulate distinct cohesin functions during cell cycle progression. Proc Natl Acad Sci USA 114, 9906–9911.
- Banerji R, Eble DM, Iovine MK, Skibbens RV (2016). Esco2 regulates cx43 expression during skeletal regeneration in the zebrafish fin. Dev Dyn 245, 7–21.
- Banerji R, Skibbens RV, Iovine MK (2017). Cohesin mediates Esco2-dependent transcriptional regulation in zebrafish regenerating fin model of Roberts syndrome. Biol Open 6, 1802–1813.
- Banigan EJ, Mirny LA (2020). Loop extrusion: theory meets single-molecule experiments. Curr Opin Cell Biol 64, 124–138.
- Barresi MJ, Burton S, Dipietrantonio K, Amsterdam A, Hopkins N, Karlstrom RO (2010). Essential genes for astroglial development and axon pathfinding during zebrafish embryogenesis. Dev Dyn 239, 2603–2618.
- Bartha I, di Iulio J, Venter JC, Telenti A (2018). Human gene essentiality. Nat Rev Genet 19(1), 51–62.
- Bellows AM, Kenna MA, Cassimeris L, Skibbens RV (2003). Human EFO1p exhibits acetyltransferase activity and is a unique combination of linker histone and Ctf7p/Eco1p chromatid cohesion establishment domains. Nucleic Acids Res 31, 6334–6343.
- Berg DJ, Francke U (1993). Sensitivity of Roberts syndrome cells to gamma radiation, mitomycin C, and protein synthesis inhibitors. Somat Cell Mol Genet 19, 377–392.
- Billon P, Li J, Lambert JP, Chen Y, Tremblay V, Brunzelle JS, Gingras AC, Verreault A, Sugiyama T, Couture JF, Côté J (2017). Acetylation of PCNA sliding surface by Eco1 promotes genome stability through homologous recombination. Mol Cell 65, 78–90.
- Biswas U, Stevense M, Jessberger R (2018). SMC1 α substitutes for many meiotic functions of SMC1 β but cannot protect telomeres from damage. Curr Biol 28(2), 249–261.
- Boengler K, Schulz R (2017). Connexin 43 and mitochondria in cardiovascular health and disease. Adv Exp Med Biol 982, 227–246.
- Bose T, Lee KK, Lu S, Xu B, Harris B, Slaughter B, Unruh J, Garrett A, McDowell W, Box A, et al. (2012). Cohesin proteins promote ribosomal RNA production and protein translation in yeast and human cells. PloS Genet 8, e1002749.
- Boudaoud I, Fournier É, Baguette A, Vallée M, Lamaze FC, Droit A, Bilodeau S (2017). Connected gene communities underlie transcriptional changes in Cornelia de Lange syndrome. Genetics 207, 139–151.
- Brand T (2003). Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol 258, 1–19.
- Bruneau BG, Nemer G, Schmitt JP, Charron F, Robitaille L, Caron S, Conner DA, Gessler M, Nemer M, Seidman CE, Seidman JG (2001). A murine model of Holt–Oram syndrome defines roles of the T-Box transcription factor Tbx5 in cardiogenesis and disease. Cell 106, 709–721.
- Buijtendijk MFJ, Barnett P, van den Hoff MJB (2020). Development of the human heart. Am J Med Genet C Semin Med Genet 184, 7–22.
- Cattoglio C, Pustova I, Walther N, Ho JJ, Hantsche-Grininger M, Inouye CJ, Hossain MJ, Dailey GM, Ellenberg J, Darzacq X, et al. (2019). Determining cellular CTCF and cohesin abundances to constrain 3D genome models. Elife 8, e40164.
- Chaldoupi S-M, Loh P, Hauer RNW, de Bakker JMT, van Rijen HVM (2009). The role of connexin40 in atrial fibrillation. Cardiovasc Res 84, 15–23.
- Chen H, Zhang L, He W, Liu T, Zhao Y, Chen H, Li Y (2018). ESCO2 knock-down inhibits cell proliferation and induces apoptosis in human gastric cancer cells. Biochem Biophys Res Commun 496, 475–481.
- Chen Z, Cao H, Lu Y, Ren Q, Sun L (2017). DNA polymerase 5 acetylation by Eso1 is essential for Schizosaccharomyces pombe viability. Int J Mol Med 40, 1907–1913.

- Chen Z, Amro EM, Becker F, Hölzer M, Rasa SMM, Njeru SN, Han B, Di Sanzo S, Chen Y, Tang D, et al. (2019). Cohesin-mediated NF-κB signaling limits hematopoietic stem cell self-renewal in aging and inflammation. J Exp Med 216(1), 152–175.
- Chin CV, Antony J, Ketharnathan S, Labudina A, Gimenez G, Parsons KM, He J, George AJ, Pallotta MM (2020). Cohesin mutations are synthetic lethal with stimulation of WNT signaling. eLife 9, e61405.
- Choesmel V, Bacqueville D, Rouquette J, Noaillac-Depeyre J, Fribourg S, Crétien A, Leblanc T, Tchernia G, Da Costa L, Gleizes PE (2007). Impaired ribosome biogenesis in Diamond–Blackfan anemia. Blood 109, 1275–1283.
- Ciosk R, Zachariae W, Michaelis C, Shevchencko A, Mann M, Nasmyth K (1998). An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93(6), 1067–1076.
- Ciosk R, Shirayama M, Shevchenko A, Tanaka T, Toth A, Shevchenko A, Nasmyth K (2000). Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol Cell 5, 243–254.
- Cukrov D, Newman TAC, Leask M, Leeke B, Sarogni P, Patimo A, Kline AD, Krantz ID, Horsfield JA, Musio A (2018). Antioxidant treatment ameliorates phenotypic features of SMC1A-mutated Cornelia de Lange syndrome in vitro and in vivo. Hum Mol Genet 27, 3002–3011.
- D'Amato R, Loughnan M, Flynn E, Folkman J (1994). Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91, 4082–4085.
- Dasgupta C, Escobar-Poni B, Shah M, Duncan J, Fletcher WH (1999). Misregulation of Connexin43 gap junction channels and congenital heart defects. Novartis Found Symp 219, 212–221.
- Davidson IF, Bauer B, Goetz D, Tang W, Wutz G, Peters J-M (2019). DNA loop extrusion by human cohesin. Science 366, 1338–1345.
- de Koninck M, Lapi E, Badía-Careaga C, Cossío I, Giménez-Llorente D, Rodríguez-Corsino M, Andrada E, Hidalgo A, Manzanares M, Real FX, Losada A (2020). Essential roles of cCohesin STAG2 in mouse embryonic development and adult tissue homeostasis. Cell Rep 32, 108014.
- de la Parra DR, Zenteno JC (2007). A new GJA1 (Connexin 43) mutation causing oculodentodigital dysplasia associated to uncommon features. Ophthalmic Genet 28, 198–202.
- Deardorff MA, Kaur M, Yaeger D, Rampuria A, Korolev S, Pie J, Gil-Rodríguez MC, Arnedo M, Loeys B, Kline AD, et al. (2007). Mutations in cohesin complex members SMC3 and SMC1A cause a mild variant of Cornelia de Lange syndrome with predominant mental retardation. Am J Hum Genet 80, 485–494.
- Deardorff MA, Wilde JJ, Albrecht M, Dickinson E, Tennstedt S, Braunholz D, Mönnich M, Yan Y, Xu W, Gil-Rodríguez MC, et al. (2012). RAD21 mutations cause a human cohesinopathy. Am J Hum Genet 90, 1014–1027.
- Debeer PH, van Esch H, Huysmans C, Pijkels E, de Smet L, van de Ven W, Devriendt K, Fryns J-P (2005). Novel GJA1 mutations in patients with oculo-dento-digital dysplasia (ODDD). Eur J Med Genet 48, 377–387.
- Delmar M, Laird DW, Naus CC, Nielsen MS, Verselis VK, White TW (2018). Connexins and disease. Cold Spring Harb Perspect Biol 10, a029348.
- Delmar M, Makita N (2012). Cardiac connexins, mutations and arrhythmias. Curr Opin Cardiol 27, 236–241.
- Deng P, Wang Z, Chen J, Liu S, Yao X, Liu S, Liu L, Yu Z, Huang Y, Xiong Z, et al. (2022). RAD21 amplification epigenetically suppresses interferon signaling to promote immune evasion in ovarian cancer. J Clin Invest 132(22), e159628.
- Dhein S (2006). Cardiac ischemia and uncoupling: gap junctions in ischemia and infarction. Adv Cardiol 42, 198–212.
- Ding D, Haraguchi T, Hiraoka Y (2018). A cohesin-based structural platform supporting homologous chromosome pairing in meiosis. Curr Gent 62, 499–502.
- Donovan KA, An J, Nowak RP, Yuan JC, Fink EC, Berry BC, Elbert BL, Fischer ES (2018). Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane radial ray syndrome. eLife 7, e38430.
- Dorsett D (2010). Gene regulation: the cohesin ring connects developmental highways. Curr Biol 20, R886–R888.
- Dorsett D, Krantz ID (2009). On the molecular etiology of Cornelia de Lange syndrome. Ann N Y Acad Sci 1151, 22–37.
- Dorsett D, Merkenschlager M (2013). Cohesin at active genes: a unifying theme for cohesin and gene expression from model organisms to humans. Curr Opin Cell Biol 25, 327–333.
- Duffy HS, Fort AG, Spray DC (2006). Cardiac connexins: genes to nexus. Adv Cardiol 42, 1–17.

- Eng T, Guacci V, Koshland D (2015). Interallelic complementation provides functional evidence for cohesin-cohesin interactions on DNA. Mol Biol Cell 26(23), 4224-4235.
- Faure AJ, Schmidt D, Watt S, Schwalie PC, Wilson MD, Xu H, Ramsay RG, Odom DT, Flicek P (2012). Cohesin regulates tissue-specific expression by stabilizing highly occupied cis-regulatory modules. Genome Res 22(11), 2163-2175.
- Fazio G, Gaston-Massuet C, Bettini LR, Graziola F, Scagliotti V, Cereda A, Ferrari L, Mazzola M, Cazzaniga G, Giordano A, et al. (2016). CyclinD1 down-regulation and increased apoptosis are common features of cohesinopathies. J Cell Physiol 231, 613-622.
- Firulli AB, McFadden DG, Lin Q, Srivastava D, Olson EN (1998). Heart and extra-embryonic mesodermal defects in mouse embryos lacking the bHLH transcription factor Hand1. Nat Genet 18, 266-270.
- Fisher JB, Peterson J, Reimer M, Stelloh C, Pulakanti K, Gerbec ZJ, Abel AM, Strouse JM, Strouse C, McNulty M, et al. (2017). The cohesin subunit Rad21 is a negative regulator of hematopoietic self-renewal through epigenetic repression of Hoxa7 and Hoxa9. Leukemia 31(13), 712-719.
- Flenniken AM, Osborne LR, Anderson N, Ciliberti N, Fleming C, Gittens JEI, Gong XQ, Kelsey LB, Lounsbury C, Moreno L, et al. (2005). A Gja1 missense mutation in a mouse model of oculodentodigital dysplasia. Development 132, 4375-4386.
- Franco A, Zhang L, Matkovich SJ, Kovacs A, Dorn GW (2018). G-protein receptor kinases 2, 5 and 6 redundantly modulate smoothened-GATA transcriptional crosstalk in fetal mouse hearts. J Mol Cell Cardiol 121, 60-68.
- Freeman MVR, Williams DW, Schimke RN, Temtamy SA, Vachier E, German J (1974). The Roberts syndrome. Clin Genet 5, 1–16.
- Gabriel LAR, Sachdeva R, Marcotty A, Rockwood EJ, Traboulsi EI (2011). Oculodentodigital dysplasia: new ocular findings and a novel connexin 43 mutation. Arch Ophthalmol 129, 781-784.
- Gard S, Light W, Xiong B, Bose T, McNairn AJ, Harris B, Fleharty B, Seidel C, Bricknew JH, Gerton JL (2009). Cohesinopathy mutations disrupt the subnuclear organization of chromatin. J Cell Biol 187, 455-462
- Gassler J, Brandão HB, Imakaev M, Flyamer IM, Ladstätter S, Bickmore WA, Peters J-M, Mirny LA, Tachibana K (2017). A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture. EMBO J 36, 3600-3618.
- Gemel J, Levy AE, Simon AR, Bennett KB, Ai X, Akhter S, Beyer EC (2014). Connexin40 abnormalities and atrial fibrillation in the human heart. J Mol Cell Cardiol 76, 159-168.
- Ghosh S, Gardner JM, Smoyer CJ, Friederichs JM, Unruh JR, Slaughter BD, Alexander R, Chisholm RD, Lee KK, Workman JL, Jaspersen SL (2012). Acetylation of the SUN protein Mps3 by Eco1 regulates its function in nuclear organization. Mol Biol Cell 23, 2546-2559.
- Gillis LA, McCallum J, Kaur M, DeScipio C, Yaeger D, Mariani A, Kline AD, Li HH, Devoto M, Jackson LG, Krantz ID (2004). NIPBL mutational analysis in 120 individuals with Cornelia de Lange syndrome and evaluation of genotype-phenotype correlations. Am J Hum Genet 75, 610-623.
- Gimigliano A, Mannini L, Bianchi L, Puglia M, Deardorff MA, Menga S, Krantz ID, Musio A, Bini L (2012). Proteomic profile identifies dysregulated pathways in Cornelia de Lange syndrome cells with distinct mutations in SMC1A and SMC3 genes. J Proteome Res 11, 6111-6123.
- Goh ESY, Li C, Horsburgh S, Kasai Y, Kolomietz E, Morel CF (2010). The Roberts syndrome/SC phocomelia spectrum—a case report of an adult with review of the literature. Am J Med Genet A 15A, 472–478.
- Golfier S, Quail T, Kimura H, Brugués J (2020). Cohesin and condensin extrude DNA loops in a cell cycle-dependent manner. eLife 9, e53885.
- Gomes J do A, Kowalski TW, Fraga LR, Macedo GS, Sanseverino MTV, Schuler-Faccini L, Bianna FSL (2019). The role of ESCO2, SALL4 and TBX5 genes in the susceptibility to thalidomide teratogenesis. Sci Rep 9, 11413.
- Gong X-Q, Shao Q, Lounsbury CS, Bai D, Laird DW (2006). Functional characterization of a GJA1 frameshift mutation causing oculodentodigital dysplasia and palmoplantar keratoderma. J Biol Chem 281, 31801-31811.
- Gordillo M, Vega H, Trainer AH, Hou F, Sakai N, Luque R, Kayserili H, Basaran S, Skovby F, Hennekam RC, et al. (2008). The molecular mechanism underlying Roberts syndrome involves loss of ESCO2 acetyltransferase activity. Hum Mol Genet 17, 2172-2180.
- Gros DB, Jongsma HJ (1996). Connexins in mammalian heart function. Bioessays 18, 719–730.
- $\stackrel{\cdot}{\text{Gu W}}$, Wang L, Gu R, Ouyang H, Bao B, Zheng L, Xu B (2021). Defects of cohesin loader lead to bone dysplasia associated with transcriptional disturbance. J Cell Physiol 236, 8208-8225
- Guacci V, Koshland D, Strunnikov A (1997). A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91, 47-57.

- Guo X-B, Huang B, Pan Y-H, Su S-G, Li Y (2018). ESCO2 inhibits tumor metastasis via transcriptionally repressing MMP2 in colorectal cancer. Cancer Manag Res 10, 6157-6166.
- Hadjur S, Williams LM, Ryan NK, Cobb BS, Sexton T, Fraser P, Fisher AG, Merkenschlager M (2009). Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature 460, 410-413.
- Hamm MJ, Kirchmaier BC, Herzog W (2016). Sema3d controls collective endothelial cell migration by distinct mechanisms via Nrp1 and PlxnD1. J Cell Biol 215, 415-430.
- Hansen AS (2020). CTCF as a boundary factor for cohesin-mediated loop extrusion: evidence for a multi-step mechanism. Nucleus 11, 132-148.
- Hartman T, Stead K, Koshland D, Guacci V (2000). Pds5p is an essential chromosomal protein required for both sister chromatid cohesion and condensation in Saccharomyces cerevisiae. J Cell Biol 151(3), 613-626.
- Herdman C, Mars JC, Stefanovsky VY, Tremblay MG, Sabourin-Felix M, Lindsay H, Robinson MD, Moss T (2017). A unique enhancer boundary complex on the mouse ribosomal RNA genes persists after loss of Rrn3 or UBF and the inactivation of RNA polymerase I transcription. PloS Genet 13(7), e1006899
- Herrmann J, Feingold M, Tuffli GA, Opitz JM (1969). A familial dysmorphogenic syndrome of limb deformities characteristic facial appearance and associated anomalities: the "pseudothalidomide" or "SC-syndrome." Birth Defects Orig Art Ser 5, 81-89.
- Higashi TL, Pobegalov G, Tang M, Molodtsov MI, Uhlmann F (2021). A Brownian ratchet model for DNA loop extrusion by the cohesin complex. eLife 10, e67530.
- Himi M, Fujimaki T, Yokoyama T, Fujiki K, Takizawa T, Murakami A (2009). A case of oculodentodigital dysplasia syndrome with novel GJA1 gene mutation. Jpn J Ophthalmol 53, 541-545.
- Hiroi Y, Kudoh S, Monzen K, Ikeda Y, Yazaki Y, Nagai R, Komuro I (2001). Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nat Genet 28, 276-280.
- Hoptak-Solga AD, Nielsen S, Jain I, Thummel R, Hyde DR, Iovine MK (2008). Connexin43 (GJA1) is required in the population of dividing cells during fin regeneration. Dev Biol 317, 541-548.
- Horsfield JA, Anagnostou SH, Hu JK-H, Cho KHY, Geisler R, Lieschke G, Crosier KE, Crosier PS (2007). Cohesin-dependent regulation of Runx genes. Development 134, 2639-2649.
- Hou F, Zou H (2005). Two human orthologues of Eco1/Ctf7 acetyltransferases are both required for proper sister-chromatid cohesion. Mol Biol Cell 16, 3908-3918.
- Huang GY, Wessels A, Smith BR, Linask KK, Ewart JL, Lo CW (1998). Alteration in Connexin 43 gap junction gene dosage impairs conotruncal heart development. Dev Biol 198, 32-44.
- Huang T, Shao Q, MacDonald A, Xin L, Lorentz R, Bai D, Laird DW (2013). Autosomal recessive GJA1 (Cx43) gene mutations cause oculodentodigital dysplasia by distinct mechanisms. J Cell Sci 126, 2857-2866.
- Hyland C, Mfarej M, Hiotis G, Lancaster S, Novak N, Iovine MK, Falk MM (2021). Impaired Cx43 gap junction endocytosis causes morphological and functional defects in zebrafish. Mol Biol Cell 32, ar13.
- leda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375-386.
- lovine MK, Higgins EP, Hindes A, Coblitz B, Johnson SL (2005). Mutations in connexin43 (GJA1) perturb bone growth in zebrafish fins. Dev Biol 278,
- Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y, Handa H (2010). Identification of a primary target of thalidomide teratogenicity. Science 327, 1345-1350.
- Ivanov D, Schleiffer A, Eisenhaber F, Mechtler K, Haering CH, Nasmyth K (2002). Eco1 is a novel acetyltransferase that can acetylate proteins involved in cohesion. Curr Biol 12, 323-328.
- Ivanov M, Ladurner R, Poser I, Beveridge R, Rampler E, Hudecz O, Novatchkova M, Hériché JK, Wutz G, van der Lelij P, et al. (2018). The replicative helicase MCM recruits cohesin acetyltransferase ESCO2 to mediate centromeric sister chromatid cohesion. EMBO J 37, e97150.
- Jamsheer A, Sowin'ska-Seidler A, Socha M, Stembalska A, Kiraly-Borri C, Latos-Bielen'ska A (2014). Three novel GJA1 missense substitutions resulting in oculo-dento-digital dysplasia (ODDD)—further extension of the mutational spectrum. Gene 539, 157-161.
- Jeppsson K, Kanno T, Shirahige K, Sjögren C (2014). The maintenance of chromosome structure: positioning and functioning of SMC complexes. Nat Rev Mol Cell Biol 15, 601-614.
- Jin Z, Chau MD, Bao Z-Z (2006). Sema3D, Sema3F, and Sema5A are expressed in overlapping and distinct patterns in chick embryonic heart. Dev Dyn 235, 163-169.

- Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS, et al. (2010). Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435.
- Kamel SM, Broekman S, Tessadori F, van Wijk E, Bakkers J (2022). The zebrafish cohesin protein Sgo1 is required for cardiac function and eye development. Dev Dyn 251, 1357–1367.
- Kasahara H, Usheva A, Ueyama T, Aoki H, Horikoshi N, Izumo S (2001). Characterization of homo- and heterodimerization of cardiac Csx/Nkx2.5 homeoprotein. J Biol Chem 276, 4570–4580.
- Kato T, Iwasaki Y, Nattel S (2012). Connexins and atrial fibrillation: filling in the gaps. Circulation 125, 203–206.
- Kawauchi S, Calof AL, Santos R, Lopez-Burks ME, Young CM, Hoang MP, Chua A, Lao T, Lechner MS, Daniel JA, et al. (2009). Multiple organ system defects and transcriptional dysregulation in the Nipbl± mouse, a model of Cornelia de Lange syndrome. PloS Genet 5, e1000650.
- Kawauchi S, Santos R, Muto A, Lopez-Burks ME, Schilling TF, Lander AD, Calof AL (2016). Using mouse and zebrafish models to understand the etiology of developmental defects in Cornelia de Lange Syndrome. Am J Med Genet C Semin Med Genet 172, 138–145.
- Kelly JJ, Esseltine JL, Shao Q, Jabs EW, Sampson J, Auranen M, Bai D, Laird DW (2016). Specific functional pathologies of Cx43 mutations associated with oculodentodigital dysplasia. Mol Biol Cell 27, 2172– 2185.
- Kelly SC, Ratajczak P, Keller M, Purcell SM, Griffin T, Richard G (2006). A novel GJA 1 mutation in oculo-dento-digital dysplasia with curly hair and hyperkeratosis. Eur J Dermatol 16, 241–245.
- Kemmler CL, Riemslagh FW, Moran HR, Mosimann C (2021). From stripes to a beating heart: early cardiac development in zebrafish. J Cardiovasc Dev Dis 8, 17.
- Ketharnathan S, Labudina A, Horsfield J (2020). Cohesin components Stag1 and Stag2 differentially influence haematopoietic mesoderm development in zebrafish embryos. Front Cell Dev Biol 8, 617545.
- Khalil A, Tanos R, El-Hachem N, Kurban M, Bouvagnet P, Bitar F, Nemer G (2017). A HAND to TBX5 explains the link between thalidomide and cardiac diseases. Sci Rep 7, 1416.
- Kim Y, Shi Z, Zhang H, Finkelstein IJ, Yu H (2019). Human cohesin compacts DNA by loop extrusion. Science 366, 1345–1349.
- Kline AD, Calof AL, Schaaf CA, Krantz ID, Jyonouchi S, Yokomori K, Gauze M, Carrico CS, Woodman J, Gerton JL, et al. (2014). Cornelia de Lange syndrome: further delineation of phenotype, cohesin biology and educational focus. 5th Biennial Scientific and Educational Symposium abstracts. Am J Med Genet A 164A, 1384–1393.
- Kline AD, Moss JF, Selicorni A, Bisgaard A, Deardorff MA, Gillett PM, Ishman SL, Kerr LM, Levin AV, Mulder PA, et al. (2018). Diagnosis and management of Cornilea de Lange syndrome: first international consensus statement. Nat Rev Genet 19, 649–666.
- Kohlhase J, Schubert L, Liebers M, Rauch A, Becker K, Mohammed SN, Newbury-Ecob R, Reardon W (2003). Mutations at the SALL4 locus on chromosome 20 result in a range of clinically overlapping phenotypes, including Okihiro sundrome, Holt–Oram syndrome, acro-renal-ocular syndrome, and patients previously reported to represent thalidomide embryopathy. J Med Genet 40, 473–478.
- Koshiba-Takeuchi K, Takeuchi JK, Arruda EP, Kathiriya IS, Mo R, Hui C, Srivastava D, Bruneau BG (2006). Cooperative and antagonistic interactions between Sall4 and Tbx5 pattern the mouse limb and heart. Nat Genet 38, 175–183.
- Krantz ID, McCallum J, DeScipio C, Kaur M, Gillis LA, Yaeger D, Jukofsky L, Wasserman N, Bottani A, Morris CA, et al. (2004). Cornelia de Lange Syndrome is caused by mutations in NIPBL, the human homolog of *Drosophila melanogaster* Nipped-B. Nat Genet 36, 631–635.
- Kueng S, Hegemann B, Peters BH, Lipp JJ, Schleiffer A, Mechtler K, Peters J-M (2006). Wapl controls the dynamic association of cohesin with chromatin. Cell 127, 955–967.
- Kulemzina I, Schumacher MR, Verma V, Reiter J, Metzler J, Failla AV, Lanz C, Sreedharan VT, Rätsch G, Ivanov D (2012). Cohesin rings devoid of Scc3 and Pds5 maintain their stable association with the DNA. Plos Genet 8(8), e1002856.
- Laird DW (2014). Syndromic and non-syndromic disease-linked Cx43 mutations. FEBS Lett 588, 1339–1348.
- Lambiase PD, Tinker A (2015). Connexins in the heart. Cell Tissue Res 360, 675–684.
- Lavoie BD, Hogan E, Koshland D (2002). In vivo dissection of the chromosome condensation machinery: reversibility of condensation distinguishes contributions of condensing and cohesin. J Cell Biol 156, 805–815.

- Lavoie BD, Hogan E, Koshland D (2004). In vivo requirements for rDNA chromosome condensation reveal two cell-cycle-regulated pathways for mitotic chromosome folding. Genes Dev 18, 76–87.
- Lengronne A, McIntyre J, Katou Y, Kanoh Y, Hopfner K-P, Shirahige K, Uhlmann F (2006). Establishment of sister chromatid cohesion at the S. cerevisiae replication fork. Mol Cell 23, 787–799.
- Leybaert L, Lampe PD, Dhein S, Kwak BR, Ferdinandy P, Beyer EC, Laird DW, Naus CC, Green CR, Schulz R (2017). Connexins in cardiovascular and neurovascular health and disease: pharmacological implications. Pharmacol Rev 69, a029348.
- Li WE, Waldo K, Linask KL, Chen T, Wessels A, Parmacek MS, Kirby ML, Lo CW (2002). An essential role for connexin43 gap junctions in mouse coronary artery development. Development 129, 2031–2042.
- Lickert H, Takeuchi JK, von Both I, Walls JR, McAuliffe F, Lee Adamson S, Henkelman RM, Wrana JL, Rossant J, Bruneau BG (2004). Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature 432, 107–112.
- Linhares VLF, Almeida NAS, Menezes DC, Elliott DA, Lai D, Beyer EC, Campos de Carvalho AC, Costa MW (2004). Transcriptional regulation of the murine promoter by cardiac factors Nkx2-5, GATA4 and Tbx5. Cardiovasc Res 64, 402–411.
- Liu D, Song AT, Qi X, van Vilet PP, Xiao J, Xiong F, Andelfinger G, Nattel S (2021). Cohesin-protein Sugoshin-1 controls cardiac automaticity via HCN4 pacemaker channel. Nat Comm 12, 2551.
- Liu Y, Asakura M, Inoue H, Nakamura T, Sano M, Niu Z, Chen M, Schwartz RJ, Schneider MD (2007). Sox17 is essential for the specification of cardiac mesoderm in embryonic stem cells. Proc Natl Acad Sci USA 104, 3859–3864.
- Lo C, Waldo KL, Kirby ML (1999). Gap junction communication and the modulation of cardiac neural crest cells. Trends Cardiovasc Med 9, 63–69.
- Lo CW, Wessels A (1998). Cx43 gap junctions in cardiac development. Trends Cardiovasc Med 8, 264–269.
- Lopez-Serra L, Lengronne A, Borges V, Kelly G, Uhlmann F (2013). Budding yeast Wapl controls sister chromatid cohesion maintenance and chromosome condensation. Curr Biol 23, 64–69.
- Lou X, Deshwar AR, Crump JG, Scott IC (2011). Smarcd3b and Gata5 promote a cardiac progenitor fate in the zebrafish embryo. Development 138, 3113–3123.
- Lu S, Goering M, Gard S, Xiong B, McNairn AJ, Jaspersen SL, Gerton JL (2010). Eco1 is important for DNA damage repair in S. cerevisiae. Cell Cycle 9, 3315–3327.
- Lu S, Lee KK, Harris B, Xiong B, Bose T, Saraf A, Hattem G, Florens L, Seidel C, Gerton JL (2014). The cohesin acetyltransferase Eco1 coordinates rDNA replication and transcription. EMBO Rep 15, 609–617.
- Lupu I-E, Redpath AN, Smart N (2020). Spatiotemporal analysis reveals overlap of key proepicardial markers in the developing murine heart. Stem Cell Reports 14, 770–787.
- Lyons NA, Fonslow BR, Diedrich JK, Yates JR, Morgan DO (2013). Sequential primed kinases create a damage-responsive phosphodegron on Eco1. Nat Struct Mol Biol 20, 194–201.
- Lyons NA, Morgan DO (2011). Cdk1-dependent destruction of Eco1 prevents cohesion establishment after S phase. Mol Cell 42, 378–389.
- Mannini L, Lamaze CF, Cucco F, Amato C, Quarantotti V, Rizzo IM, Krantz ID, Bilodeau S, Musio A (2015). Mutant cohesin affects RNA polymerase II regulation in Cornelia de Lange syndrome. Sci Rep 5, 16803.
- Marko JF, De P, Rios L, Barducci A, Gruber S (2019). DNA-segment-capture model for loop extrusion by structural maintenance of chromosome (SMC) protein complexes. Nucleic Acids Res 47, 6956–6972.
- Marsman J, O'Neill AC, Kao BR-Y, Rhodes JM, Meier M, Antony J, Mönnich M, Horsfield JA (2014). Cohesin and CTCF differentially regulate spatiotemporal runx1 expression during zebrafish development. Biochim Biophys Acta 1839, 50–61.
- Marston AL (2014). Chromosome segregation in budding yeast: sister chromatid cohesion and related mechanisms. Genetics 196, 31–63.
- Martin KE, Waxman JS (2021). Atrial and sinoatrial node development in the zebrafish heart. J Cardiovasc Dev Dis 8, 15.
- Matityahu A, Onn I (2021). Hit the brakes—a new perspective on the loop extrusion mechanism of cohesin and other SMC complexes. J Cell Sci 134, jcs247577.
- Matyskiela ME, Couto S, Zheng X, Lu G, Hui J, Stamp K, Drew C, Ren Y, Wang M, Carpenter A, et al. (2018). SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate. Nat Chem Biol 14, 981–987.
- Mayerova N, Cipak L, Gregan J (2020). Cohesin biology: from passive rings to molecular motors. Trends Genet 36, 387–389.

- McEwan MV, Eccles MR, Horsfield JA (2012). Cohesin is required for activation of MYC by estradiol. PloS One 7, e49160.
- McKay MJ, Craig J, Kalitsis P, Kozlov S, Verschoor S, Chen P, Lobachevsky P, Vasireddy R, Yan Y, Ryan J, et al. (2019). A Roberts syndrome individual with differential genotoxin sensitivity and a DNA damage response defect. Int J Radiat Oncol Biol Phys 103, 1194-1202.
- McLachlan E, Manias JL, Gong X-Q, Lounsbury CS, Shao Q, Bernier SM, Bai D, Laird DW (2005). Functional characterization of oculodentodigital dysplasia-associated Cx43 mutants. Cell Commun Adhes 12, 279–292.
- McLachlan E, Plante I, Shao Q, Tong D, Kidder GM, Bernier SM, Laird DW (2008). ODDD-linked Cx43 mutants reduce endogenous Cx43 expression and function in osteoblasts and inhibit late stage differentiation. J Bone Miner Res 23, 928-938.
- Merkenschlager M, Nora EP (2016). CTCF and cohesin in genome folding and transcriptional gene regulation. Annu Rev Genomics Hum Genet 17.17-43.
- Merkuri F, Fish JL (2019). Developmental processes regulate craniofacial variation in disease and evolution. Genesis 57, e23249.
- Merrifield PA, Laird DW (2016). Connexins in skeletal muscle development and disease. Semin Cell Dev Biol 50, 67-73.
- Mfarej MG, Skibbens RV (2020b). DNA damage induces Yap5-dependent transcription of ECO1/CTF7 in Saccharomyces cerevisiae. PLOS One 15, e0242968
- Mfarej MG, Skibbens RV (2020a). An ever-changing landscape in Roberts syndrome biology: implications for macromolecular damage. PloS Genet 16, e1009219.
- Mfarej MG, Skibbens RV (2022). Genetically-induced redox stress occurs in a yeast model for Roberts syndrome. G3 (Bethesda) 12, jkab426.
- Michaelis C, Ciosk R, Nasmyth K (1997). Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 9, 35-45.
- Michela P, Velia V, Aldo P, Ada P (2015). Role of connexin 43 in cardiovascular diseases. Eur J Pharmacol 768, 71-76.
- Minamino M, Ishibashi M, Nakato R, Akiyama K, Tanaka H, Kato Y, Negishi L, Hirota T, Sutani T, Bando M, Shirahige K (2015). Esco1 acetylates cohesin via a mechanism different from that of Esco2. Curr Biol 25, 1694-1706.
- Minamino M, Tei S, Negishi L, Kanemaki MT, Yoshimura A, Sutani T, Bando M, Shirahige K (2018). Temporal regulation of ESCO2 degradation by the MCM complex, the CUL4-DDB1-VPRBP complex, and the anaphase-promoting complex. Curr Biol 28, 2665-2672.
- Minor A, Shinawi M, Hogue JS, Vineyard M, Hamlin DR, Tan C, Donato K, Wysinger L, Botes S, Das S, Del Gaudio D (2014). Two novel RAD21 mutations in patients with mild Cornelia de Lange syndrome-like presentation and report of the first familial case. Gene 537, 279-284.
- Moldovan G-L, Pfander B, Jentsch S (2006). PCNA controls establishment of sister chromatid cohesion during S phase. Mol Cell 23, 723-732.
- Molica F, Meens MJP, Morel S, Kwak BR (2014). Mutations in cardiovascular connexin genes. Biol Cell 106, 269-293
- Mönnich M, Kuriger Z, Print CG, Horsfield JA (2011). A zebrafish model of Roberts syndrome reveals that Esco2 depletion interferes with development by disrupting the cell cycle. PloS One 6, e20051.
- Mori AD, Zhu Y, Vahora I, Nieman B, Koshiba-Takeuchi K, Davidson L, Pizard A, Seidman JG, Seidman CE, Chen XJ, et al. (2006). Tbx5-dependent rheostatic control of cardiac gene expression and morphogenesis. Dev
- Morita A, Nakahira K, Hasegawa T, Uchida K, Taniguchi Y, Takeda S, Toyoda A, Sakaki Y, Shimada A, Takeda H, Yanagihara I (2012). Establishment and characterization of Roberts syndrome and SC phocomelia model medaka (Oryzias latipes). Dev Growth Differ 54, 588-604.
- Mullenders J, Aranda-Orgilles B, Lhoumaud P, Keller M, Pae J, Wang K, Kayembe C, Rocha PP, Raviram R, Gong Y, et al. (2015). Cohesin loss alters adult hematopoietic stem cell homeostasis, leading to myeloproliferative neoplasms. J Exp Med 212, 1833-1850.
- Murayama Y, Samora CP, Kurokawa Y, Iwasaki H, Uhlmann F (2018). Establishment of DNA-DNA interactions by the cohesin ring. Cell 172,
- Musio A, Selicorni A, Focarelli ML, Gervasini C, Milani D, Russo S, Vezzoni P, Larizza L (2006). X-linked Cornelia de Lange syndrome owing to SMC1L1 mutations. Nat Genet 38, 528-530.
- Muto A, Calof AL, Lander AD, Schilling TF (2011). Multifactorial origins of heart and gut defects in nipbl-deficient zebrafish, a model of Cornelia de Lange syndrome. PloS Biol 9, e1001181.
- Muto A, Ikeda S, Lopez-Burks ME, Kikuchi Y, Calof AL, Lander AD, Schilling TF (2014). Nipbl and Mediator cooperatively regulate gene expression to control limb development. PloS Genet 10, e1004671.

- Muto A, Schilling TF (2017). Zebrafish as a model to study cohesin and cohesinopathies. Methods Mol Biol 1515, 177-196.
- Nakhoul H, Ke J, Zhou X, Liao W, Zeng SX, Lu H (2014). Ribosomopathies: mechanisms of disease. Clin Med Insights Blood Disord 7, 7-16.
- Nasmyth K (2017). How are DNAs woven into chromosomes? Science 358, 589-590.
- Nichols MH, Corces VG (2018). A tethered-inchworm model of SMC DNA translocation. Nat Struct Mol Biol 25, 906-910.
- Nimlamool W, Andrews RMK, Falk MM (2015). Connexin43 phosphorylation by PKC and MAPK signals VEGF-mediated gap junction internalization. Mol Biol Cell 26, 2755-2768.
- Nishii K, Kumai M, Shibata Y (2001). Regulation of the epithelial-mesenchymal transformation through gap junction channels in heart development. Trends Cardiovasc Med 11, 213-218.
- Nitzsche A, Paszkowski-Rogacz M, Matarese F, Janssen-Megens EM, Hubner NC, Schulz H, de Vries I, Ding L, Huebner N, Mann M, et al. (2011). RAD21 cooperates with pluripotency transcription factors in the maintenance of embryonic stem cell identity. PloS One 6, e19470.
- Olley G, Pradeepa MM, Grimes GR, Piquet S, Polo SE, FitzPatrick DR, Bickmore WA, Boumendil C (2021). Cornelia de Lange syndromeassociated mutations cause a DNA damage signalling and repair defect. Nat Commun 12, 3127.
- Olson EN (2006). Gene regulatory networks in the evolution and development of the heart. Science 313, 1922-1927.
- Orgil O, Matityahu A, Eng T, Guacci V, Koshland D, Onn I (2015). A conserved domain in the scc3 subunit of cohesin mediates the interaction with both mcd1 and the cohesin loader complex. PloS Genet 11(3), e1005036.
- Pace NP, Benoit V, Agius D, Grima MA, Parascandalo R, Hilbert P, Borg I (2019). Two novel GJA1 variants in oculodentodigital dysplasia. Mol Genet Genomic Med 7, e882.
- Paladini D, Palmieri S, Lecora M, Perone L, Di Meglio A, D'Armiento M, Cascioli C, Matinelli P (1996). Prenatal ultrasound diagnosis of Roberts syndrome in a family with negative history. Ultrasound Obstet Gynecol 7, 208-210.
- Parker SE, Mai CT, Canfield MA, Rickard R, Wang Y, Meyer RE, Anderson P, Mason CA, Collins JS, Kirby RS, Correa A (2010). Updated national birth prevalence estimates for selected birth defects in the United States, 2004-2006. Birth Defects Res A Clin Mol Teratol 88, 1008-1016.
- Paznekas WA, Karczeski B, Vermeer S, Lowry RB, Delatycki M, Laurence F, Koivisto PA, Van Maldergem L, Boyadjiev SA, Bodurtha JN, Jabs EW (2009). GJA1 mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia phenotype. Hum Mutat 30, 724-733.
- Percival SM, Thomas HR, Amsterdam A, Carroll AJ, Lees JA, Yost HJ, Parant JM (2015). Variations in sister chromatid cohesion dysfunction in esco2 mutant zebrafish reflects the phenotypic diversity of Roberts syndrome. Dis Model Mech 8, 941-955.
- Perkins AT, Das TM, Panzera LC, Bickel SE (2016). Oxidative stress in oocytes during midprophase induces premature loss of cohesion and chromosome segregation errors. Proc Natl Acad Sci USA 113, E6823-
- Perkins AT, Greig MM, Sontakke AA, Peloquin AS, McPeek MA, Bickel SE (2019). Increased levels of superoxide dismutase suppress meiotic segregation errors in aging oocytes. Chromosoma 128, 215-222.
- Philipp M, Berger IM, Just S, Caron MG (2014). Overlapping and opposing functions of G protein-coupled receptor kinase 2 (GRK2) and GRK5 during heart development. J Biol Chem 289, 26119-26130.
- Piche J, Van Vliet PP, Pucéat M, Andelfinger G (2019). The expanding phenotypes of cohesinopathies: one ring to rule them all!. Cell Cycle 18, 2828-2848.
- Pimentel C, Vicente C, Menezes RA, Caetano S, Carreto L, Rodrigues-Pousada C (2012). The role of the Yap5 transcription factor in remodeling gene expression in response to Fe bioavailability. PloS One 7,
- Pistocchi A, Fazio G, Cereda A, Ferrari L, Bettini LR, Messina G, Cotelli F, Biondi A, Selicorni A, Massa V (2013). Cornelia de Lange syndrome: NIPBL haploinsufficiency downregulates canonical Wnt pathway in zebrafish embryos and patients fibroblasts. Cell Death Dis 4, e866.
- Pocrnich CE, Shao Q, Liu H, Feng MM, Harasym S, Savage M, Khimdas S, Laird DW, Hutnik CM (2012). The effect of connexin43 on the level of vascular endothelial growth factor in human retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol 250, 515-522
- Porntaveetus T, Srichomthong C, Ohazama A, Suphapeetiporn K, Shotelersuk V (2017). A novel GJA1 mutation in oculodentodigital dysplasia with extensive loss of enamel. Oral Dis 23, 795-800.

- Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD, Srivastava D (2012). In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485, 593–598.
- Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL (2014). A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680.
- Remeseiro S, Cuadrado A, Losada A (2013). Cohesin in development and disease. Development 140, 1315–1318.
- Ren Q, Yang H, Rosinski M, Conrad MN, Dresser ME, Guacci V, Zhang Z (2005). Mutation of the cohesin related gene PDS5 causes cell death with predominant apoptotic features in Saccharomyces cerevisiae during early meiosis. Mutat Res 570, 163–173.
- Rhodes JM, Bentley FK, Print CG, Dorsett D, Misulovin Z, Dickinson EJ, Crosier KE, Crosier PS, Horsfield JA (2010). Positive regulation of c-Myc by cohesin is direct, and evolutionarily conserved. Dev Biol 344, 637–649.
- Rivas MA, Durmaz C, Kloetgen A, Chin CR, Chen Z, Bhinder B, Koren A, Viny AD, Scharer CD, Boss JM, et al. (2021a). Cohesin core complex gene dosage contributes to germinal center derived lymphoma phenotypes and outcomes. Front Immunol 12, 6688493.
- Rivas MA, Meydan C, Chin CR, Challman MF, Kim D, Bhinder B, Kloetgen A, Viny AD, Teater MR, McNally DR, et al. (2021b). Smc3 dosage regulates B cell transit through germinal centers and restricts their malignant transformation. Nat Immunol 22(2), 240–253.
- Rolef Ben-Shahar T, Heeger S, Lehane C, East P, Flynn H, Skehel M, Uhlmann F (2008). Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321, 563–566.
- Rollins RA, Korom M, Aulner N, Martens A, Dorsett D (2004). *Drosophila* nipped-B protein supports sister chromatid cohesion and opposes the stromalin/Scc3 cohesion factor to facilitate long-range activation of the cut gene. Mol Cell Biol 24, 3100–3111.
- Rollins RA, Morcillo P, Dorsett D (1999). Nipped-B, a *Drosophila* homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and ultrabithorax genes. Genetics 152, 577–593.
- Rowland BD, Roig MB, Nishino T, Kurze A, Uluocak P, Mishra A, Beckouët F, Underwood P, Metson J, Imre R, et al. (2009). Building sister chromatid cohesion: Smc3 acetylation counteracts an antiestablishment activity. Mol Cell 33, 763–774.
- Rowley MJ, Corces VG (2018). Organizational principles of 3D genome architecture. Nat Rev Genet 19, 789–800.
- Rudra S, Skibbens RV (2013b). Cohesin codes—interpreting chromatin architecture and the many facets of cohesin function. J Cell Sci 126, 31–41.
- Rudra S, Skibbens RV (2013a). Chl1 DNA helicase regulates Scc2 deposition specifically during DNA-replication in Saccharomyces cerevisiae. PloS One 8, e75435.
- Ryu B, Kim DS, DeLuca AM, Alani RM (2007). Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression. PloS One 2, e594.
- Salameh A, Blanke K, Daehnert I (2013). Role of connexins in human congenital heart disease: the chicken and egg problem. Front Pharmacol 4, 70.
- Sanchez AC, Thren ED, Iovine MK, Skibbens RV (2022). Esco2 and cohesin regulate CRL4 ubiquitin ligase ddb1 expression and thalidomide teratogenicity. Cell Cycle 21, 501–513.
- Sanchez-Castro M, Pichon O, Briand A, Poulain D, Gournay V, David A, Le Caignec C (2015). Disruption of the SEMA3D gene in a patient with congenital heart defects. Hum Mutat 36, 30–33.
- Santos R, Kawauchi S, Jacobs RE, Lopez-Burks ME, Choi H, Wikenheiser J, Hallgrimsson B, Jamniczky HA, Fraser SE, Lander AD, Calof AL (2016). Conditional creation and rescue of Nipbl-deficiency in mice reveals multiple determinants of risk for congenital heart defects. PloS Biol 14, e2000197.
- Sato M, Tsai H-J, Yost HJ (2006). Semaphorin3D regulates invasion of cardiac neural crest cells into the primary heart field. Dev Biol 298, 12–21.
- Schüle B, Oviedo A, Johnston K, Pai S, Francke U (2005). Inactivating mutations in ESCO2 cause SC phocomelia and Roberts syndrome: no phenotype–genotype correlation. Am J Hum Genet 77, 1117–1128.
- Schuster K, Leeke B, Meier M, Wang Y, Newman T, Burgess S, Horsfield JA (2015). A neural crest origin for cohesinopathy heart defects. Hum Mol Genet 24, 7005–7016.
- Severs NJ (1994). Pathophysiology of gap junctions in heart disease. J Cardiovasc Electrophysiol 5, 462–475.
- Severs NJ, Bruce AF, Dupont E, Rothery S (2008). Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc Res 80, 9–19.

- Severs NJ, Coppen SR, Dupont E, Yeh H-I, Ko Y-S, Matsushita T (2004). Gap junction alterations in human cardiac disease. Cardiovasc Res 62, 368–377.
- Severs NJ, Dupont E, Thomas N, Kaba R, Rothery S, Jain R, Sharpey K, Fry CH (2006). Alterations in cardiac connexin expression in cardiomyopathies. Adv Cardiol 42, 228–242.
- Shen D, Skibbens RV (2017). Temperature-dependent regulation of rDNA condensation in Saccharomyces cerevisiae. Cell Cycle 16, 1118–1127.
- Shen D, Skibbens RV (2020). Promotion of hyperthermic-induced rDNA hypercondensation in *Saccharomyces cerevisiae*. Genetics 214, 589–604.
- Shi D, Zhao S, Zuo MQ, Zhang J, Hou W, Dong MQ, Cao Q, Lou H (2020). He acetyltransferase Eco1 elicits cohesin dimerization during S phase. J Biol Chem 295(22), 7554–7565.
- Shibayama J, Paznekas W, Seki A, Taffet S, Jabs EW, Delmar M, Musa H (2005). Functional characterization of Connexin43 mutations found in patients with oculodentodigital dysplasia. Circ Res 96, 83–91.
- Singh VP, Gerton JL (2015). Cohesin and human disease: lessons from mouse models. Curr Opin Cell Biol 37, 9–17.
- Skibbens RV (2016). Of rings and rods: regulating cohesin entrapment of DNA to generate intra- and intermolecular tethers. Colaiácovo MP, editor. PLOS Genet 12, e1006337.
- Skibbens RV (2019). Condensins and cohesins—one of these things is not like the other. J Cell Sci 132, jcs220491.
- Skibbens RV, Corson LB, Koshland D, Hieter P (1999). Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery. Genes Dev 13, 307–319.
- Skibbens RV, Marzillier J, Eastman L (2010). Cohesins coordinate gene transcriptions of related function within Saccharomyces cerevisiae. Cell Cycle 9, 1601–1606.
- Sohl G, Willecke K (2003). Gap junctions and the connexin protein family. Cardiovasc Res 62, 228–232.
- Song SY, Chi JG (1996). Tri-amelia and phocomelia with multiple malformations resembling Roberts syndrome in a fetus: is it a variant or a new syndrome? Clin Genet 50, 502–504.
- Srivastava D (2006). Making or breaking the heart: from lineage determination to morphogenesis. Cell 126, 1037–1048.
- Srivastava D, Thomas T, Lin Q, Kirby ML, Brown D, Olson EN (1997). Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet 16, 154–160.
- Stedman W, Kang H, Lin S, Kissil JL, Bartolomei MS, Lieberman PM (2008). Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO J 27, 654–666.
- Stefanovic S, Abboud N, Désilets S, Nury D, Cowan C, Pucéat M (2009). Interplay of Oct4 with Sox2 and Sox17: a molecular switch from stem cell pluripotency to specifying a cardiac fate. J Cell Biol 186, 665–673.
- Stelmle JD, Moskowitz IP (2017). TBX5: A key regulator of heart development. Curr Top Dev Biol 122, 195–221.
- Ström L, Karlsson C, Lindroos HB, Wedahl S, Katou Y, Shirahige K, Sjögren C (2007). Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science 317, 242–245.
- Ström L, Lindroos HB, Shirahige K, Sjögren C (2004). Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol Cell 16, 1003–1015.
- Ström L, Sjögren C (2007). Chromosome segregation and double-strand break repair—a complex connection. Curr Opin Cell Biol 19, 344–349.
- Sutani T, Kawaguchi T, Kanno R, Itoh T, Shirahige K (2009). Budding yeast Wpl1(Rad61)-Pds5 complex counteracts sister chromatid cohesionestablishing reaction. Curr Biol 19, 492–497.
- Tan CMJ, Lewandowski AJ (2020). The transitional heart: from early embryonic and fetal development to neonatal life. Fetal Diagn Ther 47, 373–386
- Therapontos C, Erskine L, Gardner E, Figg W, Vargesson N (2009). Thalidomide induces limb defects by preventing angiogenic outgrowth during early limb formation. Proc Natl Acad Sci USA 106, 8573–8578.
- Thomas HR, Percival SM, Yoder BK, Parant JM (2014). High-throughput genome editing and phenotyping facilitated by high resolution melting curve analysis. PLoS One 9, e114632.
- Thomas SA, Schuessler RB, Berul CI, Beardslee MA, Beyer EC, Mendelsohn ME, Saffitz JE (1998). Disparate effects of deficient expression of Connexin43 on atrial and ventricular conduction. Circulation 97, 686–691.
- Tong K, Skibbens RV (2015). Pds5 regulators segregate cohesion and condensation pathways in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 112(22), 7021–7026..
- Tonkin ET, Wang T-J, Lisgo S, Bamshad MJ, Strachan T (2004). NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion

- proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat Genet 36, 636-641
- Toth A, Ciosk R, Uhlmann F, Galova M, Schleiffer A, Nasmyth K (1999). Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev
- Uhlmann F, Nasmyth K (1998). Cohesion between sister chromatids must be established during DNA replication. Curr Biol 8(20), 1095-1102
- Uhlmann F, Lottspeich F, Nasmyth K (1999). Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400(6739), 37-42.
- Ünal E, Arbel-Eden A, Sattler U, Shroff R, Lichten M, Haber JE, Koshland D (2004). DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 16, 991-1002.
- Ünal E, Heidinger-Pauli JM, Kim W, Guacci V, Onn I, Gygi SP, Koshland DE (2008). A molecular determinant for the establishment of sister chromatid cohesion. Science 321, 566-569
- Ünal E, Heidinger-Pauli JM, Koshland D (2007). DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science 317, 245-248.
- van der Lelij P, Godthelp BC, van Zon W, van Gosliga D, Oostra AB, Steltenpool J, de Groot J, Scheper RJ, Wolthuis RM, Waisfisz Q, et al. (2009). The cellular phenotype of Roberts syndrome fibroblasts as revealed by ectopic expression of ESCO2. PLoS One 4, e6936.
- van der Velden H, Jongsma HJ (2002). Cardiac gap junctions and connexins: their role in atrial fibrillation and potential as therapeutic targets. Cardiovasc Res 54, 270-279.
- van Rijen HVM, van Veen TAB, Gros D, Wilders R, de Bakker JMT (2006). Connexins and cardiac arrhythmias. Adv Cardiol 42, 150-160.
- Vasconcellos JPC, Melo MB, Schimiti RB, Bressanim NC, Costa FF, Costa VP (2005). A novel mutation in the GJA1 gene in a family with oculodentodigital dysplasia. Arch Ophthalmol 123, 1422-1426.
- Vega H, Gordillo M, Jabs EW (2006). Esco2 spectrum disorder [Updated 2020]. Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews [Internet]. University of Washington, Seattle, Seattle 1993–2022.
- Vega H, Waisfisz Q, Gordillo M, Sakai N, Yanagihara I, Yamada M, van Gosliga D, Kayserili H, Xu C, Ozono K, et al. (2005). Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat Genet
- Vincent M, Geneviève D, Ostertag A, Marlin S, Lacombe D, Martin-Coignard D, Coubes C, David A, Lyonnet S, Vilain C, et al. (2016). Treacher Collins syndrome: a clinical and molecular study based on a large series of patients. Genet Med 18, 49-56.
- Viny AD, Ott CJ, Spitzer B, Rivas M, Meydan C, Papalexi E, Yelin D, Shank K, Reyes J, Chiu A, et al. (2015). Dose-dependent role of the cohesin complex in normal and malignant hematopoiesis. J Exp Med 212(11), 1819–1832.
- Viny AD, Bowman RL, Liu Y, Lavallée V-P, Eisman SE, Xiao W, Durham BH, Navitski A, Park J, Braunstein S, et al. (2019). Cohesin members Stag1 and Stag2 display distinct roles in chromatin accessibility and topological control of HSC self-renewal and differentiation. Cell Stem Cell 25, 682-696.
- Vos ESM, Valdes-Quezada C, Huang Y, Allahyar A, Verstegen MJAM, Felder A-K, van der Vegt F, Uijttewaal ECH, Krijger PHL, de Laat W (2021). Interplay between CTCF boundaries and a super enhancer controls cohesin extrusion trajectories and gene expression. Mol Cell 81, 3082-3095.
- Vrouwe MG, Elghalbzouri-Maghrani E, Meijers M, Schouten P, Godthelp BC, Bhuiyan ZA, Redeker EJ, Mannens MM, Mullenders LH, Pastink A, Darroudi F (2007). Increased DNA damage sensitivity of Cornelia de Lange syndrome cells: evidence for impaired recombinational repair. Hum Mol Genet 16, 1478-1487
- Wakimoto H, Kasahara H, Maguire CT, Izumo S, Berul CI (2002). Developmentally modulated cardiac conduction failure in transgenic mice with fetal or postnatal overexpression of DNA nonbinding mutant Nkx2.5. J Cardiovasc Electrophysiol 13, 682-688.
- Wakimoto H, Kasahara H, Maguire CT, Moskowitz IPG, Izumo S, Berul CI (2003). Cardiac electrophysiological phenotypes in postnatal expression of Nkx2.5 transgenic mice. Genesis 37, 144-150.
- Wang Q, Liu L (2020). Establishment of cohesion 1 homolog 2 facilitates cell aggressive behaviors and induces poor prognosis in renal cell carcinoma. J Clin Lab Anal 34, e23163.
- Wang T, Glover B, Hadwiger G, Miller CA, di Martino O, Welch JS (2019). Smc3 is required for mouse embryonic and adult hematopoiesis. Exp Hematol 70, 70-84.
- Wang Y, Simons M (2014). Flow-regulated lymphatic vasculature development and signaling. Vasc Cell 6, 14.

- Wang Z, Sun L, Wang P, Chen C, Zhang A, Wang W, Ding X (2019). Novel ocular findings in oculodentodigital dysplasia (ODDD): a case report and literature review. Ophthalmic Genet 40, 54-59
- Weiss FD, Calderon L, Wang Y-F, Georgieva R, Guo Y, Cvetesic N, Kaur M, Dharmalingam G, Krantz ID, Lenhard B, et al. (2021). Neuronal genes deregulated in Cornelia de Lange syndrome respond to removal and re-expression of cohesin. Nat Commun 12, 2919.
- Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara K, Mishiro T, et al. (2008). Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451, 796-801.
- Whelan G, Kreidl E, Peters J-M, Eichele G (2012). The non-redundant function of cohesin acetyltransferase Esco2. Nucleus 3, 330-334
- Wuestefeld R, Chen J, Meller K, Brand-Saberi B, Theiss C (2012). Impact of vegf on astrocytes: analysis of gap junctional intercellular communication, proliferation, and motility. Glia 60, 936-947
- Wutz G, Várnai C, Nagasaka K, Cisneros DA, Stocsits RR, Tang W, Schoenfelder S, Jessberger G, Muhar M, Hossain MJ, et al. (2017). Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS $\dot{\mathbf{5}}$ proteins. EMBO J 36, 3573-3599.
- Xiang S, Koshland D (2021). Cohesin architecture and clustering in vivo. Elife 10, e62243.
- $\,$ Xu B, Lee KK, $\,$ Zhang L, $\,$ Gerton JL (2013). Stimulation of mTORC1 with I-leucine rescues defects associated with Roberts syndrome. PLoS Genet 9. e1003857
- Xu B, Sowa N, Cardenas ME, Gerton JL (2015). L-leucine partially rescues translational and developmental defects associated with zebrafish models of Cornelia de Lange syndrome. Hum Mol Genet 24, 1540-1555
- Xu H, Yan Y, Deb S, Rangasamy D, Germann M, Malaterre J, Eder NC, Ward RL, Hawkins NJ, Tothill RW, et al. (2014). Cohesin Rad21 mediates loss of heterozygosity and is upregulated via Wnt promoting transcriptional dysregulation in gastrointestinal tumors. Cell Rep 9,
- Xu Y, Guo W, Li P, Zhang Y, Zhao M, Fan Z, Zhao Z, Yan J (2016). Long-range chromosome interactions mediated by cohesin shape circadian gene expression. PLoS Genet 12, e1005992.
- Yan J, Enge M, Whitington T, Dave K, Liu J, Sur I, Schmierer B, Jolma A, Kivioja T, Taipale M, Taipale J (2013). Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites. Cell 154, 801-813.
- Yoshimura A, Sutani T, Shirahige K (2021). Functional control of Eco1 through the MCM complex in sister chromatid cohesion. Gene 784, 145584.
- Yuan B, Pehlivan D, Karaca E, Patel N, Charng W-L, Gambin T, Gonzaga-Jauregui C, Sutton VR, Yesil G, Bozdogan ST, et al. (2015). Global transcriptional disturbances underlie Cornelia de Lange syndrome and related phenotypes. J Clin Invest 125, 636-651.
- Yuen KC, Xu B, Krantz ID, Gerton JL (2016). NIPBL controls RNA biogenesis to prevent activation of the stress kinase PKR. Cell Rep 14,
- Zha Z, Han X, Smith MD, Liu Y, Giguère PM, Kopanja D, Raychaudhuri P, Siderovski DP, Guan K-L, Lei -Y, Xiong Y (2016). A non-canonical function of $G\beta$ as a subunit of E3 ligase in targeting GRK2 ubiquitylation. Mol Cell 58, 794-803.
- Zhang H, Jiao W, Sun L, Fan J, Chen M, Wang H, Xu X, Shen A, Li T, Niu B, et al. (2013). Intrachromosomal looping is required for activation of endogenous pluripotency genes during reprogramming. Cell Stem Cell 13, 30-35
- Zhang J, Shi X, Li Y, Kim B-J, Jia J, Huang Z, Yang T, Fu X, Jung SY, Wang Y, et al. (2008a). Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol Cell
- Zhang N, Kuznetsov SG, Sharan SK, Li K, Rao PH, Pati D (2008b) A handcuff model for the cohesin complex. J Cell Biol 183(6), 1019-1031.
- Zhao R, Watt AJ, Battle MA, Li J, Bondow BJ, Duncan SA (2008). Loss of both GATA4 and GATA6 blocks cardiac myocyte differentiation and results in acardia in mice. Dev Biol 317, 614-619.
- Zheng G, Kanchwala M, Xing C, Yu H (2018). MCM2–7-dependent cohesin loading during S phase promotes sister-chromatid cohesion. eLife 7,
- Zhu Y, Berg MD, Yang P, Loll-Krippleber R, Brown GW, Brandl CJ (2020). Mistranslating tRNA identifies a deleterious S213P mutation in the Saccharomyces cerevisiae eco1-1 allele. Biochem Cell Biol 98, 624-630.
- Zu L, Wen N, Liu C, Zhao M, Zheng L (2018). Connexin43 and myocardial ischemia-reperfusion injury. Cardiovasc Hematol Disord Drug Targets 18, 14-16.