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Abstract

With the rise in engineered biomolecular devices, there is an increased need for tailor-made
biological sequences. Often, many similar biological sequences need to be made for a specific
application meaning numerous, sometimes prohibitively expensive, lab experiments are nec-
essary for their optimization. This paper presents a transfer learning design of experiments
workflow to make this development feasible. By combining a transfer learning surrogate
model with Bayesian optimization, we show how the total number of experiments can be
reduced by sharing information between optimization tasks. We demonstrate the reduction
in the number of experiments using data from the development of DNA competitors for use
in an amplification-based diagnostic assay. We use cross-validation to compare the predic-
tive accuracy of different transfer learning models, and then compare the performance of the
models for both single objective and penalized optimization tasks.

1 Introduction

Tailoring biological sequences, such as oligonucleotides or proteins, for specific applications is a common
challenge in bioengineering. These engineered molecules have a variety of uses including in biosensors
(Hua et al., 2022; Deng et al., 2023; Goertz et al., 2023), medical therapeutics (Badeau et al., 2018;
Blakney et al., 2019; Ebrahimi and Samanta, 2023) and bio-computing (Siuti et al., 2013; Qian et al.,
2011; Lv et al., 2021). However, development often requires expensive or time consuming experiments,
meaning good experimental design is necessary to optimize the biological sequences within the experimen-
tal budget (Cox and Reid, 2000). This also leads to better analysis, especially when there are interaction
effects between input factors, which is common in biological experiments (Kreutz and Timmer, 2009;
Politis et al., 2017; Papaneophytou, 2019; Fellermann et al., 2019; Narayanan et al., 2020; Gilman et al.,
2021).

Iterative experimental designs have the advantage of using information from previous experiments to
inform future ones. Bayesian optimization is an iterative global black-box optimization strategy (Snoek
et al., 2012; Shahriari et al., 2016) which has proven effective for the design of biomolecular experiments
including antibody development (Khan et al., 2023), extracellular vesicle production (Bader et al., 2023),
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design and manufacturing of proteins and tissues (Romero et al., 2013; Mehrian et al., 2018; Narayanan
et al., 2021; Gamble et al., 2021), validation of molecular networks (Sedgwick et al., 2020) and vaccine
production (Rosa et al., 2022). In Bayesian optimization, a surrogate model, usually a Gaussian process,
of the system is built using data and an acquisition function decides which data point to collect next.
Gaussian processes are a powerful tool for designing biological experiments in low data regimes due to
their uncertainty estimates (Hie et al., 2020).

When many similar biological sequences need to be designed, it can be even harder to optimize
all the sequences within the experimental budget. Optimizing each sequence from scratch discards
useful information from previous tasks, meaning more experiments are required. An alternative is to
use transfer learning — a technique that improves the learning of new sequences by sharing information
between optimization tasks (Zhuang et al., 2021).

As we require our surrogate model to be data efficient and have uncertainty quantification, we consider
four transfer learning Gaussian process models: an average Gaussian process (AvgGP), the multi-output
Gaussian process (MOGP), the linear model of coregionalisation (LMC) and the latent variable multi-
output Gaussian process (LVMOGP). The key difference between these Gaussian process models lies in
their handling of correlations between outputs: from no correlation in the MOGP to non-linear correlation
in the LVMOGP.

We apply these surrogate model in conjunction with Bayesian optimization for efficient optimization
of bio-molecules, as shown in Figure 1. We focus specifically on the development of a new modular
diagnostic assay, based on competitive polymerase chain reaction (PCR), for measuring expression of
multiple genes simultaneously, giving a single end point readout (Goertz et al., 2023). This diagnostic
requires many competitor DNA sequences to be optimized to have the correct amplification properties
in PCR reactions, and we believe the relationship between the responses of the competitors may be
non-linear. For optimal results, these competitors should have a predefined amplification curve rate; and
a nuisance drift factor should ideally be below a certain threshold to allow for a more stable readout.

We use synthetic data experiments to compare transfer learning Gaussian process models in different
settings. We then use cross-validation to verify the benefit of the LVMOGP for modeling the response of
the competitors, using data from DNA amplification experiments. We confirm that a LVMOGP surrogate
model in conjunction with the design of experiments workflow speeds up optimization of the competitors
for both a single objective case, where only rate is optimized, and an optimization case with a penalty
on drift over a given threshold.

2 Materials and Methods

2.1 Gaussian Process Regression

A Gaussian process is a stochastic process representing an infinite collection of random variables, the joint
distribution of any subset of which is a multi-dimensional Gaussian distribution (Rasmussen and Williams,
2006). A Gaussian process is fully defined by its mean m : RD 7→ R and covariance k : RD × RD 7→ R
functions:

f (x) ∼ GP
`
m(x); k(x ; x ′)

´
; (1)

where x ∈ RD. For a full nomenclature see Appendix 8. The output data y(x) ∈ R is assumed to be
noisy evaluations of f (x) ∈ R:

y(x) = f (x) + ›; (2)

where › ∼ N (0; ff2n) and ff2n is the noise variance.
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Figure 1: Design of experiments workflow for optimizing the competitor DNA molecules. (A) Data is
collected in the lab using a DNA amplification reaction assay. (B) The rate and drift are then calculated
by fitting them to the amplification curves. (C) Transfer learning surrogate models use the data to
predict the rate and drift for each of the given competitors. (D) A Bayesian optimization algorithm
selects the experiment to run for each competitor. This process is repeated until all optimal competitor
sequences are found or the experimental budget is exhausted.

Prior beliefs about the data can be expressed in the selection of the mean and covariance functions.
Often this implies setting the mean function to zero, which is what we do here. A common kernel function
is the squared exponential, which is a stationary kernel that assumes the data-generating function is
smooth:

k(x ; x ′) = ff2kexp

 
−

DX
d=1

(xd − x ′d)
2

2‘2d

!
; (3)

where ff2k is the kernel variance and ‘d is the lengthscale of dimension d . Given a set of N training data
D = {(xi ; yi )|i = 1; :::; N}, the training inputs {xn}Ni=1 can be aggregated into the matrix X ∈ RN×D

and the training observations {yn}Ni=1 aggregated into the vector y ∈ RN . It is then possible to write
a joint distribution of the training observations y and predicted function value f∗ at prediction locations
X∗. Thus, the mean and covariance of the Gaussian process at the prediction points can be calculated
respectively:

—(X∗) = E[f̄∗|X; y ; X∗] = K(X∗; X)[K(X;X) + ff2nI]
−1y (4)
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ff(X∗) = K(X∗; X∗)−K(X∗; X)[K(X;X) + ff2nI]
−1K(X;X∗): (5)

The hyperparameters „ = {ff2n; ff2k ; ‘d} are optimized by maximizing the marginal likelihood p(y |X; „),
which is calculated in closed form (Rasmussen and Williams, 2006).

2.2 Transfer Learning Gaussian Processes

2.2.1 Independent Gaussian Processes with Shared Kernel

A simple way of transferring information is through the kernel hyperparameters. In the multi-output
Gaussian process (MOGP), the outputs are assumed to be multi-dimensional such that y ∈ RN×P

(Álvarez et al., 2012). All outputs have the same kernel function and hyperparameters but function
values on different outputs are uncorrelated. This means the kernel of the MOGP is a block diagonal
with k(Xp; X ′

p) = k(Xp; X
′
p) if p = p′ and k(Xp; X ′

p) = 0 if p ̸= p′ where p is the output index. The
joint distribution for two outputs f1 and f2 evaluated at points X1 and X2 is given by:»

f1
f2

–
∼ N

„
0;

»
K(X1; X1) 0

0 K(X2; X2)

–«
: (6)

2.2.2 Linear Model of Coregionalization

The linear model of coregionalization (LMC) extends the MOGP to model linear correlations between
output surfaces by assuming they are linear combinations of Gaussian process latent functions:

fp(x) =Wpg(x) + »pflp(x): (7)

where W ∈ RP×Q is a vector of weights g(x) = {gq(x)}Qq=1 are shared latent functions, flp(x) is a
latent function that shares the kernel of g(x) and allows for some independent behavior and »p is a
learned constant (Álvarez et al., 2012; Bonilla et al., 2007).

This leads to a kernel structured in such a way that the joint distribution between two functions f1
and f2 is given by: »

f1
f2

–
∼ N

 
0;

"PQ
q=1 b11kq(X1; X1)

PQ
q=1 b12kq(X2; X2)PQ

q=1 b21kq(X1; X1)
PQ

q=1 b22kq(X2; X2)

#!
; (8)

where bpp′ is an element of B = WW T +diag(»), a P ×P matrix determining the similarity between
functions and there are Q different covariance functions kq(x ; x ′). If Q = 1, this is known as the intrinsic
coregionalization model (Álvarez et al., 2012).

Coregionalization methods have successfully been used for Bayesian optimization (Cao et al., 2010;
Swersky et al., 2013; Tighineanu et al., 2022) and applied to the optimization of synthetic genes (González
et al., 2015) and chemical reactions (Taylor et al., 2023). However, coregionalization methods assume
the response surfaces are linear combinations of a small number of latent functions, so they can fail to
fit and predict well on data with non-linear similarity between surfaces.

2.2.3 Latent Variable Multi-output Gaussian Process

The latent variable multi-output Gaussian process (LVMOGP) introduced by Dai et al. (2017) can model
non-linear similarities. It does so by augmenting the input domain of a Gaussian process with a QH
dimensional latent space H. Each output function has a latent variable, such that the latent variables
are denoted by H = [h1; :::;hP ]

T ∈ RP×QH . The LVMOGP assumes output yp is generated by:

yp(x) = f (x ;hp) + ›; (9)
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where › ∼ N (0; ff2n). The latent space allows the LVMOGP to automatically transfer learn between
output functions as it will cluster similar output functions together and place widely different ones far
apart on the latent space. The distance on the latent space and the latent space lengthscale then
determine the amount of correlation between different output functions. To account for uncertainty in
the placement of the latent variables, they are treated as distributions rather than point estimates, such
that hp ∼ N (—hp ;Σhp). For more details on the implementation of the LVMOGP see Appendix 8.1.

Similar latent variable models have been used for Bayesian optimization of material development
(Zhang et al., 2020) and for transfer learning across cell lines (Hutter et al., 2021). However, these
methods treat the latent variables as point estimates rather than distributions as in the LVMOGP, which
can cause poor uncertainty estimates, especially at low data regimes.

2.2.4 Comparison of Gaussian Process Models

In our comparisons, we include a fourth model called the average Gaussian process (AvgGP), which
treats all the data as if it has come from the same response surface. Figure 2 shows predictions on
a toy data set of the four Gaussian process models we consider. As the AvgGP doesn’t differentiate
between surfaces, it doesn’t fit any response surface well. The MOGP only shares hyperparameters but
no information about function values between response surfaces, meaning it makes worse predictions and
has more uncertainty on new response surfaces. The LMC has a better mean prediction than the MOGP
as it shares information between response surfaces. The LVMOGP similarly has better mean prediction
than the MOGP as it shares information across response surfaces through the latent space. If Q = 1
and B is the identity matrix, then the LMC recovers the MOGP. If a linear kernel is applied to the latent
dimensions of the LVMOGP, the LMC is recovered, and by making the distance between latent variables
large relative to the lengthscale, the MOGP can be recovered too. The fact there are hyperparameter
settings for the LMC and LVMOGP that recover the MOGP is promising for preventing negative transfer,
as in the case where there is no correlation between response surfaces they can just revert to the MOGP.
However, this is only true for large data sets — in low data regimes, we may expect some negative
transfer in the no correlation case, due to uncertainty in the hyperparameter values and, in the case of
the LVMOGP, a prior on the existence of correlations.

2.2.5 Gaussian Process Implementation

All coding was done in Python using version 3.9. The Gaussian process models were implemented using
GPFlow 2.3.0 (Matthews et al., 2017). GPFlow has implementations of the standard Gaussian process,
MOGP and the LMC. Our LVMOGP was implemented as a new GPflow model class, which can be
accessed via the Github links in Appendix 8.2. Other packages used include PyMC3 3.11.4 (Salvatier
et al., 2016) for Bayesian parameter estimation, Numpy 1.21.4 (Harris et al., 2020), Scipy 1.7.1 (Virtanen
et al., 2020) and Pandas 1.3.4 (The pandas development team, 2023) for data processing and Matplotlib
3.4.3 (Droettboom et al., 2015) for visualization.

2.3 Bayesian Optimization

Bayesian optimization is a sequential experimental design strategy for finding the global minimum (or
maximum) of an objective function (Shahriari et al., 2016; Snoek et al., 2012). As the objective function
is unknown, a surrogate model is used to represent the posterior belief of the objective function and
updated every time a new data point is observed. An acquisition function is then used to select the
next data point to collect. A common acquisition function is the expected improvement which trades
off exploration of regions with little data and exploitation of regions which are expected to be optimal
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Figure 2: Predictions of the four Gaussian process models fitted to a toy dataset. MOGP: multioutput
Gaussian process, AvgGP: average Gaussian process, LMC: linear model of coregionalization, LVMOGP:
latent variable multi-output Gaussian process. The dots are the data, the dashed line is the true function,
the solid line is the Gaussian process mean prediction and the shaded region is 2 times the predicted
standard deviation, meaning around 95% of the data points should lie within the shaded region. The
bottom row explains how data is transferred between the surfaces by each model.

(Jones et al., 1998; Garnett, 2023). This process is repeated until the optimum has been found or the
experimental budget exhausted.

2.3.1 Acquisition Function

Rather than maximizing or minimizing the rate, as is usual in Bayesian optimization, we wish to minimize
the difference between the rate, frate, and the target rate, Trate:

argmin
BP;GC

q
(frate − Trate)2 (10)

Therefore, we use the target vector optimization acquisition function, that extends the expected im-
provement acquisition function to minimize the Euclidean distance between a target vector and a vector
of the current predicted values (Uhrenholt and Jensen, 2019). As we are only optimizing the rate, we use
their formulation with scalars instead of vectors. In this formulation, a stochastic variable is defined as
‹|x = ∥y(x)− y t∥22 where y(x) is the output value at input x and y t is our target value. The distribu-
tion of p(‹|x) is modeled with the aim of minimizing ‹. If the response surfaces are Gaussian processes,
then p(‹|x) can be approximated using a non-central ffl2 distribution. The expected improvement for
this non-central ffl2 distribution is expressed as:

¸EI = ‹minG–(‹min=‚
2)− ‚2E[t|t < ‹min=‚2]G–(‹min=‚2); (11)
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where ‹min is the minimum ‹ observed so far, ‚ is root mean of the variances of each output evaluated at
the training points, t = ‹‚−2, and G– is an approximate cumulative ffl2 distribution with non-centrality
parameter – defined in the paper (Uhrenholt and Jensen, 2019).

2.3.2 Bayesian Optimization with Drift Penalty

To ensure the drift value remains below, or close to the threshold, we use the probability of feasibility to
encourage the algorithm to select points that have a high chance of being below the threshold (Schonlau
et al., 1998):

PF (x) = p(fdr if t(x) ≤ Tdr if t); (12)

where fdr if t(x) is the value of drift function at x , and Tdr if t is the drift threshold.
We then multiply the expected improvement by the probability of feasibility to get our final acquisition

function:
¸p = PF (x)¸EI(x): (13)

The probability of feasibility has been used for optimization applications including analog circuits (Lyu
et al., 2018) and materials design (Sharpe et al., 2018).

2.3.3 Performance Metrics

For both the synthetic experiments and the cross-validation experiments we assessed the fit of Gaussian
process models with two performance metrics: root mean squared error (RMSE):

RMSE =

sPN∗

i=0(—(x
∗
i )− y∗i )

2

N∗ ; (14)

and negative log predictive density (NLPD):

NLPD =
1

N∗

N∗X
i=0

log p(y∗i |x∗i ; X; y ; „) = − 1

2N∗

N∗X
i=0

 
− log(2ıff(x∗i )

2)− (y∗i − —(x∗i ))
2

ff(x∗i )
2

!
: (15)

These are both calculated on a test set of input locations X∗ of length N∗. The RMSE is useful
for comparing the mean predictions of the Gaussian processes, while the NLPD also indicates how good
the uncertainty estimate is, both of which are important for effective exploration and exploitation. For
assessing the Bayesian optimization algorithm, we use cumulative regret:

regret = min
xi∈X

„q
—(x∗i )− ybest)2 +max(0; fdrift(xi )− Tdrift)

«
; (16)

where ybest is the data point closest to the target out of both training and candidate sets for that
surface. max(0; fdrift(xi )− Tdrift) is a penalty for exceeding the drift threshold.

2.4 Data Collection

Each competitor has predefined primers and fluorescent probes and a design region where the sequence
can be altered. Rather than tackling the difficult combinatorial problem of optimizing the sequence
directly, we reduce the problem to two key input variables: the number of base pairs (BP) and guanine-
cytosine content (GC) as in Figure 3. This converts the design space into a more manageable continuous
form and reduces the input dimensions, which is beneficial when data is limited. For each BP-GC

7
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rate drift

Figure 3: Schematic of the competitor design space. For a given competitor DNA molecule, the primers
and fluorescent probe regions are fixed. We can edit the design region to ensure the sequence has a given
number of base pairs and guanine-cytosine content. Changing the number of base pairs and guanine-
cytosine-content affects the rate and drift of the competitor, allowing us to fine-tune to the rate and
drift required for the diagnostic assay.

combination, chosen by an expert researcher, a polymerase chain reaction (PCR) assay generates an
amplification curve, from which rate and drift are calculated. In total, we have data on 34 different
competitors and wish to optimize 16 of these. Across the 34 competitors, we have 592 data points at
327 unique input locations, with 1 to 6 repeats at each location. See Appendix 8.3 for a summary of the
data.

The rate and drift for each amplification curve were calculated using the following equations:

FT =


1 + (−F0)
F0

· e−r ·fi
; (17)

signal = FT ·
„
1 +

FT


·m · (ln(F0)=r)
«
; (18)

where FT and F0 are the end point and starting fluorescence,  is carrying capacity, r is the rate, m is
the drift and fi is cycle number.

2.4.1 Polymerase Chain Reactions

To perform the PCR reactions, we used an Applied Biosystems QuantStudio 6 Flex using Applied Biosys-
tems MicroAmp EnduraPlate Optical 384-well plates (Thermo Fisher Scientific, Waltham, MA, USA).
The theromcycling stages consisted of a melt step at 95°C for 3 seconds and an annealing step at 60°C.
All reactions were performed at 10 µL and used Applied Biosystems TaqMan Fast Advanced Master Mix.
Either fluorescent probes or EvaGreen dye (Biotium, Fremont, CA, USA) were used as reporters.

8



2.4.2 DNA Sequences

For each BP-GC combination for a given competitor, NUPACK (Zadeh et al., 2011) was used to create a
DNA sequence with the correct number of base pairs and guanine-cytosine content, as well as the correct
sequences for the primer and probes. These sequences, alongside synthetic natural target analogs, were
purchased from Twist Biosciences (San Francisco, CA) or as eBlock Gene Fragments from Integrated
DNA Technologies (“IDT”, Coralville, IA, USA). Primers and probes were also purchased from IDT.

3 Results

3.1 Synthetic Data Experiments

To explore the performance of the MOGP, AvgGP, LMC and LVMOGP, we ran experiments on synthetic
data sets representing three test cases: uncorrelated, linearly correlated and horizontally offset response
surfaces. All synthetic experiments had two response surfaces each with 30 points observed and 10 new
response surfaces with no points observed initially. We added one random point to each new response
surface every iteration and recorded the RMSE and NLPD for the Gaussian process models’ predictions.
Figure 4 shows the RMSEs and NLPDs of the Gaussian process models for these test settings.

For the uncorrelated test case, response surfaces were generated as independent samples of a Gaussian
process prior with a ‘ = 0:3 and ff2k = 2. This test case was to check for negative transfer, where the
sharing of information hinders rather than aids the learning process. In Figure 4, the MOGP outperforms
the other Gaussian process models for RMSE and NLPD until approximately 10 data points. We expect
the LMC and LVMOGP to have some negative transfer at very low data regimes as they have a prior
expectation of correlations between response surfaces. However, with enough data, they should perform
the same at the MOGP, which is corroborated by the results in Figure 4.

The response surfaces for the linearly-correlated test case were created as linear combinations of two
latent functions, both generated as independent samples of a Gaussian process with ‘ = 0:3 and ff2k = 2.
The LMC outperforms the other two Gaussian process models except at very low data regimes, which is
likely due to overconfidence of the LMC when it has little data. The LMC and LVMOGP outperform the
MOGP even at high data regimes, showing the advantage of transfer learning.

The horizontally offset test case was chosen as a simple example where the LMC struggles to fit the
data. The response surfaces were generated by offsetting a sigmoid function horizontally by a random
constant. In this case, the LVMOGP outperforms the other Gaussian process models for both RMSE and
NLPD. This is because the LVMOGP can learn new surfaces with very few data points, as all it needs
to do is to correctly predict where the sloped region is. The LMC performs worse than the LVMOGP
because the offset cannot be represented by a linear combination of its latent functions, meaning it
requires more data to perform as well.

Across all the test cases, the LMC has poor NLPD at low data regimes. This is likely because it
cannot express uncertainty in the deterministic B matrix.

3.2 Prediction of DNA Amplification Experiments

The performance of the proposed design of experiments workflow was validated using data from competi-
tor DNA amplification experiments. This was done in three parts: first cross-validation was performed to
compare the predictive accuracy of the Gaussian process models; then a Bayesian optimization procedure
was used to optimize only the rate; finally the Bayesian optimization with drift penalty procedure was
applied.

9
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Figure 4: Results of experiments with synthetically-generated data. The plots on the left show example
data-generating functions used for the synthetic experiments. The plots on the right show the RMSE
and NLPD for the three different test response surface types for each of the Gaussian process models.
New points are added randomly, and each line is the mean of 5 different randomly generated data sets,
all generated from the same test functions.

In cross-validation, the training set consisted of all the data from the two competitors that had the
most observations as well as a random subset of the remaining data, but ensuring all competitors had at
least one data point. This was repeated 150 times for each percentage of data in the training set. Figure
5 shows the RMSE and NLPD of the Gaussian process models’ predictions. The LVMOGP outperforms
the other Gaussian process models for both RMSE and NLPD for both rate and drift. The LMC has poor
NLPD in comparison to the other Gaussian process models, suggesting it has poor uncertainty estimates.
The AvgGP model shows little improvement with increased amounts of training data. This shows the
limitations of averaging the surfaces and justifies modeling each response surface separately.

3.3 Optimization of DNA Amplification Experiments

Ideally, for the Bayesian optimization experiments we would integrate the algorithm into the experimental
loop, collecting new data with each new recommendation of each Gaussian process model. However, due
to the cost of experiments, this was infeasible. Instead, we performed retrospective Bayesian optimization
using the existing competitive DNA amplification dataset. The data was split into training and candidate

10



Figure 5: Results of cross-validation on the DNA amplification data for both rate and drift. For each
cross-validation run, the training set consisted of all the data from two competitors and a random subset
of the data on the remaining competitors, ensuring all competitors had at least one data point. This is
repeated for different percentages of data in the training set, and for each percentage, it is repeated 200
times.

sets, with the design of experiments algorithm only allowed to choose the next point out of the candidate
set. Bayesian optimization was run iteratively until all points had been selected or up to a maximum
number of iterations, whichever happened first.

Two learning scenarios were tested: the "Learning Many" scenario where all data from two competi-
tors were fully observed to begin with and then 16 competitors optimized in parallel; and the "One at a
Time" where each of the 16 competitors was optimized individually, with the 33 remaining competitors
included in the training set. These scenarios replicate likely wet lab experimentation scenarios — the first
for when many competitors need to be optimized at once, and the second for when many competitors are
already optimized and we want to add an extra one. The maximum number of iterations was 15 for the
rate-only optimization and 20 or 10 for the penalized optimization, depending on the learning scenario.

We also considered two methods for choosing the first experiment for a new competitor with no
previously observed data. Choosing the most central data point ("Center" in Figure 6) offers both
maximum reduction in variance across the response surface and ensures all competitor response surfaces
have a comparable point, which may help the transfer learning methods determine their similarities. It is
also a reasonable approximation to what a human experimenter might do if they had no prior knowledge
of the response surface. The second method is to let the Gaussian process model choose the first point
("Model’s Choice" in Figure 6) for a new competitor. For the AvgGP and the LVMOGP, this is possible
as they can make posterior predictions on new response surface. For the LVMOGP, the latent variable of
the new surface is determined as a weighted average of the latent variables of the response surfaces with
data that have the same probe and at least one matching primer. If there are no surfaces with matching
primers, we use a weighted average of the surfaces with the same probe. For the LMC and MOGP we
have no posterior, so the first point is selected randomly.
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3.3.1 Single Objective Bayesian Optimization
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Figure 6: Cumulative regret of each of the Gaussian process models for single objective (left) and
penalized (right) Bayesian optimization. Each line indicates the mean across 24 random seeds and all
competitors, while the shaded regions indicate the upper and lower 5% quantiles by random seed. The
top row is when the first point on each new surface is selected as being the center point, and the bottom
is when the model is allowed to choose the first point. The "Learning Many" scenario is when many
competitors are being optimized at the same time, and the "One at a Time" scenario is when one
competitor is being optimized, with all others being in the training set.

The left panel of Figure 6 shows the results of optimizing rate without considering the drift penalty.
The variance in the results comes from three sources. The first is the random selection of the next point
when two points have the same expected improvement — this causes unavoidable variation. The second
is due to the Gaussian process models optimizing to different hyperparameter values due to different
initializations. The different values arise because the optimization of the non-convex hyperparameter loss
surfaces is difficult. The final source of variation is the random starting point for the MOGP and LMC.

In all cases, the LVMOGP has much lower cumulative regret than the other models. The "Center"
start point allows us to compare the performance of the Gaussian process models without being skewed
by the first point. In this case the LMC and LVMOGP have the lowest cumulative regret. The ordering
changes between the "Center" and "Model’s choice" scenario, as in the latter the AvgGP and LVMOGP
are able to predict on new surfaces, giving them an advantage over the LMC and MOGP when choosing
the first point. See Appendix 8.4.3 for a table of the mean regrets of the first points for a quantification
of this improvement.

As the "One at a Time" scenario includes the data from all other competitors, the Gaussian process
models start with far more data than the "Learning Many" scenario. This means the AvgGP, LMC and
LVMOGP all have less regret in the "One at a Time" scenario, as they are able to transfer information
about the function values of competitors to improve prediction of the target competitor behavior. The
MOGP does not transfer information about function values, so performs relatively worse than the others
for the "One at a Time" scenario.
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3.3.2 Bayesian Optimization with Drift Penalty
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Figure 7: Predictions for the rate and drift for each of the Gaussian process models. The BP and GC
axes are in log and logit scales respectively. These plots show the mean of the Gaussian process model
predictions and the uncertainty which here is 2 × standard deviation. The expected improvement with
probability of feasibility is then plotted in the final column. This is for the case where we are optimizing
competitor FP005-FP004-EvaGreen and have observed one data point so far, with the models able to
choose the first point. The black contour lines on the mean plots indicate the target rate and threshold
drift values.

The right-hand panel of Figure 6 shows the cumulative regret for optimization of the rate with a
penalty on the drift. In all cases, the LVMOGP has the lowest cumulative regret at the end. In the
"Learning Many" scenario the AvgGP again benefits from selecting the first point for the "Model’s
Choice" starting point, but the LVMOGP actually performs slightly worse than it did for the "Center"
start point. This may be due to negative transfer in the drift predictions at very low data regimes making
the selection of the first point sub-optimal.

The ordering of the Gaussian process models is different for the "Learning Many" and "One at a
Time", probably because the increased amount of data allows the LMC to predict comparatively better in
the "One at a Time" scenario than the "Learning Many". The LVMOGP outperforms the other Gaussian
process models the most in the "One at a Time" "Model’s Choice" experiment, which is likely due to
the large amounts of data on all competitors, except the target, and effective transfer of information
between them.

Figure 7 shows the rate and drift predictions and expected improvement for one iteration. Most
notably, the MOGP has no transfer learning, so has almost equal expected improvement for most of the
candidate points. The other three models transfer information across the competitors, meaning even
with one data point, they have much more complex predictions than the MOGP. We can also see how
the AvgGP, MOGP and LMC fit the drift poorly. This is because the drift is of a different order of
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DriftRate

Figure 8: Latent space of the LVMOGP for the rate and drift. The crosses indicate competitors with probe
primers and the dots indicate those with EvaGreen primers. The shaded circles indicate the uncertainty
in the latent positions.

magnitude depending on the fluorescent probe used. Most of the Gaussian process models are unable
to detect this, meaning they end up with a poor fit to the data. The LVMOGP, however, does identify
this —Figure 8 shows how it clusters the two probe types at different sides of the latent space. This
indicates it has recognized there are two regimes for drift, despite not being explicitly told which probe
a competitor uses.

See Appendix 8.4 for further Bayesian optimization results for both the single objective and penalized
optimizations. These results show the LVMOGP reaches the best point on the surfaces faster and with
less cumulative regret, more often than the other models for most test cases.

4 Discussion

Expensive and time consuming experiments require an intelligent design of experiments strategy. This
study demonstrates how a transfer learning surrogate model can be used in conjunction with Bayesian op-
timization to optimize biological sequences. For the specific case of designing competitor DNA molecules
for a new diagnostic, reducing the number and therefore cost of experiments can help it reach the af-
fordability criteria for point of care settings (Land et al., 2019).

In Bayesian optimization, we need a surrogate function with reliable mean and uncertainty estimates
to ensure a balance between exploration and exploitation when selecting new points. Our cross-validation
results in Section. 3.2 show the LVMOGP has better predictive accuracy than the other Gaussian process
models for both rate and drift. These results also demonstrate one of the limitations of the LMC: the
LMC has very high NLPD at low data regimes. This implies the LMC has poor uncertainty estimates
and is overfitting, a result which has been previously observed (Dai et al., 2017).

To replicate a real-life iterative design of experiments regime, we performed Bayesian optimization
on DNA amplification experimental data, but only allowing the models to select new points from existing
data. For the single objective optimization case, the LVMOGP has lower cumulative regret than the
other Gaussian process models for all test cases and starting points. This shows the LVMOGP transfer
learning approach is useful both when optimizing multiple competitors at a time, and when using the
data from all previous competitors to optimize a new one. The superior performance of the LMC and
LVMOGP for the "Center" starting point shows transfer learning speeds up the learning process. These
results also demonstrate the advantage of a surrogate model that can predict unseen surfaces — both
the LVMOGP and the AvgGP see a large improvement in regret when they are allowed to select the first
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point, both outperforming the MOGP and LMC where the first point is chosen at random.
When optimizing new biological sequences, there are often factors we wish to keep within a certain

range such as purity (Degerman et al., 2006) or biophysical properties (Khan et al., 2023). While these
can be treated as constraints, sometimes we may be willing to violate them slightly if it leads to a large
improvement in the objective function. In these scenarios, we can add a penalty. To apply a penalty on
the nuisance drift factor, we used probability of feasibility to penalize any point predicted to be above the
threshold drift value. In the penalized optimization, the LVMOGP had less cumulative regret than the
other models but the difference in performance was smaller than that of the single objective optimization.
This could be due to the added challenge of dealing with the penalized on drift.

There was variation in the performance of the Gaussian process models’ across random seeds due to
the hyperparameter initialization. The LVMOGP has more variation due to its training being a harder
optimization problem. While smart initialization and random restarts helped with this issue, future work
could simplify the optimization procedures. The optimization of the Gaussian process models is discussed
in Appendix 8.5.

While the workflow outlined here will be useful for the optimization of new competitor DNA molecules,
it is not specific to this application and could be used for other applications where it is necessary to
optimize many similar tasks, such as engineering DNA probes (Lopez et al., 2018; Wadle et al., 2016),
exploring protein fitness landscapes (Hu et al., 2023), optimizing conditions for different cell lines (Hutter
et al., 2021), or inferring psuedotime for cellular processes (Campbell and Yau, 2015). With the rise in
lab automation, this workflow can be integrated into a design build test pipeline similar to Carbonell
et al. (2018) and HamediRad et al. (2019) which can greatly reduce the time required to optimize
new biomolecular components, speeding up the creation of new devices. This method could also be
incorporated into hybrid models in bio-processing and chemical engineering, for decision making for
systems with many similar components (Narayanan et al., 2023; Mowbray et al., 2021; Schweidtmann
et al., 2021).

This workflow could also be extended to multi-output optimization problems by using a multi-output
acquisition function or by finding Pareto optimal solutions (Belanger et al., 2019; Selega and Campbell,
2022; Jablonka et al., 2021; Schweidtmann et al., 2018). Similarly, the surrogate functions needed for
multi-fidelity learning, where we have multiple sources of information about an optimization task with
some sources being cheaper but less informative than others, are similar to those for transfer learning,
making it an easy extension (Folch et al., 2023; Sun et al., 2022).

5 Conclusion

We have shown how a transfer learning design of experiments workflow can be used to optimize many
competitor DNA molecules for an amplification-based diagnostics device. We used cross-validation to
demonstrate that the latent variable multi-output Gaussian process has the best predictive accuracy and
have shown it has the least regret when Bayesian optimization is performed on the DNA amplification
data. Future improvements to the optimization of the model hyperparameters would lead to faster and
more consistent performance of the algorithm. Despite this, we believe this workflow is applicable to
many other biotechnology applications and should be used to reduce the experimental load when there
are many similar tasks to be optimized but their similarity is a priori unknown.
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8 Appendix

Nomenclature

Acronyms

AvgGP Average Gaussian Process

BP Number of Base Pairs

DNA Deoxyribonucleic Acid

ELBO Evidence lower bound to marginal likelihood for LVMOGP

GC Percentage Guanine-Cytosine Content

LMC Linear Model of Coregionalization

LVMOGP Latent Variable Multi-output Gaussian Process

MOGP Multi-output Gaussian Process

NLPD Negative Log Predictive Density

PCR Polymerase Chain Reaction

RMSE Root Mean Squared Error

Functions

¸EI(·) Expected improvement acquisition function

¸p(·) Acquisition function including probability of feasibility

GP Gaussian Process

f (·) Function of x

frate(·) Rate function in competitor amplification

fdr if t(·) Drift function

g(·) Latent Gaussian processes in the linear model of coregionalisation

k(·; ·) Gaussian Process covariance function

Ki i (·; ·) Covariance function of the data

Kiu(·; ·) Cross covariance function between the data and inducing points

Kuu(·; ·) Covariance function of the inducing points

m(·) Gaussian Process mean function

PF (·) Probability of feasibility

Parameters and Variables
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‹ stochastic variable defined as the squared difference between observed outputs and the target
value

f∗ Predictions at locations X∗

hp Latent variable of the pth output function

I Identity matrix

u Inducing variables

W Vector of weights of the latent functions in the linear model of coregionalisation

x Input location such that x ∈ RD

‘d Lengthscale of dimension d

› Noise added to y where › ∼ N (0; ff2nI))

– Non-centrality parameter of target vector optimization expected improvement

—(X∗) Predicted mean at locations X∗

—hp Mean of the pth latent variable

 Carrying capacity

ff(X∗) Predicted covariance at locations X∗

ff2k Kernel variance

ff2n Noise variance of Gaussian process

Σhp Variance of the pth latent variable

fi Cycle number

„ Gaussian Process hyperparameters

B Coregionalization matrix in the LMC

D Dimensions of x

F Fluorescence in DNA amplification reaction

F0 Fluorescence at the beginning of the DNA amplification reaction

FT Fluorescence at the end of the DNA amplification reaction

H Latent variables such that H = [h1; :::;hp]
T ∈ RQH×P

M Mean of the variational distribution on Z

P Number of output functions in multi-output Gaussian Process

q(·) Variational distribution

Q Number of covariance matrices in the LMC
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S Variance of the variational distribution on Z

t = ‹‚−2

Trate Target rate

Tdr if t Drift threshold

X Training inputs of Gaussian Process X = {x1; :::; xN} ∈ RN×D

X∗ Locations to be evaluated

y Noisy evaluations of x

ybest Data point which is closest to the target out of the train and test datasets for a given surface

Z Inducing points

Miscellaneous

H The latent space in the LVMOGP

G An approximation to the cumulative non-central ffl2 distribution function
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8.1 Latent Variable Multi-output Gaussian Process Implementation

Gaussian processes are normally trained by maximizing the log marginal likelihood. However, the pres-
ence of the latent variable distributions in the LVMOGP means the log marginal likelihood is no longer
tractable. Instead, Dai et al. (2017) used variational inference to approximate a lower bound to this log
marginal likelihood, following the method proposed by Titsias (2009) and Titsias and Lawrence (2010).
In variational inference, the aim is to minimize the Kullback-Leibler divergence between an approximate
posterior and a true posterior.

Our implementation of the LVMOGP takes a concatenation of the input data and their corresponding
latent variables X̃ = [X;H:] ∈ RN×(D+QH) where H: to denotes the vector of latent inputs for each
observed data point. All inputs Xp for the same output dimension will have the same latent variable, hp.

For the LVMOGP this variational lower bound is given as:

ELBO = −1

2
log(2ıff2n) +

NX
i=1

»
− 1

2ff2n
yT:i y:i +

1

ff2n
y:i ⟨Kiu⟩q(H:i )K

−1
uuM

− 1

2ff2n
T r(K−1

uu ⟨KTiuKiu⟩q(H:i )K
−1
uu (MM

T + S))

− 1

2ff2n
(T r(⟨Ki i ⟩q(H:i ))− T r(K−1

uu ⟨KTiuKiu⟩q(H:i ))

–
−KL[q(u)||p(u)]−

NX
i=1

KL[q(H:i )||p(H:i )] (19)

where ⟨K⟩q(hi ) denotes a kernel expectation over the variational distribution of the latent variable of
data point i . Ki i and Kuu are the covariance functions of the data and the inducing points Z respectively,
while Kiu is the cross covariance function between the two. Tr is the trace of a matrix. M and S are the
mean and covariance of the variational distribution over inducing points q(Z) ∼ N (M;S). The second
term in this expression can be viewed as a data fit term, while the last term can be seen as a complexity
penalty.

Two types of prediction are relevant using the LVMOGP. The first is when we have new input points
X∗ and new position on the latent space h∗. In this case, the posterior prediction can be calculated in
closed form. The second, and more likely, prediction case is when we want to predict a new point X∗
at a point on the latent space where we already have data with latent variable hp. This integration is
intractable, but following Titsias and Lawrence (2010), the first and second moments can be computed
in closed form if using a squared exponential kernel.

8.2 Data Availability

Raw data is available on request from rdm-enquiries@imperial.ac.uk. Code for the synthetic experiments
can be found at the following link: https://github.com/RSedgwick/TLGPs Code for the DNA am-
plification experiments Bayesian optimization can be found here: https://github.com/RSedgwick/
TL_DOE_4_DNA.

8.3 Data Summary

Each competitor is defined by its primer-reporter combination. For each of these primer-pair combinations
we then have data at different guanine-cytosine content and no. of base pairs combinations. Table 1
gives a summary of the number of unique locations on each of the competitors.
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Not To Be Optimized To Be Optimized
Primer Reporter Combination No. Unique

Locations
Primer Reporter Combination No. Unique

Locations
FP004-RP004-EvaGreen 28 FP004-RP004-Probe 53
FP002-RP002x-Probe 12 FP001-RP001x-EvaGreen 24
FP004-RP004x-Probe 12 FP001-RP001x-Probe 20
FP001-RP001-Probe 9 RP001x-FP002-Probe 19
FP001-RP005-Probe 8 FP002-RP002x-EvaGreen 15

FP004-RP004x-EvaGreen 8 FP005-FP001-EvaGreen 14
FP003-RP008-Probe 5 FP004-FP005-Probe 8
FP006-RP006-Probe 5 FP005-FP001-Probe 8
FP005-RP005-Probe 5 FP005-FP004-EvaGreen 8

FP002-RP002-EvaGreen 4 RP002x-FP005-Probe 8
FP002-RP006-Probe 4 RP008x-FP001-EvaGreen 8

FP057.1.0-RP003x-Probe 3 RP008x-FP005-Probe 8
FP003-RP008x-EvaGreen 3 FP001-RP004-EvaGreen 7
FP003-RP008-EvaGreen 3 RP002x-FP004-EvaGreen 6

FP002-RP002-Probe 3 FP002-RP004-EvaGreen 3
FP001-RP001-EvaGreen 2 RP002x-FP002-EvaGreen 2

FP003-RP003-Probe 1
FP057.1.0-RP003x-EvaGreen 1

Table 1: Summary of the amount of data we have for each competitor design surface. Each unique
location refers to a unique GC-BP combination.

8.4 Extra Bayesian Optimization Results

The following tables contain extra results for the Bayesian optimization experiments. The first table in
each section, Tables 2 and 5, shows counts of the first model to get to the best point on a surface for
all competitors and seeds. If two models get to the best point on the same iteration, they are both
counted as "winners". The second table, Tables 3 and 6 shows counts of the models with the lowest
cumulative regret for each competitor and seed. The same thing applies if two models have the same
cumulative regret. For the single objective optimization, Table 4 shows the average number of iterations
for each model to get within tolerance of the target rate (+/- 0.05). For the penalized optimization
Table 7 shows the average number of iterations for each model to get either within tolerance of the rate
target with no drift penalty, or to the best point (which may have a drift penalty). For some of the runs
with the drift penalty, some of the models failed to get to the best point for some surfaces within the
experimental budget. In these cases, those surfaces were discarded and the average was taken for the
surfaces where all the models had managed to get to the best point within the experimental budget.

8.4.1 Single Objective Optimization

Extra results for the single objective Bayesian optimization. These results demonstrate that the LVMOGP
gets to the best point more often (Table 2) and has has the lowest cumulative regret (Table 3) more
often than the other models. The LVMOGP also reaches the best point in the lowest number of iterations
for all the learning scenarios (Table 4).
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learning scenario starting point MOGP Avg GP LMC LVMOGP

learning many
center 124 121 144 255

model’s choice 107 119 97 147

one at a time
center 140 140 156 215

model’s choice 86 118 87 191

Table 2: Table showing counts of the first Gaussian process model to reach the best point on a surface for
the single objective Bayesian optimization experiments. The counts are the number of times a Gaussian
process model did the best on a competitor for each seed. If two Gaussian process models performed the
same for a given instance, they are both counted. This is for 16 competitors and 25 random seeds.

learning scenario starting point MOGP Avg GP LMC LVMOGP

learning many
center 182 80 140 197

model’s choice 85 94 83 117

one at a time
center 129 140 131 206

model’s choice 99 106 87 159

Table 3: Table showing counts of the first Gaussian process model had the lowest cumulative regret
on a surface for the single objective Bayesian optimization experiments. The counts are the number of
times a Gaussian process model did the best on a competitor for each seed. If two Gaussian process
models performed the same for a given instance, they are both counted. This is for 16 competitors and
25 random seeds.

learning scenario starting point MOGP Avg GP LMC LVMOGP

learning many
center 3.13 3.25 3.11 2.58

model’s choice 3.08 2.63 3.09 2.44

one at a time
center 2.94 3.06 2.85 2.15

model’s choice 2.94 2.63 2.63 1.81

Table 4: Table showing the mean number of iterations need for the models to get within tolerance of the
target rate (+/- 0.05) for the single objective optimization. This is for 16 competitors and 25 random
seeds.

8.4.2 Bayesian Optimization with Drift Penalty

Extra results for the Bayesian optimization with a penalty on drift. These results demonstrate that the
LVMOGP gets to the best point more often (Table 5) and has has the lowest cumulative regret (Table 6)
more often than the other models for most of the learning scenarios. The LVMOGP also reaches the
best point in the lowest number of iterations for all the learning scenarios (Table 7).

learning scenario starting point MOGP Avg GP LMC LVMOGP

learning many
center 142 157 123 165

model’s choice 89 122 101 111

one at a time
center 141 137 153 217

model’s choice 75 102 79 164

Table 5: Table showing counts of the first Gaussian process model to reach the best point on a surface
for the penalized Bayesian optimization experiments. The counts are the number of times a Gaussian
process model did the best on a competitor for each seed. If two Gaussian process models performed the
same for a given instance, they are both counted. This is for 16 competitors and 24 random seeds.
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learning scenario starting point MOGP Avg GP LMC LVMOGP

learning many
center 180 118 100 163

model’s choice 85 103 84 111

one at a time
center 173 118 139 204

model’s choice 83 70 65 156

Table 6: Table showing counts of the first Gaussian process model had the lowest cumulative regret on
a surface for the penalized Bayesian optimization experiments. The counts are the number of times a
Gaussian process model did the best on a competitor for each seed. If two Gaussian process models
performed the same for a given instance, they are both counted. This is for 16 competitors and 24
random seeds.

learning scenario starting point MOGP Avg GP LMC LVMOGP

learning many
center 2.47 3.26 2.95 2.38

model’s choice 3.39 3.13 3.23 2.13

one at a time
center 3.00 3.20 2.82 2.47

model’s choice 2.70 2.69 2.44 1.41

Table 7: Table showing the mean number of iterations need for the models to either get within tolerance
of the target rate (+/- 0.05) without drift penalty or reach the best point (which may have a penalty)
for the penalized optimization. For some runs, one or more of the models would not achieve this within
the experimental budget. In these cases, the affected competitors were removed and the mean taken of
the remaining. This is for 16 competitors and 24 random seeds.

8.4.3 Comparison of Choice of First Point

Table 8 shows the average regret of the first data point chosen by each of the models for each of the
learning scenarios. From this table, it is clear to see the AvgGP and the LVMOGP improve on the regret
of the central point, and outperform the random selection of the MOGP and LMC. This demonstrates
that having a principled method of selecting the first point is useful for reducing regret.

learning scenario starting point MOGP Avg GP LMC LVMOGP

learning many
center 0.588 0.588 0.588 0.588

model’s choice 0.651 0.499 0.703 0.464

one at a time
center 0.588 0.588 0.588 0.588

model’s choice 0.675 0.308 0.623 0.309

Table 8: Table of the mean regret of the first data point for each of the learning scenarios for each of
the models.

8.5 Optimization of Gaussian Process Models

We used gradient descent to optimize the Gaussian process hyperparameters. The optimization of the
hyperparameters of the Gaussian process models are non-convex problems, meaning gradient descent
algorithms will only find local optima. To improve the hyperparameter optimization procedure, we used
principled methods of initialization along side random restarts to fit the same Gaussian process model
multiple times, and then select the hyperparameter configuration with the best log marginal likelihood.
These regimes differ slightly for the different models.
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For all model, unless otherwise states, we initialize the lengthscale randomly as ‘ ∼ Uniform(0; 1),
noise variance randomly as ffn ∼ Uniform(0; 0:1) and kernel variance ffk = 1. For the MOGP and AvgGP
we did nine random restarts with these settings.

For the LMC we used three different methods for initializing W and », with three random restarts
for each:

• Both W and » random. In this initialization, we initialize W ∼ Uniform(0:1; 1) and » ∼
Uniform(0:1; 1).

• W random and » = 0. In this initializationW ∼ Uniform(0:1; 1) and » = 10−6. This initialization
was chosen as we thought it would favor solutions with small » so it would better fit the linear
correlation case, where the test functions are generated as linear combinations of some linear
functions.

• W random and » = 1. In this initialization W ∼ Uniform(0:1; 1) and » = 1. We chose this
initialization to favor large », which is useful for the uncorrelated test case, as it would encourage
the output functions to behave independently of each other.

The random initialisations for W helped the initialisations for two reasons: firstly, in the GPflow
implementation if W is not initialized it defaults to a rank of 1, and secondly by initializing to random
values rather than all one value we avoid saddle points on the optimization surface.

For the LVMOGP we used three different initialization procedures, again with three random restarts
for each:

• Random. In this initialization all hyperparameters and variational parameters were initialized ran-
domly. the means of the latent variables were initialized as —H ∼ Uniform(−1; 1).

• GPy. This is the method used in the GPy implementation of the LVMOGP (Dai et al., 2017), that
has following three steps:

1. A sparse MOGP is fitted to the data using a set of inducing points Z which are common
to all outputs. The mean predictions —(Z) ∈ RNU×P of the output function values at these
inducing inputs is then calculated:

—(Z) = K(Z;Z)[K(Z;Z) + ff2nI]
−1Y: (20)

The sparse MOGP is used is ensure all output functions are observed at the same input
locations for the functional PCA, which is necessary when data is observed at different loca-
tions on different surfaces. It also serves the purpose of smoothing the data plus the trained
lengthscales are used to initialise the lengthscales of the observed dimensions of the LVMOGP.

2. The mean predictions —(Z) ∈ RNU×P are then used as inputs to functional PCA. The first
QH eigenvectors V ∈ RNU×QH and eigenvalues {–q}QH

q=1 of —(Z)T—(Z) are calculated and
used to project —(Z) into latent space

H = —(Z)T V; (21)

where H ∈ RP×QH . The relative contributions of each of the eigenvalues is also calculated
as:

&q =
–̃q

max{–̃i}QH
i=1

–̃q =
–qPQH
i=1 –i

(22)
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3. The latent variables H from the functional PCA are used to initialize the latent variables of a
Bayesian Gaussian process latent variable model. The lengthscales of the Bayesian Gaussian
process latent variable model are initialized to { 1

&q
}QH
q=1. Once the Bayesian Gaussian process

latent variable model is trained, the latent variables and hyperparameters of the Bayesian
Gaussian process latent variable model are used to initialize those of the LVMOGP.

• PCA. In this initialization, the first two steps of the GPy initialization are followed. This means
fitting a sparse MOGP to the data and performing principle component analysis (PCA) on the
posterior predictions at inducing point locations. The MOGP hyperparameters were then used to
initialize the LVMOGP observed lengthscale, kernel variance and noise variance. The output of the
PCA was used to initialize the latent variable means and the lengthscale of the latent dimensions.
This initialization was chosen as a simplified version of the GPy initialization.

See the github repositories in Appendix 8.2 for more details.
In the synthetic experiments, we found the method of initializing the hyperparamters affected the end
log marginal likelihood, with no initialization outperforming all others for each model. Therefore, we
decided to continue with all initializations for the PCR data experiments. For the PCR data experiments
we did 10 random restarts for each initialization, due to the randomness of some of the initializations.
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