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Abstract

From the past few decades, consumers’ demand for probiotic-based functional and healthy food products is rising expo-
nentially. Encapsulation is an emerging field to protect probiotics from unfavorable conditions and to deliver probiotics at
the target place while maintaining the controlled release in the colon. Probiotics have been encapsulated for decades using
different encapsulation methods to maintain their viability during processing, storage, and digestion and to give health ben-
efits. This review focuses on novel microencapsulation techniques of probiotic bacteria including vacuum drying, microwave
drying, spray freeze drying, fluidized bed drying, impinging aerosol technology, hybridization system, ultrasonication with
their recent advancement, and characteristics of the commonly used polymers have been briefly discussed. Other than novel
techniques, characterization of microcapsules along with their mechanism of release and stability have shown great interest
recently in developing novel functional food products with synergetic effects, especially in COVID-19 outbreak. A thorough
discussion of novel processing technologies and applications in food products with the incorporation of recent research works

is the novelty and highlight of this review paper.
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Introduction

Probiotics are live microorganisms when administrated in an
adequate amount confer a health benefit on the host (FAO/
WHO, 2002). In the last century, different species of micro-
organisms have been used as probiotics due to their poten-
tiality to prevent and cure diseases such as diabetes, gastric
cancer, and inflammatory bowel disease (IBD) by enhancing
the gut barrier function, producing antimicrobial compounds
and immunoprotective responses that cause elimination of
pathogens such as rotaviruses, Helicobacter pylori, Sal-
monella, and modulation of host immunity (Razavi et al.,
2021). Consumption of probiotics (as food products or as
dietary supplements) is a major concern among consum-
ers nowadays. The increased awareness of consumers for
improving the immune system widened the application of
probiotics in food products rather than the consumption of
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chemically synthesized drugs as the consumption of pro-
biotics in higher quantities is an alternative way to prevent
several health problems despite taking antibiotics treatment
(Reid et al., 2003).

The most used probiotic microorganisms belong to Lac-
tobacillus and Bifidobacteria group; however, other species
such as Bacillus cereus and Escherichia coli Nissle 1917 (a
non-pathogenic strain) also have been employed as probiot-
ics to accomplish the objectives such as preventing relapse
of ulcerative colitis, improving the immune system, and
inducing positive effects on allergy or inflammatory dis-
eases (Solanki et al., 2013). To fulfill these beneficial health
effects, probiotics should be metabolically active during the
transit of the stomach to the intestine in an adequate amount
(Sanz, 2007). The probiotic bacteria should be metabolically
active at the time of consumption with a population of more
than 10%7 CFU/mL or g end products to fulfill numerous
physiological functions in the animal/human body (Adhikari
et al., 2000). Under the functional food category, probiotic
foods have the widest global market accounting for 60-70%
of the global foods and rise to $176.7 billion in 2013 from
$33 billion in 2000 (Granato et al., 2010; Hennessy, 2014;
Holzapfel et al., 2006). The probiotics market is predicted
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to have a compound annual growth rate (CAGR) of 7.0%
from 2018 to reach USD 69.29 billion by 2023 (Liu et al.,
2020). The consumption of probiotic food products is a natu-
ral alternative to the administration of drugs to prevent many
diseases, especially in the COVID-19 situation (Misra et al.,
2021).

To achieve the probiotics in a metabolically active state
and targeted release in the colon of the host with the desired
quantity (> 10® CFU/mL or g of end product) for fulfill-
ing the physiological functions in the human body, pro-
biotication of food products, i.e., incorporation of micro-
encapsulated probiotics with suitable coating materials in
food matrices, can be an advantageous and cost-effective
concept as probiotics loss their viability due to the expo-
sure to several harsh conditions such as acidic conditions
of the stomach, thermal stress of the heating process, high
shearing action, freezing/thawing process, complex food
systems, and environmental stress during storage of food
products. So, the purpose of this review is to emphasize
on health benefits of probiotics, unexplored/less commonly
used novel microencapsulation technologies with the suit-
able coating materials for encapsulation of probiotics, their
release mechanism, application of the microencapsulated
powder in different food products as effective carriers of
probiotics with the recent trends, and the packaging/storage
conditions to enhance the shelf-life of products along with
the embedded probiotics.

Probiotics

The “probiotics” is a broad term that includes some other
terminologies of different functionalities such as postbiot-
ics, prebiotics, and synbiotics. Postbiotics can be defined as
metabolic by-products of the probiotic origin or non-viable
bacterial products which include organic acids, bacterioc-
ins, acetaldehydes, ethanol, diacetyl, and hydrogen peroxide
(Vallianou et al., 2020). These metabolic products show a
wide inhibitory property toward pathogens so that they can
be used as an alternative to antibiotics. Different probiotic
species such as Bifidobacterium lactis, Bacteroides fragilis,
Lactobacillus, Escherichia coli, and Bifidobacterium breve
are characterized by the properties of postbiotics such as non-
toxicity, nonpathogenic, and resistance to hydrolysis by mam-
malian enzymes (Cicenia et al., 2014). Prebiotics are defined
as such nutrients which can able to modify the gut microflora
and help in the growth of beneficial microorganisms in the
gut (Rastall & Gibson, 2015). Prebiotics can be extracted
from natural resources like grains, fruits, and vegetables.
Some of the common prebiotics are fructooligosaccharides,
lactulose, inulin, galactooligosaccharides, arabinoxylan, and
resistant starch-1, 2, 3, 4 (Hutkins et al., 2016). These carbo-
hydrates supply energy to epithelial cells in the colon by the
fermentation process due to the action of gut microbiota. The

fusion of prebiotics and probiotics results in the formation of
synbiotics. The synergistic effect comes to an action when
both prebiotics and probiotics work together in the living
system and provide several benefits such as enhancing the
survival of probiotics, disease prevention, and improvement
in nutritional status. Commercial functional foods containing
synbiotic relationship is gaining popularity from the point of
improving gut health. Past studies have illustrated the potenti-
ality of consumption of probiotic-containing fermented foods
to prevent upper respiratory tract infection among children
and adults (Makino et al., 2010). The probiotics Lactobacil-
lus delbrueckii ssp. bulgaricus OLL1073R-1 showed positive
effects against viral infection such as the common cold by
increasing the natural killer cell activity in elderly people
(Sindhu et al., 2014). Another study reported that the probi-
otic strain Lactobacillus rhamnosus GG reduced the sever-
ity and occurrence of rhinovirus infection in subjects after
consumption for 6 months (Kumpu et al., 2015). Probiotics
inhibit angiotensin-converting enzyme (ACE), a potent vaso-
constrictor by converting food proteins to bioactive peptides
during the fermentation process; produce short-chain fatty
acids (SCFAs) that helps in the activation of the intestinal
mucosal immune cells in the human gastrointestinal (GI)
tract; improve the host defense system by strengthening the
communication between the gut microbiota with the epithe-
lial and mucosal lymphoid elements (Ayyash et al., 2020).
Different probiotic strains such as Lactobacillus gasseri,
Lactobacillus rhamnosus, Pediococcus pentosaceus, Lac-
tobacillus casei, Lactobacillus plantarum, Bifidobacterium
bifidum, and Bifidobacterium longum have been recognized
to combat COVID-19 (Baud et al., 2020). Thus, the adminis-
tration of probiotics can be an alternative therapy during the
COVID-19 pandemic. Probiotics when administrated orally
have to survive in the harsh conditions during their passage
through the GI tract with the potentiality to modulate the gut
microbiota. The boosting of immunity by probiotics can be
explained by their mechanism of action in the gut of the host.

Mechanism of action

The mechanism of action of probiotics is strain-dependent
which can be categorized into three modes of action. Firstly,
probiotics may affect the host’s immune system (generally
the gut-associated immune cells and the gut epithelial cells).
The adhesion between host immune cells and probiotics
leads to immune modulation (Burgain et al., 2011). Sec-
ondly, probiotics possess the ability to compete with the
pathogens thus arresting their adherence to the intestine;
thirdly, probiotics are capable to alter some host products
such as bile salt, food ingredients, and microbial products
such as toxins (Frakolaki et al., 2021). Probiotics also pro-
duce metabolites such as amino acids, peptides, and vitamins
which regulate the host immune system thus the immune
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Fig.1 Top-down and bottom-up approaches in encapsulation tech-
niques ( adapted from Ezhilarasi e 2013)

response can challenge the risk of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infections (Koirala
& Anal, 2021).

Microencapsulation

Several parameters such as oxygen, pH, storage temperature,
hydrogen peroxide, and many others affect the viability of pro-
biotics (Reque & Brandelli, 2021). To improve the resistance
against the harsh conditions, different methodologies have
been suggested including the use of oxygen-impermeable con-
tainers, appropriate selection of acid, and bile resistant strain
with their adaptation to different stresses, microencapsulation,
and addition of micronutrients such as peptides and amino
acids (Sarkar, 2010). Among the abovementioned methods,
microencapsulation is the most preferred method which is the
primary consideration of many researchers.
Microencapsulation is a novel preservation method in
which probiotic strains are entrapped within a selective sup-
porting membrane to avoid the deterioration of cell mass
or cell injury and to achieve a targeted release in the gut
in an adequate amount (Ermis, 2021). The end product of
this technology is encapsulated powder which is easier to
use and the homogeneity is maintained throughout the pro-
cess (Mortazavian et al., 2007). Based on the size of the
polymeric beads, cell immobilization by encapsulation tech-
niques can be broadly categorized as macroencapsulation

Fig. 2 Different types of
microencapsulation: core—shell
microcapsules mononuclear,
polynuclear, multilayer micro-
capsules, matrix, irregular

Core -shell Microcapsules

Mononuclear Polynuclear

@ Springer

Multilayer microcapsules

O @ o s

and microencapsulation (John et al., 2011). The polymeric
beads formed by macroencapsulation process range from
a few millimeters to centimeters whereas; beads size of
1-1000 pm is produced by the microencapsulation process.
Figure 1 shows the size ranges of microcapsules produced by
different encapsulation technologies. The microencapsula-
tion process is more advantageous as macroencapsulation
results in lower cell viability (Uludag et al., 2000).

The formed microcapsules are classified as matrix and
reservoir types. The dispersion of active agents over the
carrier material forms matrix type microcapsule wherein
the case of reservoir type, a shell is coated around the core
material. Different types of microcapsules viz. core—shell,
mononuclear, polynuclear, multilayer, matrix, irregular
prepared using various encapsulation methods are shown
in Fig. 2. The encapsulation efficiency is dependent on the
survivability of microorganisms and their ability to multiply.
The viability of encapsulated probiotic strain depends on the
concentration and type of coating material, physicochemi-
cal properties of capsules, initial cell number, as well as the
type of bacterial strain. The carrier material must be able
to protect the encapsulated substances as well as it must be
food grade for incorporation in food products. The objective
of encapsulation is to protect against adverse conditions and
allow the release of viable and metabolically active probiot-
ics in the intestinal part (Picot & Lacroix, 2004). The micro-
particle should be water-soluble to maintain the integrity in
the upper part of the GI tract as well as in the food matrix
with a progressive liberation of the entrapped cells during
the passage of the intestinal phase.

Coating material

Different polymeric materials such as polysaccharides (alginate,
starch, chitosan, cellulose acetate phthalate, k-carrageenan, plant
gum), protein (gelatin, milk protein), and fat have been incorpo-
rated for the development of microparticles. Sodium alginate is
a widely used polymer for encapsulation as it forms a nontoxic,
biocompatible, and highly versatile matrix for the protection of
microorganisms against adverse conditions during processing
and storage. The sensitivity of the formed gel by sodium alginate
to extreme pH values can affect the protection of encapsulated
materials as well as the release of core materials (Mortazavian
& Sohrabvandi, 2006). The application of prebiotics such as

Matrix Irregular
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resistant starch in the formulation can overcome this drawback
and enhance the stability of probiotic bacterial cells (Chen et al.,
2005). Alginate has been used as a wall material for probiotics
due to its sensitivity towards pH (Allan-Wojtas et al., 2008).
Nami et al. (2020) observed that L. lactis encapsulated with algi-
nate, Persian gum, and inulin showed only a 1.46 log CFU/g
decrease in viability, while the unencapsulated cells indicated a
reduction of 6.52 log CFU/g after 120 min of simulated diges-
tive condition (pH 2.5). Guimardes et al. (2013) encapsulated
Bifidobacterium animalis DN-173 010 and L. rhamnosus GG
ATCC 53,103 with calcium alginate which showed higher via-
bility (above 5 log CFU/g) while the free cells were found to be
nonviable at pH 2.0 and 2.5 after 180 min in a simulated gastric
fluid condition. Similarly, gelatin-alginate microspheres pro-
vided higher stability of Bifidobacterium adolescentis 15703 T
with a 1.21 log CFU/mL decrease in the viability as compared to
free cells with a loss of 3.45 log CFU/mL in the harsh environ-
ment of gastric conditions (Annan et al., 2008). Enterococcus
faecium MC13 encapsulated with alginate-chitosan capsules
showed no release of cells after 144 h in simulated gastric fluid
(SGF) condition (Kanmani et al., 2011). The addition of prebi-
otics such as galactooligosaccharides enhanced the viability of
Bifidobacterium breve cells to 8.0 log CFU/mL in the chitosan-
coated multiparticulate system added with prebiotic poly(D,L-
lactic-co-glycolic acid) and showed an improved result over
alginate-chitosan microencapsulation system (1.4 log CFU/mL)
(Cook et al., 2014). Thomas et al. (2014) revealed that the strong
electrostatic interaction between chitosan and dextran sulfate
protected S. boulardii cells at low pH of the gastric condition
with higher survivability of 7.19 log CFU/100 mg, where only
4.24 log CFU/100 mg of uncoated cells were survived after 2 h
of the exposure period. Pandey and Mishra (2021) optimized
the shell composition for microencapsulation of probiotic Lac-
tobacillus plantarum as 0.4%, 4.6%, and 8.4% of inulin, dextran,
and maltodextrin, respectively, and obtained an encapsulation
efficiency of 99.21% as well as the produced microcapsules were
highly thermostable. Barajas-Alvarez et al. (2021) observed
that gum arabic and trehalose microparticles exhibited greater
protection to the encapsulated Lactobacillus rhamnosus with a
viability loss of 3.02 log CFU/g, whereas the loss of 6.21 log
CFU/g was found for free bacterial cells after 2 h of simulated
intestinal conditions.

Whey protein is a mixture of globular protein isolated
from whey and exhibits a wide opportunity from the point
of protection and reversion of the binding of active sub-
stances before their targeted release in the host. The high
temperature leads to deterioration of probiotic bacteria thus
heat-treated, denatured whey proteins have been used to
encapsulate probiotics at 35-40 °C (Razavi et al., 2021).
Many current studies illustrated the microencapsulation of
probiotics by employing whey protein in the form of whey
protein isolate (WPI), whey protein concentrate (WPC), and
sweet whey (the product containing both casein and whey

protein). Li et al. (2019) encapsulated Lactobacillus casei
by using WPI, gellan gum, and cellulose acetate phtha-
late matrixes and observed the highest viability of probi-
otics (8.25 log CFU/g) in the WPI matrix as compared to
free cells (8.15 log CFU/g) after freeze drying as well as
found long term stability of bacteria (7.59 log CFU/g) up to
19 weeks at 4 °C. Loyeau et al. (2018) reported that incor-
poration of high molecular weight dextran (450 kDa) with
WPI as coating materials resulted in only a 0.01 log reduc-
tion of viability of probiotic strain Bifidobacterium animalis
after spray drying. Similarly, Agudelo-Chaparro et al. (2021)
observed improved viability of 8.74 log CFU/g after spray
drying of Lactobacillus rhamnosus with WPC, maltodextrin,
and trehalose.

Sweet whey behaves as efficient carrier material for
probiotics in liquid form and enables the protection of the
microbes in the simulated GI condition (De Castro-Cislaghi
et al., 2012). In this study, the viability of free cells of Bifido-
bacterium animalis decreased by 1.51 log CFU/g whereas,
microencapsulated cells with sweet whey showed only 0.73
log CFU/g loss after exposure to pH 2.0 for 3 h. Similarly, at
low pH, sweet whey maintained the survival of Lactobacil-
lus acidophilus La-5 but the free cells presented a significant
reduction of 3.11 log cycles after 7 h of GI simulation study
(Maciel et al., 2014).

Gharibzahedi and Smith (2021) emphasized legume pro-
teins such as soy protein concentrate, soy protein isolate,
pea protein concentrate, pea protein isolate, chickpea protein
isolate, lentil protein isolate, and faba bean protein isolate
as potential and alternative probiotic encapsulants to animal
proteins because of their better gel-forming and emulsifying
activity, superior solubility properties, and thermal stability.

Raddatz et al. (2020) observed that pectin microparti-
cles containing probiotic strain Lactobacillus acidophilus
presented higher encapsulation efficiency of 68.1% when
prebiotic such as inulin was incorporated in the encapsula-
tion matrix, while the control (pectin alone) exhibited an
efficiency of 64.9% after the freeze drying process. Beads
made up of sodium alginate and amidated low-methoxyl
pectin in the ratios of 1:4 and 1:6 provided improved resist-
ance to the entrapped Lactobacillus casei in simulated gas-
tric and bile salt condition significantly (Sandoval-Castilla
et al., 2010). Moghanjougi et al. (2021) reported that pectin
nanoparticles were resistant to both enzymatic and acidic
conditions thus the microcapsules could be released in the
colon environment, whereas alginate was suitable for encap-
sulation of probiotic bacteria Lactobacillus acidophilus
under acidic conditions due to the conversion into insoluble
alginic acid. The coating of whey protein concentrate and
pectin did not provide additional protection to the probiotics
in simulated GI conditions despite the higher survivabil-
ity of probiotics (8 log CFU/g) after encapsulation (Gebara
et al., 2013). Application of Hi-maize starch as a protective
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agent in freeze dried pectin-rice bran capsule entrapped with
Lactobacillus plantarum showed the highest survivability
(i.e., 8.63+0.01 log CFU/g) as compared to the uncoated
ones (5.63 +0.02 log CFU/g) after the encapsulation process
(Chotiko & Sathivel, 2016).

Application of resistant starch in microencapsulation
technology can solve many technical challenges such as
increasing the shelf-life stability of sensitive compounds,
improving the thermal stability, as well as controlling the
release of bioactive molecules (Mirzaei et al., 2012). The
encapsulation efficiency of probiotics Lactobacillus acido-
philus was improved to above 94% by the addition of potato,
rice, and maize resistant starch with the control medium
comprising of WPC, maltodextrin, and D-mannose which
showed a lower efficiency of 79.90% after spray drying
(Muhammad et al., 2021). Co-encapsulation of resistant
starch (Hi-maize) of the bacterial cell has been carried
out to accomplish the synbiotic approach (Nugent, 2005).
Resistant starch (Hi-maize) at a concentration of 1% pro-
vided better protection to L. acidophilus microencapsulated
with sodium alginate beads in simulated GI juice. It also
preserved the viability of probiotics (6 log CFU/g) up to
135 days of storage period whereas the microcapsules coated
only with alginate lost the viability after 60 days of stor-
age (de Aradjo Etchepare et al., 2016). Co-encapsulation
of Lactobacillus F19 and Bifidobacterium Bb12 with corn
starch in casein-based microcapsules affected the physical
barrier of the matrix negatively and resulted in the reduction
of protective effect (Heidebach et al., 2010).

There are some other polymers available for microen-
capsulation of probiotics which are enlisted in Table 1 with
their formations, mechanisms, and barrier properties that
will be helpful to researchers for screening and evaluation
of protective wall materials.

Novel technologies for microencapsulation
of probiotics

Sophisticated shell materials and technologies have been
developed for the encapsulation of sensitive bioactive com-
pounds with an extremely wide variety of functionalities.
The factors affecting the release of encapsulated ingredi-
ents are mechanical stress, change in temperature, pH, time,
enzymatic activity, osmotic pressure, etc. The innovative-
ness of microencapsulation technologies is a great benefit to
society, which cannot be achieved by the non-encapsulating
method so that the consumer can compromise the cost-in-use
and also get improved value-added products.

There are many research works and reviews already avail-
able on microencapsulation of probiotic bacteria by spray
and freeze drying. So, this review paper emphasizes other

@ Springer

novel emerging technologies with their application in the
controlled release of probiotics as well as improving the stor-
ability of microencapsulated particles to develop a compara-
tive study by considering their merits and demerits.

Vacuum drying

Vacuum drying is similar to freeze drying with a difference in
the removal of water vapor through the evaporation process
rather than sublimation. Generally, vacuum dryers operate
at a higher temperature and higher pressure (above 10 mbar)
as compared to freeze dryers but the process parameters are
lower than spray drying. Loss of viability of heat-sensitive
probiotics is less in vacuum drying as the process can handle
the thermal stress gently. Oxygen-sensitive probiotics such
as Bifidobacteria can be effectively handled by this drying
process but severe viability loss can also be happened due
to dehydration stress. Cell wall and cell membrane of vac-
uum dried cells are two main sites of damage that have been
observed by atomic force microscopy and Fourier transform
infrared spectroscopy (Santivarangkna et al., 2007). From
the point of targeting to the cellular membrane, the process
parameters should be optimized to improve cell viability and
preserve the probiotics from dehydration stress. There are
many possible ways to improve the viability such as alteration
of process parameters, the addition of protecting agents, or
pre-treatment of cells with sub-lethal stress before vacuum
drying.

The application of protective agents such as sugars or pol-
yalcohol is beneficial for bacterial viability. Different sugars
such as trehalose, lactose, and polyalcohol such as sorbitol
have been used in the vacuum drying of probiotics (Crowe,
2007; Foerst et al., 2012). With the addition of 25% (w/w)
of trehalose or sorbitol, the survivability of vacuum dried L.
paracasei enhanced from 29 to 70% and 54%, respectively
(Foerst et al., 2012). Conrad et al. (2000) studied vacuum
dried L. acidophilus strain with the addition of 20% (w/w)
trehalose. The survivability increased from 18.9% to 37.9%
within 4 days at room temperature. Santivarangkna et al.
(2007) revealed that the viability of L. helveticus WS1032
was doubled by the addition of 1% (w/w) sorbitol to the
cell suspension after vacuum drying and there was a nega-
tive correlation between the additions of protectant from
10 to 100% (w/w) and probiotic viability. It has been stud-
ied that by increasing the concentrations of trehalose from
50 to 250 mM, the viability increased whereas, the surviv-
ability showed the lower value at a higher concentration of
trehalose due to an increase in an osmotic gradient (Gémez
Zavaglia et al., 2003).

Bacterial viability and water activity were greatly influ-
enced by the process parameters of vacuum dryers such as
drying time and temperature. Chances of bacterial damage
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(2004)

affected by the ratio of cells to

methylenebis (acrylamide),
ammonium persulfate,

N,N,N,N-

subunits

acrylamide content and produces

porous and stable gel
e Causes loss in cell viability

tetramethylenediamine

due to the radical-dependent

polymerization reaction and the

reagent used for cross-linking

may provide toxicity
e Used as a synthetic polymer

Gao et al. (2004)

e Boric acid causes damage to the

e Cross-linking using boric

e Composed of vinyl alcohol

subunits

Polyvinyl alcohol (PVA)

microbes enclosed in the PVA

acid

matrix during the bead preparation

process
o The addition of sodium sulfate in

boric acid can reduce toxicity during

the cross-linking process

can be prevented by shortening the processing time as well
as the temperature. Tymczyszyn et al. (2008) observed an
increase in the damage of the cell membrane and decreas-
ing in water activity, which was due to an increase in tem-
perature from 30 to 70 °C in the vacuum drying of L. del-
brueckii subsp. bulgaricus CIDCA333. A similar trend was
observed with an increase in treatment time at a particular
temperature. The viability of L. helveticus WS1032 during
vacuum drying and after 12 h of the storage period sharply
declined due to rupture on the cell surface as well as cell
lysis (Santivarangkna et al., 2006). The survival rate of L.
plantarum CIF17AN2 was higher at 4 mbar pressure and
57 °C temperature up to 12 h drying time. Thermal damage
of probiotic cells can be avoided by reducing the vacuum
pressure and the viability can be enhanced with the addi-
tion of glycerol (Bauer et al., 2012). Freeze drying has been
proved better than vacuum drying from the point of attain-
ing high survivability of probiotic strains, so fewer research
papers are available on vacuum drying.

Fluidized bed drying

Fluidized bed drying is a process involving the applica-
tion of conditioned air usually heated gas passed through
a suspended bed of solid particles at a controlled velocity.
The problems arise in the drying of the bacterial cell due to
its relatively small size (several micrometers). It is difficult
to keep the dried particles of low density in the suspended
state which may result in a lowering of yield. Moreover,
it is better to combine the fluidized-bed drying with other
techniques such as spray drying or freeze drying. However,
this technique is a preferred encapsulating method due to the
formulated probiotics of reduced moisture content.

In the fluidized bed drying method, different carrier or
matrix molecules such as casein, cellulose, maltodextrin,
NaCl particles, or lactose have been used for encapsulation
of probiotics (Bensch et al., 2014; Mille et al., 2004). This
drying method involves the spraying of bacterial cell suspen-
sion on the fluidized bed carrier followed by spray or freeze
drying to obtain bacterial pallets and subsequently, encap-
sulation of the particles with the protective carrier or shells
by fluidized bed drying to enhance the cell viability (Azim
et al., 2012). To improve the storability in the long term,
the probiotic cells are encapsulated with different materials
such as fats, proteins, or polysaccharides as coating agents.
The coating layer protects the encapsulated probiotic cell by
minimizing moisture diffusion over the storage period. This
method has rarely been used for encapsulation of probiot-
ics but the produced powder exhibits lower cohesiveness
thereby improving higher flowability, which is the main
advantage of this technique.

The viability of probiotics is influenced by the selection
of protectants and controlling the process parameters as well
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as the stress response of bacterial cells before drying. Differ-
ent protectants such as saccharides, skim milk, or alginate
matrix have been used with probiotics in fluidized bed dry-
ing. Wu et al. (2021) optimized top fluidized bed drying con-
ditions to encapsulate probiotic culture Lactobacillus brevis
RKO03 and found that the highest survival of 95% was found
at the processing time of 40 min at 50 °C by employing
casein and whey protein isolate (5% w/v) as carrier materi-
als. Strasser et al. (2009) studied the survivability of L. plan-
tarum IFA No. 278 by adding glucose, sucrose, trehalose, or
maltodextrin (32% w/v) and the protectants enhanced viabil-
ity more than 5 times whereas; the survivability is reduced to
0.2% without any protectants. The addition of trehalose and
sucrose (32% w/v) enhanced the survivability to 36.9 and
36.4%, respectively. The probiotic strain L. helveticus CNRZ
303 encapsulated in alginate beads showed the highest via-
bility of 70.7% with the addition of reconstituted nonfat milk
solids as compared to 0.5 M odonitol and glycerol (Selmer-
Olsen et al., 1999). Enterococcus faecium IFA No. 278 had
lower survivability (11%) without any application of protec-
tive carriers during the drying process (Strasser et al., 2009).
The addition of sucrose or skim milk (10% w/w) resulted in
no increase in survivability of E. faecium M74 as compared
to the unencapsulated cells (Stummer et al., 2012).

Controlling process parameters is a considerable aspect
of improving the survivability of probiotic cells. Fluidized
bed drying influences the moisture level of the dried product.
During the drying process, when the moisture level is above
15%, the drying temperatures have no significant impact on
the survivability of probiotics (Bayrock & Ingledew, 1997).
Other parameters such as water activity, atomizing air pres-
sure as well as spraying time greatly influence the surviv-
ability of the encapsulated bacteria. There were 4 log units
of viability loss of E. Faecium M74 when the spray time and
pressure were increased above 30 min and 1.5 bar, respec-
tively (Stummer et al., 2012). Some other parameters such
as loading rate, hot air humidity, and temperature have been
taken into considerations by analyzing the heat and mass
transfer and applying different mathematical and empiri-
cal models (Akbari et al., 2012; Debaste et al., 2008). The
prestressing of probiotics has been proved beneficial from
the point of enhancing survivability. The probiotic L. casei
CRL 431 cells were stressed osmotically and showed bet-
ter survivability after fluidized bed drying as compared to
unstressed cells (Nag & Das, 2013).

Higher temperature causes a higher declination in the
survival rate of entrapped microbial cells during the storage
period. When dried E. faecium IFA No. 278 and L. plan-
tarum IFA No. 045 powder were stored at 4 °C the survival
rate was higher as compared to the storage temperature of
22 and 35 °C (Strasser et al., 2009). The increased stor-
age temperature of 20 °C resulted in a greater reduction of
viability of L. plantarum than 4 °C during the storage period

of 3 months (Bensch et al., 2014). It has been observed that
vitamin E has a crucial role in enhancing the stability of
probiotics from oxidative damage. L. casei CRC 431 main-
tained its stability during the storage period of 20 weeks
at a temperature of 25 °C with the addition of 0.5% (w/w)
vitamin E (Nag & Das, 2013). Rehydration temperature is a
critical index from the point of recovery of probiotics. It has
been observed that a higher rehydration temperature causes
better recovery. For example, dried L. helveticus CNRZ 303
showed higher recovery at temperatures of 20 and 30 °C as
compared to the temperature of 5 °C, and higher rehydration
temperature (30-37 °C) showed better results in terms of
improving the survivability of probiotic strains L. bulgari-
cus RD 546 and L. plantarum RD 263 (Mille et al., 2004;
Selmer-Olsen et al., 1999).

Microwave drying

An efficient and effective dehydration method is required for
successfully balancing between physiological activity and
higher cell viability of dried cultures. The oxidative potential
at minimal pressure levels and low dehydration tempera-
ture in freeze dryer leads to instant rehydration capacity and
high survivability of probiotic cells as well as provides the
favorable application of microorganisms in food industries
(Bozoglu et al., 1987). At the same time, the cost of freezing
equipment causes an increase in the cost of the drying pro-
cess. In contrast, to freeze drying, vacuum drying results in
dried starter cultures with improved storability (Foerst et al.,
2012). The freeze and vacuum drying methods are time-
consuming processes, which limits the throughput capacity
and ultimately results in high production costs.

Microwave (MW) energy could help in lowering produc-
tion costs by significantly shortening the drying time. The
availability of microwave radiation to penetrate the product
of its whole volume (i.e., volumetric heating) and to heat
evenly depends on the geometry and composition of the
exposed product. Due to internal heat generation, drying
rates become higher which leads to a shortening of drying
times (Ambros et al., 2018a, b, ¢). As opposed to conven-
tional drying methods, drying of microcapsules by micro-
wave radiation results in the generation of inverse thermal
gradient that favors the drying of particles from inside out
and fast elimination of water which involves much lower
temperature and processing time (Mardaras et al., 2021).
Nevertheless, microwave radiation might be harmful to pro-
biotics during encapsulation if the processing conditions are
not optimized properly (Yoha et al., 2021). The higher pro-
cessing time and product temperature cause product degra-
dation and loss of bioactivity. Therefore, the short drying
time and low product temperature should be targeted to pre-
vent the deterioration of bacterial cells. The effect of micro-
wave energy on the survival of bacteria culture is scanty in
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literature. However, some authors mentioned that instead of
continuous, intermittent application of microwave energy
in pulsed mode improved the product quality and enhanced
energy efficiency (Ambros et al., 2018a, b, c). Different
researchers applied microwave coupled with other drying
techniques such as vacuum and freeze drying to lower the
processing time thus preserving the viability of encapsulated
probiotics (Ambros et al., 2018a, b, ¢). In vacuum drying,
the heat transfer rate from hot shelves to the product is low
due to the lower conduction of heat in vacuum conditions
which increases the drying time, whereas microwave energy
targets the water molecules directly due to dipolar rotation
and ionic interaction. This accelerates the drying process.
Combining the microwave energy with a vacuum drying
process can shorten the drying time considerably (Karimi,
2010). Microwave combined with vacuum drying caused
energy reduction (32-71%) as well as decreased drying time
(25-90%) as compared to conventional drying (Duan et al.,
2010; Durance & Wang, 2002; Sharma & Prasad, 2006;
Varith et al., 2007). Microwave energy can be assisted with
freeze drying process to give an energy-efficient output
(Ambros et al., 2018a, b, c). The microwave-freeze drying
process is similar to the conventional lyophilization process
in which frozen water is removed by the sublimation process
from the product and microwave vacuum drying is work-
ing on the same principle as a conventional vacuum drying
method. The major difference is the source of energy supply
as in the microwave heating process, electromagnetic energy
is converted to heat energy (Haghi & Amanifard, 2008), and
removal of water, as well as the transportation of energy, is
not affected by heat conductivity barriers (Bouraoui et al.,
1994). The microwave-freeze drying maintains the product
structure during the entire process by drying in the frozen
state. Initially, as the water is present in the frozen state,
the resulting structure contains pores after the drying pro-
cess. After rehydration, the water occupies the pore space
instantly and resolves the bacterial cultures leading to the
instant character. The microwave-assisted with freeze drying
process reduces the time to 50-75% as that of the conven-
tional freeze drying process due to the improved heat and
mass transfer (Ambros et al., 2018a, b, c).

The overheating or nonhomogeneous heating of the
material and degradation or loss of the bioactivity of pro-
biotics depends on the processing temperature and time
of microwave heating (Wang et al., 2014). To avoid the
deterioration of bacterial cells, low product temperature,
as well as short drying times should be targeted (Bauer
et al., 2013). Ahmad et al. (2012) observed that the viabil-
ity of probiotic strain Lactobacillus salivarius 417 was
improved when exposed to lower microwave power input
and absolute pressure levels; however, the application
of skim milk powder as a protectant affected the surviv-
ability. Microwaves used in pulse mode enhanced the
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efficiency of input energy levels as well as the quality of
the exposed product (Gunasekaran & Yang, 2007). Kim
et al. (1997) studied the D-value for a mixture (1:1) of
Lactobacillus delbrueckii subsp. bulgaricus and Strepto-
coccus salivarius subsp. thermophilus by taking different
temperatures and water activities. This study concluded
that microwave-vacuum dried yogurt showed higher sur-
vivability as compared to spray and freeze dried samples
and survival rates declined when dehydration temperature
increased. Ambros et al. (2018a, b, c) tested the micro-
wave-vacuum drying process for high retention of bio-
activity of the bacterial strain, Lactobacillus paracasei
subsp. paracasei by considering three parameters such as
chamber pressure, microwave power level, and minimum
product temperature. The study concluded that drying time
and microwave efficiency were not affected significantly by
the maximum product temperature and vacuum pressure
level, but both parameters greatly affected the survival rate
of the probiotic strain. The authors observed that micro-
wave power levels between 2 and 3 W/g, a low chamber
pressure of 7 mbar with the product surface temperature of
35 °C were found to be most suitable for retention of the
viability of probiotics as the low chamber pressure reduced
the absorption of microwave energy but power level above
4 W/g resulted in overheating of the product.

The survivability of Lactobacillus paracasei F19 was
maintained (67 to nearly 100%) at all microwave-freeze
drying conditions whereas, the highest survivability of B.
lactis (almost 100%) was observed at lower microwave
power input and chamber pressure combination (i.e.,
1.5 W/g and 0.6 mbar) with the reduced drying time (up to
80%) as compared to freeze drying process (Ambros et al.,
2018a, b, c). In this study, the authors applied microwave
energy in pulsed mode when the drying temperature
exceeded 30 °C to avoid further increase in the product
temperature and thermal shock to microorganisms and also
highlighted that the low chamber pressure maintained the
membrane integrity and viability of cells as high pressure
resulted in higher drying rates, thus internal thermal stress
due to the higher dielectric loss factor and ultimately over-
heating of products. Mardaras et al. (2021) reported that
near fluidizing microwave drying technique with adequate
control of process temperatures resulted in the viability
of more than 90% for yeast cells Saccharomyces cerivisae
encapsulated in alginate microcapsules and recommended
an inside microcapsule temperature of 30 °C and air tem-
perature of 5-20 °C to protect the probiotics as well as to
achieve a good-quality product.

Spray cooling/chilling

The spray cooling/chilling process is mainly used for the
entrapment of textural ingredients, flavors, enzymes, and
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other functional ingredients by targeting a lot of benefits
such as improving the heat stability, conversion of a liquid
hydrophilic ingredient into free-flowing powder, and delay-
ing the release in a wet environment. This encapsulation
technology is the least inexpensive method typically referred
to as a “matrix” type method. In the matrix encapsulation
process, the coated material generally releases the whole
of the content within a short period after incorporation in
the foodstuffs. There are few works of literature available
regarding the thermal stability of enzymes by spray cool-
ing method. Due to the presence of active ingredients at
the surface of microcapsules, there is a direct assessment
of the exposed environment. Therefore, when the microen-
capsulated material comes in contact with the foodstuffs,
the release of active ingredients begins. The factors such as
osmotic forces, diffusion of water through the shell mate-
rial, and mechanical dispersion play a significant role in the
release mechanism. The spray chilling process is comparable
with the freeze drying process from the point of achiev-
ing similar encapsulation efficiency due to the effect of
lower temperatures with a lower operating cost (Dianawati
et al., 2013).

Though there is a process similarity between spray
chilling and spray drying, the major difference lies in the
atomization of the coating material. The matrix suspension
is injected into a chamber in which the chilled air comes
in contact with the droplets and the solidified droplets
form the microcapsules with probiotics as core material
(Chambi et al., 2008). The solution of wall material is a
major influencing factor for encapsulating active ingredi-
ents by the spray chilling process. Protein- or carbohydrate-
based hydrophilic wall materials are generally employed for
microencapsulation in spray and freeze drying technology
(Dianawati et al., 2016) while fat-based hydrophobic materi-
als such as fatty acid, phospholipids, fatty alcohols, hydro-
genated fat, polyethylene glycol, waxes, triacylglycerol, and
their mixture are commonly employed in spray chilling pro-
cess (Chambi et al., 2008; Sillick & Gregson, 2012).

Spray chilling technology has been applied to microen-
capsulate different probiotic strains for improving viability.
This technique was applied to encapsulate different bacte-
rial cells such as Bifidobacterium bifidum, Lactobacillus
acidophilus, and Saccharomyces boulardii in a single and
double layer with the addition of hydrogenated palm oil.
Single-layered microcapsules showed better survivability of
strain; however, microcapsules showed lower resistance in
simulated intestinal conditions as compared to spray dried
microcapsules (Arslan-Tontul & Erbas, 2017). Application
of vegetable fat as carrier material can be considered in spray
chilling technology for better protection, application, and
delivery of probiotic strains such as Bifidobacterium lactis
and Lactobacillus acidophilus (de Lara Pedroso et al., 2012).
This study resulted in improved resistance and stability of

probiotic strain not only in simulated gastric conditions but
also in 90 days of prolonged storage period. Similarly, the
efficacy of solid-lipid microparticles entrapped with Lac-
tobacillus acidophilus produced by spray cooling method
with the addition of prebiotics was evaluated (Okuro et al.,
2013). Polydextrose was found to be an effective prebiotic
for the protection and delivery of probiotics with the benefits
of the synbiotic effect. Spray chilling technique produced
microencapsulated powders of lower moisture content and
water activity along with smooth and continuous spherical
particle-containing probiotics Bifidobacterium animalis
subsp. lactis and Lactobacillus acidophilus and this method
increased the potentiality for the incorporation of strains into
savory cereal bars (Bampi et al., 2016). Similarly, cocoa
butter as a carrier material improved the resistance of pro-
biotic strain Lactobacillus acidophilus by the spray chilling
method in GI fluid conditions. The microcapsules produced
by this technique showed higher stability up to 90 days of
storage period (Pedroso et al., 2013).

Spray freeze drying

This is an advanced method of encapsulation of probiotics
that involves the processing steps of both spray and freeze
drying. The probiotic solution is atomized into a container
containing cryogenic liquid (generally liquid nitrogen) and
frozen droplets are formed in the cold vapor phase which
is further dried by freeze drying process to produce dried
encapsulated powder (Amin et al., 2020). This process is
advantageous due to the formation of microcapsules of a
larger specific area and controlled size than spray dried
microcapsules and the coating of additional shell materi-
als protects the core ingredients against the adverse condi-
tions (Semyonov et al., 2010). This process consumes high
energy due to the long processing time with a requirement
of high-cost (30 to 50 times expensive than spray drying),
so it is lagging behind conventional spray and freeze drying
(Zuidam & Shimoni, 2010).

Maltodextrin as a wall matrix helps in minimizing the
mobility of probiotic strains in the glassy state (Semyonov
et al., 2010). Different cryoprotectants such as trehalose act
as a protective agent for improving the cell viability dur-
ing freezing and enhancing the storability of dried bacteria.
Trehalose prevents structural damage during dehydration by
forming hydrogen bonds with the polar head groups of the
lipid cellular membrane. In general studies, entrapment of
probiotic bacteria in a gel matrix of gellan, alginate, xanthan,
and k-carrageenan is a common process for encapsulation,
which is then followed by extrusion and emulsion process to
form droplets of the desired size. The stabilization of probi-
otics within gel beads may satisfy the desired output but it
is difficult to scale up. From this point of view, the extension
of the storage life of microcapsules should also be taken into
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account. The spray freeze drying method has been popular-
ized in the pharmaceutical industry (Costantino et al., 2000).
The particles formed by this method retain spherical shape
as well it shows the porous morphology. The spray freeze
drying method has been employed to minimize the irrevers-
ible damage to proteins such as aggregation and denaturation
(Heller et al., 1997). In spray freeze drying, cooling rates are
an important point that should be taken into consideration.
It has been calculated that the upper limit of the cooling
rate is in the order of 300 K/s (Heller et al., 1999). There are
limited research works available to dry the probiotic cells by
using spray freeze drying technology.

Her et al. (2015) prepared probiotic powder of Lactoba-
cillus casei IFO 15,883 by spray freeze drying technique.
The viability of probiotics after spray freeze drying was
found to be 97.7% under optimized conditions. Trehalose
as carrier material was applied to encapsulate Lactobacil-
lus paracasei by spray freeze drying and proved as highly
effective from the point of increasing the viability (> 60%)
of probiotics (Semyonov et al., 2010).

Hybridization system

This is a dry technique to encapsulate probiotics, which
comprises a stator, rotor with six blades rotating at high
speed, and a power recirculation unit. Inside the vessel, a
stream of air is generated due to the high-speed rotating
blades that give high impaction to the powder mixture con-
sisting of the host and guest particles. The guest particles are
coated on host particles which form an ordered mixture that
minimizes the chances of thermal damage of probiotics due
to the cooling effect of air (Ishizaka et al., 1993). Different
prebiotics have been tested for double microencapsulation
of probiotics such as lactulose, sorbitol, mannitol, inulin,
xylitol, raffinose, and fructooligosaccharide by utilizing
hybridization technique to provide beneficiary effects to the
host (Ann et al., 2007). Microencapsulated Lactobacillus
acidophilus ATCC 43,121 prepared by hybridization tech-
nique showed prolonged stability as compared to uncoated
and single-coated ones when exposed to the acidic or heating
condition.

Impinging aerosol technology

This technique has been developed to overcome the damage
associated with heat or solvent liable probiotics and has a
large throughput capacity. This method requires two sepa-
rate aerosols, i.e., alginate solution with microbial suspen-
sion and another is calcium chloride solution to produce
microbeads of a diameter of fewer than 40 um by the cross-
linking process (Sohail et al., 2011). The water-insoluble
microbeads could be subsequently sprayed or freeze dried.
Sohail et al. (2012) produced alginate microbeads with sizes
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ranging between 10 and 40 pm containing Lactobacillus aci-
dophilus NCFM and Lactobacillus rhamnosus GG by the
dual aerosol method. The encapsulated probiotics did not
show a significant increase in viability at the temperature of
4 and 25 °C but this technique reduced the acidification at
both the temperatures and prevented the declination in sen-
sory properties as well as improved the storability of orange
and other fruit-based juice products. This is an indication
of the absence of the buffering capacity of encapsulating
material. However, some studies showed acidification in
encapsulated probiotic fruit-based products, which might
be due to diffusion of sugar components through polymeric
coating material that further metabolizes into organic acid
in small size microbeads. The macrobeads (approximately
2 mm diameter) produced by extrusion technique provided
better protection to encapsulated probiotics than microbeads
(10-40 pm) in high acid and bile salt condition but both the
techniques offered comparable results which might be due
to chitosan coating of the porous alginate gel matrix as a
result of controlling diffusion in the acidic condition (Sohail
etal., 2011).

Ultrasonication

In recent years, ultrasonication has been used to encapsulate
bioactive compounds in food processing (Leong et al., 2017a,
b). Encapsulation using ultrasound has the potential to be
operated at large scales with a low cost per unit operation
and is capable of making nano and microcapsules/droplets
with a narrow size distribution (Leong et al., 2018, 2017a, b).
Ultrasound frequency of 16 to 3000 kHz is generally suitable
for the processing of fluids. Ultrasound passes through liquid
medium and cavitation bubbles are generated and collapsed
which produces strong shear and mechanical forces resulting
in droplet or capsules formation (Fig. 3). Double emulsions
were prepared in skim milk using a 20 kHz horn-type ultra-
sound probe. Flaxseed oil (7-21%) was incorporated in skim
milk using low frequency (20 kHz) ultrasound microencapsu-
lated insulin using w/o/w double emulsion via ultrasonication
(Mutaliyeva et al., 2017; Shanmugam & Ashokkumar, 2014).
The capsules were prepared with shell material chitosan and
xanthan gum complexes to preserve insulin stability and
biological activity. Also, water-in-oil-in-water emulsions
by low-frequency ultrasound (20 kHz) were prepared using
skim milk and sunflower oil with a low amount of surfactant
(Leong et al., 2017a, b). Della Porta et al. (2012) successfully
encapsulated Lactobacillus acidophilus in double emulsion
using sonication followed by the preparation of microspheres
using supercritical emulsion extraction (SEE) technology
with 80% encapsulation efficiency. Pandey et al. (2021) pre-
pared double emulsion (W1/0/W2) microcapsules contain-
ing probiotic Lactobacillus plantarum by a two-step ultra-
sonication process by employing dextran and whey protein
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as encapsulating material and observed that the viability of
bacteria remained stable (> 10° CFU/mL) up to the treatment
time of 200 s.

The optimization of process conditions of different tech-

nologies has been briefly represented in Table 2 from the
point of characterization of microcapsules and viability of
probiotics which is a compilation of recent research studies
of individual technologies.

Advantages and disadvantages of microencapsulation

technologies.

Convective hot air drying: In this method, the direct
exposure of droplet containing probiotic cells to hot air
results in cell rupture, lipid oxidation, and shrinkage that
ultimately causes a decrease in the cell viability but the
operational cost is five times lesser than freeze drying
process (Ermis, 2021).

Spray drying: This single unit process is the most eco-
nomic (approximately 10 times cheaper than freeze dry-
ing) with high-throughput capacity and easy to scale up
as well as the produced dried microcapsules of higher
stability and lower bulk density highlight the wider
applicability of the process but the higher inlet tempera-
tures and the exposure of cells to extreme osmotic stress
during drying lead to lower survival of probiotics, poor
stability during storage (Her et al., 2015). This process
produces water-soluble microparticles which may result
in an early release of probiotics (Frakolaki et al., 2021).
Freeze drying: This method is suitable for encapsulation
of heat-sensitive bacterial strains, and the freeze dried
capsules are well stable but need lower storage tempera-
ture or an inert atmosphere however the longer process-
ing time, higher operating cost, and the negative effect
on cellular lipid membrane as well as cell proteins limit
the application (Nag & Das, 2013).

Vacuum drying: This method provides a higher dry-
ing rate, lower drying temperature and reduced oxy-
gen concentration under vacuum conditions, and higher
viability of probiotic cells as compared to conventional
hot air drying (Ermis, 2021). However, the dried prod-
uct might have shrinkage, denser structure, poor rehy-

dration, and the loss of instant character of probiotics in
the food matrix limit its industrial application (Ambros
et al., 2018a, b, ¢).

Fluidized bed drying: This process provides uniform
drying with provisions for controlling the temperature
and is suitable for encapsulation of probiotics along
with multilayer coating of core substances, easy to
scale up at comparatively lower processing cost but
this technology is difficult to master and requires longer
processing time (Martin et al., 2015).

Microwave drying: Opposite to convection air drying,
drying of microcapsules by microwave radiation results
in the generation of inverse thermal gradient that favors
the drying of particles from inside out and fast elimina-
tion of water which involves much lower temperature
and processing time (Mardaras et al., 2021). Neverthe-
less, microwave radiation might be harmful to probiot-
ics during encapsulation if the processing conditions
are not optimized properly (Yoha et al., 2021). The
higher processing time and product temperature cause
product degradation and loss of bioactivity. Different
researchers applied microwave coupled with other dry-
ing techniques such as vacuum and freeze drying to
lower the processing time thus preserving the viability
of encapsulated probiotics Ambros et al. (2018a, b, c).
Spray cooling/chilling: This technique is the least
expensive method and has broad applicability at the
industrial level due to higher yield, a wider range of
materials used as coating ingredients, production of
smaller beads as well as lower processing temperature
that eliminates lethality of cells (Pedroso et al., 2013).
The size and morphology of produced beads facilitate
their incorporation into food products without any neg-
ative effect on textural properties (Martin et al., 2015).
This method results in lower encapsulation efficiency
which is due to the direct exposure of bacterial cells to
the outer environment and requires special attention
during handling and storage of encapsulated micropar-
ticles (Kailasapathy et al., 2008).

Spray freeze drying: This is an advantageous process
for providing controlled capsule size and larger specific
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surface area with shorter processing time than spray and
freeze drying but this process consumes 30-50 times
higher energy than spray drying (Burgain et al., 2011).

e Extrusion: The advantages of extrusion technology are
low cost, simplicity in operation, and mild processing
conditions result in higher viability of probiotics how-
ever it involves a few demerits such as difficulty in scal-
ing up of the process, inefficient to produce microsphere
less than 500 pm due to clogging of the orifice, and the
produced microspheres showed lower long term stability
(Rathore et al., 2013).

e Emulsification: This technique produces microspheres
with a wide shape and size range even below 300 pm
as well as offers higher cell viability and can easily be
applied at the industrial level but the residues of organic
solvent or oil left on the surface of particle that may be
toxic to probiotic cells limit the application of the process
(Frakolaki et al., 2021).

e Coacervation: This process provides higher encapsula-
tion efficiency, high-throughput capacity, and controlled
release properties of microcapsules, but the process is
complex, expensive, and difficult to scale up (Chavarri
et al., 2010).

e Electrospraying: This method is cost-effective, adapt-
able along with the strong electrical field strength has no
negative impact on bacterial cells thus providing high
encapsulation efficiency and controlled release of core
ingredients as well as can produce capsules in nanosize
range (1-1000 nm) (L6pez-Rubio et al., 2012). However,
the dripping of the solution may occur if the conditions
are not optimized well (Gomez-Mascaraque et al., 2016).

e Hybridization system: This process is advantageous as
compared to spray drying for achieving higher microen-
capsulation efficiency by minimizing the heat stress by
reducing the temperature below 30 °C (Ann et al., 2007).
In this method, the single coating of encapsulated capsules
might not provide adequate protection to probiotics in gas-
tric conditions but the double-coated microencapsulated
matrix could overcome this limitation (Ann et al., 2007).

e Impinging aerosol technology: This process can be oper-
ated continuously, has a higher production yield that
results in small particle size products, and is suitable for
heat-sensitive materials such as microbial cells (Sohail
et al., 2012). The produced microparticles may result in
acidification when incorporated in fruit juices thus there
is a need for the selection of suitable polymeric coat-
ing materials for the encapsulation of probiotics (Sohail
etal., 2011).

e Ultrasonication: Ultrasonication is an emerging technol-
ogy in encapsulating both hydrophilic and lipophilic sub-
stances in food and therapeutic products. It can produce
stable microbubbles having small droplets with a narrow
size distribution with low cost and energy consumption

@ Springer

(Cavalieri et al., 2011). Microcapsules can be prepared
using less surfactant or no surfactant. However, the high
shear force produced during ultrasonication can have
a negative effect on the bacteria (Ashokkumar, 2015).
Thus, ultrasonication parameters (ultrasonication power,
time) need to be optimized before use (Pandey et al.,
2021).

Characterization of microcapsules
Residual moisture content

The residual moisture content of microencapsulated pow-
der is an important parameter to affect the survivability of
probiotics. The variability of moisture content depends on
the type of carrier medium used and microencapsulation
technology applied, which ultimately affects the hygrosco-
picity of the product and molecular mobility of probiotics
(Hoobin et al., 2013). The microcapsules having a desirable
moisture content in the range of 2.8-5.6% inhibit the dete-
riorative biochemical reactions thus improving the stabil-
ity of probiotics in dried powder (Dianawati et al., 2013;
Khem et al., 2016). The residual moisture content and
hygroscopicity of the microencapsulated powder contain-
ing probiotics were influenced by the hygroscopic property
of polysaccharide-based carrier medium after drying and
storage period (Muhammad et al., 2017). Generally, higher
moisture content has been observed in spray dried protein
and polysaccharide-based products (Shrestha et al., 2008).
The improved shelf life of powder was obtained by minimiz-
ing the residual moisture content below 5% (Ananta et al.,
2005). The viability of probiotics is affected by both very
low and too high moisture contents as the elimination of
whole residual water resulted in damage to cellular protein
due to over-drying (Zayed & Roos, 2004). In contrast, higher
cellular water content caused declination of acidification
activity, severe membrane damage, and cell death (Passot
et al., 2012). Persian gum (PG) has lower moisture retention
capacity and prevents the deterioration of probiotics during
excess drying. Microencapsulation of probiotics Lactobacil-
lus reuteri by fluidized bed drying with shellac and sweet
whey produced microcapsules of 1.35 to 2.00% moisture
content with no degradation of the bacterial viability (Schell
& Beermann, 2014). The layer of trehalose and maltodextrin
protected encapsulated bacteria Lactobacillus paracasei by
raising the solid concentration and lowering the freezing rate
(Semyonov et al., 2010).

Water activity

Water activity is a critical parameter for affecting the long-
term stability of the microencapsulated probiotics. It has
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been reported that water activity lower than 0.3 is desirable
for maintaining the viability and storability of encapsulated
probiotics (Tonon et al., 2009). Such lower water activity
is required to achieve desired handling properties such as
high flowability with lower stickiness and agglomeration
in spray dried powder (Behboudi-Jobbehdar et al., 2013).
Freeze dried samples resulted in lower water activity of
0.052-0.072 due to the effect of a higher vacuum gradient
(Moayyedi et al., 2018). It has been observed that lower a,,
was achieved for spray dried powder with a higher inlet tem-
perature (Behboudi-Jobbehdar et al., 2013). Spray dried pow-
der was reported with lower a,, (0.53) as compared to spray
chilled powder (0.83) (Arslan-Tontul & Erbas, 2017). The
lowest a,, was observed with pectin as wall material when L.
plantarum was encapsulated by spray drying, as compared to
potato resistant starch and potassium alginate (Muhammad
et al., 2017). Hydrophilic and hydrophobic properties of wall
material also affect the residual a,, of microcapsules as free
water is easily released due to the low water-binding capacity
of hydrophobic wall materials (Avila-Reyes, Garcia-Suarez,
Jiménez, San Martin-Gonzalez, & Bello-Perez, 2014).

Glass transition temperature

Glass transition temperature (Tg) indicates the phase transi-
tion of polymeric material from a glassy state to a rubbery
state. The molecular weight, moisture content, and chemical
structure of the material affect its glass transition tempera-
ture. It possesses great significance during the spray drying
process and it is directly linked by the primal properties of
products such as the variation in textural and rehydration
ability, caking stability, adhesiveness, controlling biochem-
ical reactions like enzymatic reaction, color, and textural
modification during storage (Soukoulis et al., 2014). The
lowering of T, prevents the leakage of the cell membrane
during phase transition and maintains the membrane struc-
ture in a crystalline state during the drying process. The vari-
ation in T, depends on residual water content and both are
negatively correlated. The storage stability of probiotics is
greatly influenced by this temperature. The molecular mobil-
ity is restricted in the glassy state matrix that ultimately low-
ers the rate of various detrimental processes and resulted
in the long-term preservation of probiotics (Broeckx et al.,
2016; Roos, 2002). Application of low molecular weight
disaccharides such as trehalose as coating material avoids
the problem of increasing the stress on immobilized probiot-
ics by minimizing the size of crystal in the inter-membrane
space and maintaining the integrity of the lipid membrane
(Koster et al., 2000). Coating materials play an important
role in controlling the moisture content, thereby glass tran-
sition temperature as trehalose and maltodextrin possess
the ability to form a glass matrix (Semyonov et al., 2010).
Potato-resistant starch contains higher amylose content

that results in high crystallinity (35-38%) (Xu et al., 2013).
Trehalose has a lower molecular weight thus lower T, than
maltodextrin, so more effective for preserving probiotics
during the freezing stages (Semyonov et al., 2010).

Stickiness

Stickiness is also a primary characteristic of powder which
affects the yield and applicability in processing. This prop-
erty develops during spray drying if the outlet air temperature
reaches 10 °C higher than the T, of disaccharides such as
sucrose and lactose (Vega & Roos, 2006). The applicability
of mannitol, dextran, and inulin as wall material has been
limited due to sticky powder and lower yields (Broeckx et al.,
2017). The introduction of high molecular weight carrier pol-
ymers can overcome the stickiness problem by altering the
glass transition temperature during spray drying. The usage
of whey proteins results in lower aggregation of samples
as compared to Persian gum (Adhikari et al., 2009). Fluid-
ized bed drying produces dry microcapsular powder with
good handling characteristics as compared to freeze drying
(Albadran et al., 2015).

Morphological characteristics

The processability, flowability, and physicochemical charac-
teristics of microencapsulated powder are influenced by their
morphological behavior. The incorporation of sugars in the dry-
ing medium caused an increase in the concentration, thereby
viscosity of solution resulting in particles with a smoother sur-
face (Paramita et al., 2010), and drying of individual droplets
resulted in the accelerated skin or crust formation (Kim et al.,
2009). Application of pectin produced microcapsules with a
smoother surface than other polysaccharide-based microcap-
sules (Chan et al., 2011), whereas wrinkle and irregular ellip-
soidal shapes were observed in potato resistant coated micro-
capsules (Xu et al., 2013). While potassium alginate resulted
in a rough and shriveled surface due to the rapid removal of
moisture during spray drying (Mokarram et al., 2009). Spray
dried sample was characterized by spherical aggregates in
the presence of concavities without any mechanical fissures
due to the sharp loss of moisture (Fritzen-Freire et al., 2012).
Rodriguez-Huezo et al. (2007) reported that the operation at an
inlet drying temperature of 140 °C could produce concavities in
spray dried powder with a higher shielding effect against solute
diffusion and mechanical fracture. D’Alessandro et al. (2021)
reported that the increase in the protein ratio in the composi-
tion of coating materials could minimize the concavities and
shrinkage of spray dried particles, consequently preventing the
structural disruption and also observed that the presence of soy
protein in wall material prevented the roughness of particles
which could be advantageous for consumer preference when
incorporating the microcapsules in food matrices. Gum Arabic

@ Springer
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powder particles exhibited both shrinkage and smoothness
on the spherically shaped surface than maltodextrin powders
(Reyes et al., 2018). The larger and smaller size of microcap-
sules produced with higher solution feed rate and airflow rate,
respectively, and airflow rate had a greater impact on the size
of microcapsules than the solution flow rate during spray freeze
drying (Semyonov et al., 2010). Spray freeze drying produced
powders with a highly porous surface with smaller particles
than the freeze drying method and also showed its utility in
the food processing industry (Her et al., 2015). Vacuum drying
resulted in lower survivability of probiotics and rehydrability of
powder than freeze drying as it was more prone to mechanical
ruptures due to the compactness of cells, as well as samples
produced by freeze drying and microwave freeze drying, were
porous and fragile structured of size ranging between 5 and
200 pm (Ambros et al., 2018a, b, c). Electrospraying produced
more spherical microcapsules as compared to spray and freeze
drying, in which the solvent used affected the morphology of
microcapsules by altering the viscosity and surface tension
of the matrix solution (Gomez-Mascaraque et al., 2016). The
freeze dried capsules were more fragile and less robust than
fluid bed dried capsules, which indicated the industrial applica-
tion of fluidized bed drying (Albadran et al., 2015). The micro-
capsules with a single layer of fructooligosaccharide (FOS)
appeared as a rounded shape with some concavities on the
surface, whereas a single layer of lactulose displayed irregular
surfaces with convex lattices during the hybridization system
(Ann et al., 2007).

Thermal stability

The addition of oligofructose enriched inulin enhanced the
thermal resistance of the Bifidobacterium BB-12 during spray
drying (Fritzen-Freire et al., 2013) and flaxseed mucilage at
0.2% w/v acted as thermoprotectant for spray dried Lacto-
bacillus acidophilus La-05 (Bustamante et al., 2015). Rama
et al. (2020) reported that bovine cheese whey as coating
material protected the encapsulated probiotic strain Lactoba-
cillus paracasei better than ricotta whey during spray drying.
The authors stated that the higher protein content in bovine
cheese whey resulted in better thermal stability to encapsu-
lated probiotics. The protein structure unfolds due to the high
temperature of spray drying which causes the free carboxylic
and amino groups of denatured protein available for reaction,
increasing hydrophobic forces, hydrogen, and sulfide bonds
resulting in aggregation, coagulation, and precipitation. This
phenomenon creates microparticles capable of preventing the
loss of encapsulated probiotics from harsh conditions (Rama
et al., 2020). Trehalose could prevent damage to the cell mem-
brane during the freezing—thawing process because of higher
T, (Han & Bischof, 2004). Cryoprotectants play a vital role
to protect the probiotics from freezing stress. Skimmed milk
contains proteins, which act as a protective shield for the cell
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and minimize cellular injury by stabilizing the cell membrane
(Jofré et al., 2015). Oligosaccharide acts as a protectant by
inducing plasmolysis while the cell membrane becomes more
plastic due to glycerol and minimizes the formation of ice
crystals within the cell during freezing (Carvalho et al., 2004).
Xanthan-gellan gum was efficient to protect the probiotics but
unable to provide adequate resistance against the developed
stress during freeze drying (Tomas et al., 2015). Fung et al.
(2010) studied that soluble dietary fiber provided sufficient
thermal resistance to L. acidophilus during the electrospin-
ning technique. Dumont et al. (2003) classified four definite
ranges of cooling rate based on studies on yeast. Low viability
was observed in the very slow cooling rate (<5 °C/min) range;
low cooling rate (5-100 °C/min) did not cause any injury to
the cells; rapid cooling rate (100-2000 °C/min) caused lethal-
ity due to considerable outflow of water and ultra-high cool-
ing rate (> 5000 °C/min) preserved the viability of probiotics
(Semyonov et al., 2010). It was found that concentrated solu-
tions that exerted high osmotic pressure (30—150 MPa) con-
tributed to the high survivability of Lactobacillus paracasei
even at low and moderate cooling rates during spray freeze
drying (Semyonov et al., 2010). Hao et al. (2021) found that
culturing LAB strains at elevated temperatures was proved to
be useful to improve the survivability of probiotics at higher
heat stress conditions.

Storage stability

Dehydration of bacterial cells gives rise to serious oxida-
tive stress and the cell membrane gets damaged due to the
reactive oxygen species (ROS), which in turn leads to pro-
tein denaturation, lipid peroxidation along with desertifica-
tion, and damage in cell nucleic acid (Garcia, 2011). Cell
membranes are more vulnerable to ROS attack during the
prolonged dry storage period (Franca et al., 2007). Aerobic
organisms use oxygen as electron acceptor; however, during
respiration, oxygen could be partially reduced by forming
ROS, such as hydrogen peroxide (H,0,), superoxide anions
(O,7), and hydroxyl radicals (OHe) and these free radicals
would be trapped by antioxidants defense system of pro-
biotic cells under normal metabolic conditions. The dehy-
dration causes water stress and results in the dysfunction
of specific enzymes as well as the defense mechanism for
which bacterial cells are ultimately affected by the attack of
ROS (Franga et al., 2007). In a desiccated state, the packing
density of polar head groups of cellular membrane phospho-
lipids increases that leading to the strengthening of van der
Waals interaction between the carbon chains and increas-
ing the phase transition temperature, consequently lipid
will be in gel phase at room temperature. Upon rehydration,
the lipids suffer a phase transition, resulting in extensive
leakage and cell death (Garcia, 2011). Further, the higher
degree of unsaturation of desiccated cells encourages lipid
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oxidation, as well as the polar heads of the phospholipids,
generate ROS by the Fe*? autoxidation process which lowers
the shelf life of probiotics (Franca et al., 2007). The oxygen
reduction process produces ROS such as superoxide or H,0,
and the protein-Fe™ complex reacts with H,0, to produce
ferryl ions which cause proteolysis or inactivation of pro-
tein, as well as protein dehydration induces conformational
changes of protein, consequently decreasing biological
activity and damaging the bacterial cells after rehydration
(Garcfia, 2011). Decreasing storage temperature and water
activity result in increased storability of dried encapsulated
cells. Rodrigues et al. (2011) reported that high temperature
and relative humidity were detrimental to the survival of
probiotics entrapped in microcapsules, which limited their
application in food products. Several studies found that opti-
mum survivability of probiotics in spray dried powder was
observed at either 4 or 20 °C temperature with water activity
between 0.11 and 0.23 during the storage period (Chavez &
Ledeboer, 2007). Spray dried powder with Gum Arabic and
maltodextrin protected L. acidophilus in 97% vacuum condi-
tion at 4 °C (Reyes et al., 2018), whereas skim milk provided
higher protection to probiotic L. casei than maltodextrin and
trehalose during spray drying and storage (Liao et al., 2017).
The electrosprayed Bifidobacterium longum subsp. infantis
CECT 4552 powder showed higher viability after10 days at
37 °C and after 600 days at 23% RH conditions (Libran et al.,
2017). Azizi et al. (2021) found that spray and freeze drying
provided an improved storability of probiotics Lactobacillus
rhamnosus than the electrospraying technique at both ambi-
ent and refrigerated conditions. A thumb rule has been pro-
posed that the T, should be 10-20 °C higher than the storage
temperature to maintain the glassy state thus maintaining the
structural integrity of powder during storage (Roos, 2002).
The ability to encapsulate materials for protecting the spray
dried probiotic L. plantarum KLDS 1.0344 powder stored at
25 °C with a, of 0.11 was observed in the following order:
potato resistant starch > pectin > potassium alginate > whey
protein isolate and D-mannose (Broeckx et al., 2017). Freeze
drying has been practiced for the preservation of probiot-
ics during long-term storage but causes cell damage during
the drying process. The protective agents increase the glass
transition temperature to avoid intracellular ice formation
and reduce cell damage during drying (Meng et al., 2008).
The survival rate of fluidized bed dried Lactobacillus lac-
tis 1464 was maintained (> 10’ CFU/g) over 3 months of
storage period after drying at 50-60 °C, with the applica-
tion of monosodium glutamate and acacia gum (Wirunpan
et al., 2016). Fluidized bed drying provided better stability
of Enterococcus faecium M74 than freeze drying process
(Stummer et al., 2012), whereas bacterial cells exposed to
thermal or osmotic stress in growth media before harvest-
ing resulted in higher survivability of Lactobacillus reuteri
after fluidized bed drying (Schell & Beermann, 2014). The

osmotically stressed L. casei CRL 431 cells were found to be
most stable even when stored at 30 or 37 °C after 24 weeks
(Nag & Das, 2013). Similarly, double microencapsulation
of Lactobacillus acidophilus ATCC 43,121 by hybridiza-
tion system with FOS and lactulose resulted in the highest
survival rate at 25 °C (Ann et al., 2007). The incorporation
of vitamin E powder as a coating material provided higher
stability to L. casei against oxidative damage during dry
storage due to its antioxidant property (Nag & Das, 2013).

Mechanism of release in microencapsulation
processes

Control release is a method to deliver core material at a
targeted site at a specific rate and time. The core material
release properties depend upon the core wall morphologies
like mononuclear, polynuclear microcapsules, or micro-
spheres. The release of active material may be a combina-
tion of the following release mechanisms (Pothakamury &
Barbosa-Céanovas, 1995).

e Diffusion controlled release: Volatile or non-volatile
active material diffuses through carrier or pores present
in the wall.

e Pressure activated release: Wall rupture due to external
pressure like the release of sweetener or flavor in the gum.

e Shear/compressive force: (Mechanical release) chewing,
blending.

e Solvent activated release: Water or solvent penetrates the
wall material result in swelling of microcapsules.

e Osmotically controlled release: Core material released
due to osmotic pressure created inside the microcapsules.

e Temperature-sensitive release: Expand or collapse due
to temperature change.

e Dissolution or melting activated release: Fat or wax as
wall material melts during heating.

e pH-sensitive release: An enzyme or bacteria release at
specific pH in the intestine.

e Biodegradation: Oil coating can be degraded by the
action of lipase enzymes.

The controlled release of probiotics can be judged by the
effect of wall material and microencapsulation technologies
on the survival of probiotics during the simulated GI condi-
tion, which has been illustrated in Table 3.

Mechanism of diffusion
The release rate depends upon the choice of wall material,
morphology, thickness of wall material, physicochemical

properties of wall and core material, and permeability of
the shell.

@ Springer
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Table 3 Effect of wall material and microencapsulation technologies on the survival of probiotics during simulated GI condition

Probiotic Types of wall material ~ Encapsulation technology Probiotic viability/ Time of Reference
survivability incubation
Bifidobacterium lactis Casein-pectin complex Complex coacervation 108 CFU/mL 3h Oliveira et al. (2007)
and spray drying
Lactobacillus rhamnosus ~ Whey protein isolate Extrusion technology 10° CFU/mL 3h Doherty et al. (2011)
Lactobacillus acidophilus  Resistant starch (Hi- Extrusion technology 6.35 log CFU/g 2h de Aratjo Etchepare
maize)-chitosan- et al. (2016)
sodium alginate
Lactobacillus bulgaricus  Alginate—milk Extrusion technology 8 log CFU/g 2h Shi et al. (2013a, b)
Lactobacillus reuteri Shellac Fluidized bed drying 76.74% 100 min Schell and Beermann
DSM 20,016 (2014)
Saccharomyces boulardii  Hydrogenated palm oil ~ Spray chilling 96% 180 min Arslan-Tontul and Erbas
(2017)
Lactobacillus acidophilus ~ Alginate Impinging aerosols 3.83 log CFU/mL 90 min Sohail et al. (2011)
NCFM method
Lactobacillus casei LK-1 Trehalose Spray drying 6.5 log CFU/mL 4h Liao et al. (2017)
Lactobacillus acidophilus Alginate-citric acid- Electrospraying Reduced by 1-log 2h Laelorspoen et al.
modified zein CFU/mL (2014)
Lactobacillus plantarum  Sodium alginate-citric ~ Electrospraying Decreased by 2.7log 2 h Coghetto et al. (2016)
pectin matrix CFU/mL
Lactobacillus plantarum  Resistant starch from Vacuum drying Reduced by 40.83% 6h Hongpattarakere and

CIF17AN2

unripe saba banana

Uraipan (2015)

The release kinetics follows the following models.

Zero-order diffusion model

The release rate is constant means increasing or decreasing
the concentration will not change the diffusion rate (Eq. 1).

Cuoxt

G /a =Ko

ey

where C, is the amount of core material released in time ¢,
and k, is a zero-order rate constant.

First-order diffusion model

The release rate is dependent on the concentration of the

active material (Eq. 2).

dc/dt =k,C

where k, is the first-order rate constant.

Mechanism of osmosis

@

Osmosis is the process in which a molecule transfers
from a less concentrated region to a higher concentration
through a semipermeable membrane. In osmotic control
release, the core is released due to osmotic pressure from

@ Springer

the microcapsules. From the Van’t Hoff equation, we can
calculate osmotic pressure as follows (Eq. 3).

T = MRT 3)

where I1 = osmotic pressure (atm), M = molar concentration
of solution (mol/L), R = gas constant 0.0821 L atm/mol K,
T = temperature in K.

Mechanism of biodegradation/erosion

For microspheres systems, the core is dispersed within the
matrix and is released when the matrix degrades or erodes.
So, the surface area of the microsphere decreases with time,
resulting in decreasing release rates. The release can be
controlled by diffusion, erosion, or a combination of both.
Erosion can be controlled by homogeneous or heterogene-
ous processes. The rate of erosion is constant in the homo-
geneous erosion process throughout the matrix, whereas
for heterogeneous erosion, degradation is limited to a thin
layer at the surface of the delivery system (Pothakamury &
Barbosa-Canovas, 1995).

Mechanism of swelling

The core is dissolved or dispersed in a thermodynamically
compatible medium, the polymer swells absorbing the fluid
from the medium. The core in the swollen part of the matrix
then diffuses outs. The membrane undergoes a transition
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from a glassy to a gel state and core material diffuse out
(Madene et al., 2006).

Application of microencapsulated powder
for probiotication in food products

The development of food products with probiotic effects has
emerged as functional foods (Table 4) intending to provide
potential health benefits to mankind. Several factors influ-
encing the survivability of probiotic strains in food products
are the type of strain, the method for preparation of culture,
state of cell inoculum, oxygen level, and storage tempera-
ture (Ying et al., 2013). Microencapsulated probiotic powder
formulation has been proved as a more convenient delivery
format compared to wet gelled formulations. However, the
selection of appropriate microencapsulation technology and
coating materials are crucial for the protection of probiotics
as well as retention of their functionalities in different food
matrices (Fig. 4).

Beverages

Pourjafar et al. (2020) encapsulated L. acidophilus by extru-
sion method with sodium alginate and chitosan and added
(1 g) in 10 mL of Iranian Doogh beverage. It was observed
that the microencapsulated beverage showed higher viability
of probiotics (7.4x 107 CFU/g) compared to the beverage
containing free cells (5.8 x 10* CFU/g) during the storage
period (at 5 °C up to 42 days) without any considerable
change in pH, acidity, and sensory properties of the bev-
erage. The application of probiotics Lactobacillus casei
encapsulated by extrusion technology with sodium alginate
in orange juice was studied by Olivares et al. (2019). The
authors reported higher viability of probiotics (10® CFU/mL)
during 28 days of cold storage (at 4 °C) and the higher con-
centration of survivability was achieved due to the presence
of ascorbic acid, an antimicrobial compound, antioxidant,
and important nutrient for probiotics despite the lower pH
(3.45) of juice. Probiotic apple juice was prepared by add-
ing spray dried microencapsulated Lactobacillus rhamnosus
GG (1% w/v) and resulted in higher survivability at lower
pH and higher temperature of 25 °C as compared to a lower
temperature of 4 °C (Ying et al., 2013). Dias et al. (2018)
observed that the higher proportion of inulin improved the
viability of spray dried encapsulated probiotic strain Bifi-
dobacteria animalis (above 6.5 log CFU/g) in passion fruit
juices during storage at 4 and 25 °C for 30 days whereas the
microcapsules containing maltodextrin showed complete
loss of viability of bacteria in stored juices at 25 °C after
30 days. Encapsulated bacteria incorporated in orange and
apple juice showed higher stability, average malic acid con-
centration, and Brix than free cells throughout the six weeks

of storage as the sugars in the orange juice could be more
readily utilized by free probiotic bacteria than the entrapped
cells (Ding & Shah, 2008). King et al. (2007) found similar
results and observed that the sensory score was higher for
fermented tomato juice containing immobilized L. acidophi-
lus than free cells due to inhibition of unfavorable reactions
during the storage period.

Cheese

Many studies have been performed on the application of
microencapsulated bacterial strains in different types of
cheese. There are certain advantages of selecting cheese as
a good carrier of probiotic organisms due to its relatively
high-fat content and good buffering capacity against adverse
GI conditions (Frakolaki et al., 2021). The application of
microencapsulation of L. acidophilus by freeze drying with
alginate and chitosan in spreadable goat Ricotta cheese
improved the bacterial viability (> 6 log CFU/mL) and qual-
ity attributes such as lowering proteolysis, no moisture loss,
lowering gumminess, and adhesiveness (Lopes et al., 2021).
Sharifi et al. (2021) co-encapsulated probiotic culture Lacto-
bacillus plantarum and phytosterol by complex coacervation
followed by freeze drying by applying whey.

protein isolate and Gum Arabic as coating materials
and incorporated in Iranian white cheese. It was observed
that the combination of probiotic bacteria with phytosterol
showed higher viability, i.e., 8.14 log CFU/g compared to
microencapsulated probiotic strain alone (7.95 log CFU/g),
and free cells (6.44 Log CFU/g) in cheese after 61 days of
storage. Vasile et al. (2020) comicroencapsulated probiotic
strain Lactobacillus casei with black beans aqueous extract
by freeze drying using biopolymers such as whey protein
isolate, chitosan, and inulin which provided improved viabil-
ity of 2 log increase in bacterial cells as well as a higher
stability of phytochemicals and biological parameters such
as higher a-glucosidase and a-amylase inhibitory activity in
21 days stored soft cheese sample. Another study revealed
that no difference was found between two microencapsula-
tion technologies such as emulsion and extrusion techniques
regarding proteolysis, bacterial counts, and organoleptic
properties of Kesar cheese (Ozer et al., 2008). In this study,
the cheese with microencapsulated probiotics Lactobacil-
lus acidophilus LA-5 and Bifidobacterium bifidum BB-12
showed the desired viability (above 10’ CFU/g) whereas
nonencapsulated probiotics were found to be continuously
decreasing due to scalding throughout the 90 days of storage.
In the case of feta cheese, the incorporation of microencap-
sulated probiotics Bifidobacterium lactis and L. acidophilus
did not significantly influence textural properties such as
cohesiveness and springiness (p <0.05) but chewiness, gum-
miness, and hardness were greatly affected (Kailasapathy &
Masondole, 2005).

@ Springer
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Table 4 (continued)

&

References

Food material

Method

‘Wall material

Microencapsulated probiotic strains
(rate of inoculation in food matrices)

Springer

Ding and Shah (2008)

Orange and apple juice

Emulsion

Sodium alginate (3% w/v)

Lactobacillus rhamnosus,

Bifidobacterium longum, L. salivarius,

L. plantarum, L. acidophilus, L.

lactis type Bi-07 (NM)
L. acidophilus BCRC 10,695 (4%,

paracasel, B. lactis type Bi-04 and B.

Tsen et al. (2008)

Cell immobilization Tomato juice

k-carrageenan (4% w/v)

v/v)
Lactobacillus plantarum (50 g in

450 g of wheat flour)

Rajam et al. (2015)

Noodle

Fructooligosaccharide and denatured Freeze drying

whey protein isolate (ratio of 1:1,

20% wiw)

CC initial cell concentration, NM not mentioned

Yogurt

Similarly, probiotic yogurt has been developed by incorpo-
rating living strains to increase the therapeutic value (Chen
& Chen, 2007). Unlike cheese, it is a poor carrier of pro-
biotics due to the lower pH (4.2 to 4.6). The problem has
been resolved by different authors by microencapsulating
the bacterial strains. The coating of whey protein and xan-
than gum resulted in higher viability of the encapsulated
probiotic strain Lactobacillus acidophilus, i.e., 6.98 log
CFU/g as that of free cells (approximately 2 log CFU/g) in
yogurt during 28 days of storage but the addition of micro-
encapsulated probiotics increased adhesiveness, firmness,
and viscosity as well as deceased syneresis of yogurt sam-
ples (Khorshidi et al., 2021). De Prisco et al. (2017) encap-
sulated Lactobacillus delbrueckii in the alginate-chitosan
capsule by extrusion technology and used it as a starter
culture for yogurt which showed improved protection to
probiotics during 28-day long storage (7.70 log CFU/g) as
well as digestion process (2 h of gastric condition) having
100% survivability, whereas the free cells lost their viabil-
ity completely. Li et al. (2020) observed that the addition
of microencapsulated probiotics Lactobacillus strains with
galactooligosaccharides and lactitol by extrusion showed an
adverse effect on textural properties and syneresis of yogurt
samples during storage though improved viability of 9.95
log CFU/g was achieved compared to the control sample.
Microencapsulated Bifidobacteria when incorporated into
stirred yogurt, the grainy texture was developed with particle
size ranging from 22 to 50 pm which retarded the sensory
quality (Adhikari et al., 2003). With the addition of prebiotic
ingredients such as resistant starch and glycerol as encapsu-
lating material, the viability was enhanced but failed to pro-
tect the probiotic cells in simulated GI conditions (Sultana
et al., 2000). This stimulates the growth of probiotics with
enhancing the functionality of food products due to a syner-
gistic effect of prebiotic and probiotic. A negative correla-
tion was observed between survivability of probiotics and
post storage pH due to the presence of fruit pulp in yogurt
despite higher survivability after 35 days of storage period
(Kailasapathy et al., 2008). The oxygen-sensitive probiotics
were also protected effectively by incorporating microencap-
sulated powder in yogurt (Talwalkar & Kailasapathy, 2004).

Ice cream

The growth of probiotics in ice cream is dependent on pH
as neutrality tends to support the growth of microorganisms,
whereas fermented ice cream affects the metabolic activity
of probiotic bacteria but frozen injury, oxygen toxicity, and
higher osmotic pressure mainly cause the loss in viability of
strains in frozen dairy desserts (Frakolaki et al., 2021). Zaeim
et al. (2020) prepared ice cream with the incorporation of
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Fig.4 Application of microencapsulated probiotics in different food products and suitable packaging materials for probioticated foods

electrosprayed microcapsules containing probiotic bacterium
Lactobacillus plantarum with alginate, chitosan, inulin, and
resistant starch as prebiotics. It was observed that starch-
containing microcapsules provided better viability (7.82 log
CFU/g) as compared to inulin (7.37 log CFU/g) in ice cream
after 90 days of storage. The co-encapsulation of probiot-
ics with prebiotics improves their viability in harsh condi-
tions of the food matrix and digestive system by accelerating
their growth and proliferation (Zaeim et al., 2020). Similarly,
Afzaal et al. (2020) observed that microencapsulated probi-
otic Lactobacillus casei in calcium alginate and whey protein
concentrate hydrogel exhibited better survival (> 8 log CFU/
mL) compared to non-encapsulated cells (6.41 log CFU/mL)
in ice cream samples after 80 days and the microencapsu-
lated cells resulted in grittiness as well as the hydrocolloids
affected the texture and appearance of ice cream. The authors
also reported that the viscosity of ice cream was greatly
affected by the properties of microcapsules such as shape,
size, and type of coating materials used for encapsulation.

Other food products

dos Santos et al. (2019) developed synbiotic mousse by
incorporating the microencapsulated Lactobacillus acido-
philus with inulin by spray drying technique and subjected
to in vitro gastrointestinal condition. It was observed that the
lowest reduction of bacterial cell count occurred in mousse
with encapsulated cells (1.3 log cycles), followed by micro-
encapsulated cells (2 log cycles), mousse with free cells (3
log cycles), and the highest reduction occurred in free cells
(7.4 log cycles) after 6 h of in vitro study.

Probiotic chocolate was developed by Hossain et al.
(2021) by fortifying with freeze dried Lactobacillus
casei encapsulated with cocoa powder, alginate, and

fructooligosaccharides. Higher viability of more than 7 log
CFU/g in chocolate after 90 days of storage at 25 °C and
gastrointestinal digestion process (8 log CFU/g), as well
as cell count of above 10.50 log CFU/g during the colonic
fermentation, showed the potential delivery of probiotics
through chocolate. Similarly, the addition of microencapsu-
lated bacterium S. thermophiles prepared by emulsification
process with encapsulants (pectin, carboxymethylcellulose,
cellobiose, and gum Arabic) showed good viability in dark
(6.90 log CFU/g) and milk (7.12 log CFU/g) chocolates
stored at 4 °C up to 180 days without affecting the sen-
sory attributes and moisture content of chocolates (Ozturk
et al., 2021). In this study, the higher viability of probiotics
during storage might be attributed to the higher protein and
carbohydrate content of milk chocolate along with the pres-
ence of antioxidant compounds in chocolates preventing the
loss of bacteria in gastrointestinal conditions. Introduction
of microencapsulated powder (prepared by emulsification
process) into chocolate exhibited protection to probiotic
strains in environmental stress conditions due to the pro-
tective action of lipid components present in cocoa butter
(Lahtinen et al., 2007).

Muzzafar and Sharma (2018) microencapsulated probiot-
ics Lactobacillus acidophilus, Lactobacillus rhamnosus, and
Bifiobacterium bifidum by emulsification followed by freeze
drying using xanthan gum, maltodextrin, and sunflower oil
as wall materials and incorporated the microencapsulated
powder in the cream layer of biscuit. It was observed that the
probiotic biscuits retained the viability (above 8 log CFU/g)
over 8 weeks (stored at 25 °C) and higher fat, fiber con-
tent with higher taste and overall acceptability was found
in probiotic biscuits due to the influence of ingredients in
wall materials for encapsulation. Similarly, functional bis-
cuits have been developed containing prebiotic inulin and

@ Springer
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probiotic Lactobacillus plantarum encapsulated by emul-
sification process using alginate solution (Gonzélez-Forte
et al., 2014). The additional coating layer of starch—glycerol
extended the higher survivability of probiotic (8.7 log CFU/
mL) as compared to uncoated sample (7.8 log CFU/mL) up
to 1 month of storage as well as protected the viability dur-
ing the passage of the simulated GI tract (5.5 log CFU/mL)
as that of the control sample (3.5 log CFU/mL). Another
researcher incorporated microencapsulated spray dried L.
acidophilus to bread surface through the starch-based edible
coating and evaluated the change in physicochemical param-
eters (Altamirano-Fortoul et al., 2012). The probiotic count
was not affected by the baking process (at 180 °C for 16 min)
exhibiting survival of 63.2% due to an adhesive interaction
between probiotics and starch macromolecules. The devel-
oped bread exhibited similar characteristics to the common
bread with reduced failure force and better acceptability.

de Oliveira Gomes et al. (2021) prepared Italian salami (a
dry fermented meat product) with the incorporation of spray
dried probiotic Bifidobacterium animalis encapsulated using
alginate, B-cyclodextrin, and xanthan gum. The addition of
0.020% curing salt with encapsulated probiotic resulted in
higher viability (> 8 log CFU/g) during storage (at 25 °C up
to 45 days) without affecting the lipid oxidation, nutritional
profile, fatty acid profile, textural properties of salami, as
well as the probiotication improved the organoleptic proper-
ties. Camargo et al. (2021) probioticated coppa (an indus-
trialized meat product obtained from the pork carcass) with
probiotic Bifidobacterium bifidum encapsulated by emulsi-
fication process with curing salt, black pepper, garlic, and
nutmeg. There was a declination of viability from 10.60 to
7.3 log CFU/g after 30 days of ripening period along with
lower lipid oxidation and greater weight loss were observed
in probiotic added coppa as compared to control samples
(without the addition of probiotic) over the storage period.

Yoha et al. (2021) developed 3D printed synbiotic-composite
flour construct comprising of green gram, fried gram, ajwain
seeds, and barnyard millet with the incorporation of probiotic
Lactiplantibacillus plantarum encapsulated by spray drying,
freeze drying, spray freeze drying, and refractance window dry-
ing, and subjected the 3D constructs to post-processing methods
such as freeze drying, hot air drying, and microwave drying. In
this study, the incorporation of spray-freeze dried probiotic pow-
der (flour and probiotic powder in a ratio of 9:1, w/w) followed
by freeze dried 3D printed construct showed the highest viability
6.43 log CFU/mL with 79% survivability under in vitro digestion
process as well as retained the probiotic viability with 96-98% of
survival rate after 35 days of storage period (stored at 4 °C) but
the microwave drying (360 W for 5 min) post-processed flour
construct showed the complete loss of cell viability due to the
rapid rise in product temperature.

Rajam et al. (2015) microencapsulated Lactobacillus
plantarum with carrier matrices such as denatured whey
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protein isolate and fructooligosaccharide. The freeze dried
powder was incorporated into noodle formation and the
functional properties were evaluated. Declination of surviv-
ability from 93.63 to 62.42% was observed in the hot dried
noodle. Cooking time was reduced by the incorporation of
probiotic microcapsules which might be due to a decrease
in the gluten level that allows the rapid gelatinization and
increased solid loss occurred due to disturbance in the gluten
network that resulted in a discontinuous protein matrix. The
probiotic noodle was a little brown color due to the addition
of microcapsules, but the overall acceptability was higher.

Packaging of probiotic food products

The selection of packaging material is an important factor for
the shelf life extension of probiotic fortified functional food
products (Fig. 4). Some anaerobes, in particular Bifidobacte-
ria, are more susceptible to oxygen; therefore, plastic material
with higher oxygen permeability should be avoided while han-
dling the probiotic products. Application of oxygen scavenging
agent in packaging material with good oxygen barrier proper-
ties provided favorable conditions for preserving probiotics
in yogurt (Miller et al., 2003). Glass containers with greater
thickness resulted in higher survivability of Bifidobacteria and
L. acidophilus in yogurt sample as compared to plastic con-
tainers (Shah, 2000). The higher cost due to the glass contain-
ers could be overcome by the insertion of oxygen scavengers,
active packaging, and vacuum packaging with higher barrier
properties to air and moisture (Tripathi & Giri, 2014). Edible
coating or film with the application of prebiotics such as oligo-
saccharide and inulin have been shown to improve the viability
of probiotics in food materials (Asaithambi et al., 2021). Singu
et al. (2020) observed higher viability of probiotics Saccharo-
myces boulardii in synbiotic corn flakes kept in nitrogen gas
packaging system (7.81 log CFU/g) as compared to vacuum
(7.62 log CFU/g), and atmospheric air (7.46 log CFU/g) pack-
aging on the 90th day of storage. In this study, vacuum pack-
aging caused the breaking of corn flakes thus rupture of the
embedded cell membrane of probiotics during the process of
creating the vacuum whereas, nitrogen as inert gas prevented
the oxidation of stored product thus retaining the survival of
probiotics in the stored corn flakes. The storage conditions
such as crystallinity of the packaging material, temperature,
and relative humidity may influence the permeability of pack-
aging material thus may alter the survival rate of the encapsu-
lated probiotic strains (da Cruz et al., 2007; Miller et al., 2002).

Conclusion

Generally, oral administration of probiotics causes severe
loss of viability during the transit of the GI tract. From this
point of view, incorporation of microencapsulated probiotic
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bacteria in the formulation of food products is an alternative
and cheapest way to provide functional benefits to human
beings as well as animals despite taking antibiotic treatment.
Microencapsulation is an effective approach to maintain the
viability of probiotics during manufacturing, storage, and
gastrointestinal condition. Different technologies such as
spray drying, freeze drying, extrusion have been commonly
used but other drying methods such as vacuum, fluidized
bed, microwave drying can also be employed effectively to
encapsulate the probiotics with suitable coating materials at
an industrial scale. The incorporation of microencapsulated
probiotics into food formulations is a safe pathway to reach
them in the targeted delivery system. This process is also
associated with several technological, microbiological, and
economic challenges.

Many efforts of researchers have succeeded to overcome
the hurdles to some extent but future research work is needed
to explore heat-resistant strains and coating materials for
encapsulation by employing different cost-effective tech-
nologies. This solution will lead to a novel approach for the
preparation of food products with functional features but the
additional manufacturing cost should be within an accept-
able limit to remain competitive in the globalized market of
functional foods. The microcapsules containing probiotics
should not alter the sensorial properties of formulated prod-
ucts as well as the polymers used for encapsulating should
be food grade and certified with GRAS status preferably of
plant origins. Emulsion and extrusion technologies are easier
to scale up, and these methods avoid high temperatures dur-
ing the encapsulation process thus providing higher surviv-
ability of probiotics with a smaller size of beads. The emul-
sification process limits the application in food industries as
residual oil on the capsule surface hampers the survivability
of probiotics and is also detrimental to the sensory proper-
ties of food products. Spray chilling has been considered
as the least expensive microencapsulation technology for
probiotics and fluidized bed drying produces microcapsules
of the desired flowability with lower manufacturing cost as
compared to spray and freeze drying. Optimization of pro-
cess conditions is required for different probiotic strains to
popularize these technologies on an industrial scale.

Different probiotic fortified dairy and nondairy-based
products and beverages, meat-based products, and ready-
to-eat cereal products are available in the global market.
A consistent effort and research should be put in for the
commercial production of probiotic enriched bakery and
extruded products for all age groups. Proper labeling and
health claims should be informed which includes types of
the genus, species, and strain; a minimum viable number of
probiotics at the end of shelf-life; serving size to provide
an adequate amount of probiotic to satisfy the health claim;
description of physiological effect certified by the law with
scientific evidence and storage conditions for storing the

product. From the overview, it is concluded that microen-
capsulation technology has future benefits despite the extra
cost by incorporating the microencapsulated probiotics for
the formulation of higher value-added products.
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