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Abstract: In porous titanium scaffolds manufactured via 3D printing, the differences in bone forma-
tion according to pore design and implantation period were studied. Titanium scaffolds with three
types of different pore structures (Octadense, Gyroid, and Dode) were fabricated via 3D printing
using the selective laser melting method. Mechanical properties of scaffolds were investigated. Pre-
pared specimens were inserted into both femurs of nine rabbits and their clinical characteristics were
observed. Three animals were sacrificed at the 2nd, 4th, and 6th weeks, and the differences in bone
formation were radiologically and histologically analyzed. The percentage of new bone and surface
density in the pore structure were observed to be approximately 25% and 8 mm2/mm3, respectively.
There was no difference in the amount of newly formed bone according to the pore design at 2, 4,
and 6 weeks. In addition, no differences in the amount of newly formed bone were observed with
increasing time within the same pore design for all three designs. During the 6-week observation
period, the proportion of new bones in the 3D-printed titanium scaffold was approximately 25%.
Differences in bone formation according to the pore design or implantation period were not observed.

Keywords: titanium scaffolds; 3D printing; pore design; selective laser melting

1. Introduction

Titanium has been successfully applied to humans in various fields currently. Titanium
is widely used in various implantable medical devices such as dental implants, bone
fixators, artificial joints, vascular stents, and shielding membranes [1]. Because titanium
is not resorbed like polymers or some ceramics, the application of titanium as a scaffold
for bone growth is still not extensive compared to that of ceramic materials [2]. However,
titanium, which has higher tensile and compressive strength than ceramic and similar
elastic modulus to human bone, is recognized for its high clinical value as bone grafting
material [3].

The porous structures of titanium are considered to be effective for eliminating elastic
modulus mismatches with human bone [4]. Additionally, the porous structure provides
space for bone formation and regrowth [5]. However, accurately controlling the pore size,
porosity, shape, and connectivity of the porous structures of titanium scaffolds manufac-
tured by conventional casting or milling methods is difficult [6]. To overcome this problem,
various manufacturing methods such as sintering of metal fibers, plasma spraying, anodic
dissolution, or powder metallurgy have been introduced; however, constructing a homoge-
nous porous structure is still difficult [7]. In addition, fabricating a small-sized scaffold
with a microstructure using a conventional manufacturing method was impossible [8].
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However, 3D printing, which has been actively researched and used in recent years, has
made it possible to overcome such manufacturing imperfections. Based on a fast, uniform,
and simple process through 3D printing, producing a metallic scaffold with a homogeneous
porous structure has become possible [9].

It has been reported that the porosity of the ideal scaffold for bone regeneration is
more than 66% [10]. Moreover, the pore shape of a scaffold affects bone formation through
cell growth. Bidan et al. demonstrated that the optimization of the pore shape can increase
the growth rate of the bone tissue in a porous scaffold, and the cells grow faster in square
pores [11]. The results of Urda et al. indicate that the straight and low convexities in the
pore structure are the least favorable for cell growth [12]. Van Bael et al. studied the pore
shape and curvature, and the results showed that an obtuse angle between the pores was
more prone to cause blockage of cell growth than an acute angle [13]. However, these
studies were conducted at an in vitro level, and the results of in vivo experiments on the
effect of pore structure and bone formation were inconsistent [14,15].

In this study, under the premise that the specimens have the same porosity, titanium
alloy scaffolds with microstructures of three different shaped pore designs were fabricated
using 3D printing. In addition, we analyzed whether there was a difference in bone
formation according to pore design or implantation period in titanium scaffolds in vivo
using rabbit animal model.

2. Materials and Methods
2.1. Selection of the Pore Design

Among the various mesh designs provided by the Magics 21.0 program (Materialise
NV, Leuven, Belgium), 5 designs with a pore size of 1 mm were selected—Diamond, Cubic,
Dode, Octadens, Gyroid. Before specimen production for the experiment, non-destructive
analysis was performed using micro-computed tomography (µCT) (Quantum FX micro-CT,
Perkin Elmer Inc., Hopkinton, MA, USA) to analyze the structure of the lattice shape.
After obtaining µCT images of each pore design sample, 3D images were rendered with
NRecon program (Bruker-CT, Kontich, Belgium). BoneJ tap of ImageJ software (NIH and
LOCI, University of Wisconsin, Madison, WI, USA) for bone micro-architecture analysis
was used for stereology analysis of the output design. After cropping a certain area
(TV, 125 mm3) from the entire µCT image, scaffold volume ratio was calculated on the
program. It was observed that the Dode (0.708%), Octadens (0.828%), and Gyroid (0.775%)
designs had relatively higher densities than the Diamond (0.455%) and Cubic (0.447%)
designs. Therefore, it was decided to manufacture Dode, Octadens, and Gyroid designs for
experimental specimens.

2.2. Manufacture of 3D-Printed Titanium Specimens

A 3D printing method was adopted with the selective laser melting (SLM) (Cusmedi©,
Sungnam, Korea) fabrication method. All manufacturing processes were managed in
accordance with the Good Manufacturing Practice standards of the Korean Ministry of
Food and Drug Safety. The raw material for printing was Ti-6Al-4 V-ELI powder (Arcam
A2, Arcam, Moindal, Sweden) suitable for the ASTM F3001-14 (Standard specification for
additive manufacturing Ti-6Al-4 V-ELI with powder bed fusion). The composition of the
powder was mainly titanium, which contained trace elements such as 5.94% aluminum,
4.14% vanadium, 0.008% carbon, 0.049% iron, 0.010% yttrium, 0.10% oxygen, 0.010%
nitrogen, and less than 0.002% zinc and hydrogen (in wt.%). The manufacturing process
based on the SLM system was as follows: Thin layers of atomized fine titanium powder
were evenly distributed onto a substrate plate via selective laser melting using a coating
mechanism. This process occurred inside a chamber with a strictly controlled atmosphere
of inert nitrogen and argon. Once each layer had been stacked, each 2D slice of the part
geometry was fused by melting the powder selectively. The laser energy was sufficiently
intense to permit complete welding of the particles to form a solid and hard metal. This
process was accomplished by a high-powered laser beam, which is usually composed an
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ytterbium fiber. The process was repeated layer-by-layer until the manufacturing process
was complete (Figure 1). The standard of the manufactured product was the ASTM F136
(Grade 23, Standard specification for Ti-6Al-4 V-ELI alloy). Through the manufacturing
process, cylinder-shaped specimens with four different pore designs were prepared: Solid
(sham, no pore), Octadense, Gyroid, and Dode. All specimens have isotropy in which the
same shape is repeated in the X, Y, and Z planes, and these structures also have similar
mechanical strength along the X, Y, and Z axes. The specimens were 7 mm in height and
3 mm in diameter (Figure 2). Except for the solid, the specimens of the other designs were
manufactured with the same porosity of 75%. The pore size of Octedens, Gyroid, and
Dode design were 1.07, 0.30, and 0.76 mm, respectively. The strut thickness of Octedens,
Gyroid, and Dode design were 0.12, 0.14, and 0.30 mm, respectively. The strut spacing
of all specimens except solid was 0.8 mm, and the printing error was set within 0.05 mm.
Surface roughness was less than 15um, and Vickers hardness was more than 310 VHN.
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B: strut thickness).



Materials 2021, 14, 3892 4 of 11

2.3. Animal Experiments

These animal experiments were approved by the Animal Laboratory Ethics Committee
based on the law on laboratory animals (Approval No: CRONEX-IACUC 201908-001).

Nine twenty-week-old New Zealand white rabbits (weight: 3.6–3.8 kg) were used
herein. After one week of acclimatization, general anesthesia using a combination of zo-
lazepam and tiletamine (Zoletil®, 50 mg/kg, Virbac Korea, Seoul, Korea) and xylazine HCl
(Rompun®, 10 mg/kg, Bayer Korea, Seoul, Korea) was administered intramuscularly. On
one side of the shaved femur, a disinfection agent with betadine was applied. Subsequently,
lidocaine with 1:100,000 epinephrine was administered subcutaneously for hemostatic
purpose, and an incision of approximately 4 cm was made longitudinally on the inner thigh.
Complete bony exposure of the medial aspect of the femur was performed through careful
dissection between the rectus femoris and vastus medialis muscles. Four cuts at a width of
3 mm were made using drills for the installation of specimens. The gap between the cuts
was 7 mm. The prepared specimens were individually inserted into each cut (Figure 3). To
minimize the effect of the installation location, each different pore-designed specimen was
inserted into a random location. After inserting the specimens, layer-to-layer suturing was
performed using 4-0 Vicryl® and 5-0 Ethylon® (Johnson & Johnson, New Brunswick, NJ,
USA). The same surgical procedure was performed on the opposite leg.
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For pain relief and prevention of infection, prednisolone (0.5 IM, IM, Yuhan, Seoul,
Korea) and cephalexin (5 mg/kg, IM, Yuhan, Seoul, Korea) were postoperatively injected
for two days. The animals were monitored weekly for infection, inflammation, wound
dehiscence, delayed healing, and general health until they were euthanized. Out of a
total of nine rabbits, three were euthanized at the 2nd, 4th, and 6th weeks. After being
anesthetized using a zolazepam, tiletamine, and xylazine HCl, the animals were euthanized
by administering potassium chloride to the marginal ear vein. After euthanasia process, the
surgical site of the femur was dissected supra-periosteally, and the long bone and adjacent
soft tissue of the femur were harvested.

2.4. Micro-CT Imaging and Volumetric Analysis

The extracted femurs were moved and fixed in a µCT machine (SkyScan1174®, Ver.
1.7; Bruker CT, Kontich, Belgium). Subsequently, µCT imaging was taken. The imaging
settings were as follows—tube voltage of 130 kVp, tube current of 60 µA, aluminum filter
of 1 mm, exposure time of 500 ms, and rotation angle of 0.3◦. The pixel size of image
was 13.86 µm. The number of pixels of each image cut was 2240 × 2240. Under these
circumstances, a total of 800 high-resolution image cuts were obtained. NRecon (Ver 1.7.0.5,
Bruker-CT, Kontich, Belgium) was used for reconfiguration of cross-sectional image cuts,
and Dataviewer (Ver. 1.5.1.3, Bruker-CT, Kontich, Belgium) were used for the construction
of 3D images. The volume of newly formed bone inside the pore of the specimen was
calculated using the difference at the grayscale level. The formula for calculating the new
bone volume is as follows:

(Percentage of) New bone volume (%) = (Percentage of) Total bone volume − (Percentage of) Grafted specimen volume

The surface density of newly formed bone inside the pores of the specimen was
calculated in the same manner. The formula for calculating the surface density of a new
bone is as follows:

Surface density of new bone (mm2/mm3) = segmented bone surface/total new bone volume of the region of interest.

2.5. Histological Findings

Tissue slides were prepared using a non-decalcified sample preparation method. The
harvested long bone and adjacent soft tissue of the femur were fixed with 10% formalin
solution. After soaking of the specimens in formalin solution for one week, they were
rinsed meticulously with massive water for 12 h. The specimens were dehydrated using
increasing concentrations of 70%, 90%, and 100% ethanol. Then, the tissue samples were
infiltrated with resin solution (Technovit 7200 resin, Heraeus KULZER, Hanau, Germany)
with increasing resin ratios. After penetration by vacuuming the resin solution for two
days, curing of the resin was performed using a UV Embedding system (KULZER EXAKT
520®, Heraeus KULZER, Hanau, Germany), and cut of the center of the resin block was
done using a diamond cutter to produce a cross-section of the embedded tissue until 40 µm
thickness. Sectioned thin tissue was stained using hematoxylin and eosin (H&E), and tissue
slides were produced. The images of tissue slides were scanned using an optical microscope
(OLYMPUS BX®, Olympus Optical CO. Tokyo, Japan) equipped with a complementary
metal–oxide–semiconductor sensored camera. Subsequently, the histological images were
observed.

2.6. Statistical Interpretation

The Kruskal–Wallis test was used to analyze the differences in the percent volume and
the surface density of new bone among the three different pored groups simultaneously.
Moreover, the Kruskal–Wallis test was used to compare the percent volume and the
surface density of new bone at 2, 4, and 6 weeks within the group. Statistical analysis was
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performed using SPSS 22 program (IBM SPSS Inc., Chicago, IL, USA). Statistical significance
was designated at p < 0.05.

3. Results
3.1. Clinical Findings in the Animal Experiment

During the observational period, the animals did not show any life-threatening clinical
signs. In addition, abnormal symptoms such as wound dehiscence, infection, or inflamma-
tion were not observed at the operated sites. Significant gait impairment was not observed
during the observational period.

3.2. Radiological Findings

In all specimens of all groups, an uneven increase in radio-opacity in the pores was
observed. This increase in opacity was lower than that of the cortical bone and higher
than that of the marrow portion. There were no visual radiographic differences according
to the time of sacrifice. No bony resorption pattern was observed around the specimens
(Figure 4).
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Figure 4. Micro-computed tomography findings of the titanium specimens with four different pore
designs. (a) Longitudinal directional images (Dode, Gyroid, Octadens, and Solid (sham)). (b) Axial
images (Dode, Gyroid, Octadens, and solid (sham)).

3.3. Histological Findings

Histological findings obtained using H&E staining showed that inflammatory reac-
tions associated with titanium specimens did not occur in any of the groups. Necrosis,
infiltration of immune cells, and granuloma formation were not observed. Over time,
more bony growth and maturation appeared in the pores. An interesting observation is
that the compact bony tissue was penetrated into the pores adjacent to the cortical layer
and spongious bony tissue was penetrated into the pores adjacent to the marrow layer
(Figure 5).
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Figure 5. Histological images of the titanium specimens with four different pore designs. (a) Octadens
pore design. (b) Gyroid pore design. (c) Solid. (d) Dode pore design (H&E staining, X1.0).

3.4. Statistical Interpretation of Bone Conduction Capacity

Based on the difference in grayscale level, the percentage of new bone in the pore
structure was observed to be approximately 25% (Table 1). There was no difference in the
amount of newly formed bone according to pore design at 2, 4, and 6 weeks (p > 0.05). In
addition, no difference in the amount of new bone formation was observed with increasing
time within the same pore design for all three designs (p > 0.05).

Table 1. New bone volume (%) of 3D-printed porous titanium with variable pore design.

Octadense Gyroid Dode p-Value

2 weeks 24.888 ± 0.872 25.069 ± 1.259 24.990 ± 2.715 0.957
4 weeks 27.874 ± 2.184 25.171 ± 1.656 26.527 ± 2.311 0.491
6 weeks 26.835 ± 2.078 27.591 ± 1.719 27.433 ± 4.143 0.733

p-value 0.252 0.193 0.670

The surface density of the new bone in the pore structure was observed to be ap-
proximately 8 mm2/mm3 (Table 2). There was no difference in the surface density of new
bone according to pore design at 2, 4, and 6 weeks (p > 0.05). In addition, no difference in
the surface density of new bone was observed with increasing time within the same pore
design for all three designs (p > 0.05).

Table 2. Surface density of new bone (mm2/mm3) of 3D-printed porous titanium with variable pore
design.

Octadense Gyroid Dode p-Value

2 weeks 8.073 ± 0.170 8.100 ± 0.055 8.278 ± 0.205 0.393
4 weeks 8.117 ± 0.399 7.727 ± 0.081 8.263 ± 0.127 0.099
6 weeks 7.765 ± 0.181 7.746 ± 0.341 7.989 ± 0.084 0.587

p-value 0.193 0.301 0.113
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4. Discussion

As mentioned in the introduction, when titanium is applied as a porous structure,
a space for bone formation and regrowth can be provided [5]. In addition, the porous
structure lowers the weight of the substitute, lowers the stiffness to avoid stress shielding,
has an elastic modulus similar to bone, and allows nutrient and oxygen exchange to occur
along the connected pores [3,4,16].

However, until the introduction and development of 3D printers, imparting porosity
to titanium has undergone many trials and errors. Casting and milling methods, which
were the simplest manufacturing processes in the early days, are unsuitable for making
homogeneous and fine pores in the internal structure of titanium [6]. To overcome such
process limitations, various methods for manufacturing porous titanium have been studied,
including hot isostatic pressing [17], metal injection molding [18], spark plasma sinter-
ing [19], space holder technique [20], plasma spraying [21], anodic dissolution [22] and
powder metallurgy [23]. However, some techniques can produce only cavities and not
interconnected pores. In addition, constructing a small and homogeneous pore structure
using the above-mentioned methods was difficult.

3D printing, which is a revolutionary manufacturing method, has made it possible to
overcome existing manufacturing imperfections. Unlike early printing methods, where
only plastic materials were used, metal materials can now be processed through electron
beam melting or SLM methods. In this study, the specimens were processed using SLM.
The best advantages of constructing a bone substitute with titanium material having
a porous structure using 3D printing are homogeneity and microstructure. An open
and interconnected porous structure is typically needed for bone conduction with pore
sizes ranging from 200 to 500 µm [24,25] and porosity ranging from 60% to 90% [26]. In
addition, pore sizes larger than 300 µm could promote the formation of new bone and
capillaries [27,28]. SLM allows for the production of bone implants made of metals such as,
titanium and titanium-based alloys with a strut size as small as 200 µm [27]. Until now,
residual powder, the so-called balling phenomenon, is a problem in the manufacturing of
metal additives that causes adhering of particles in the 3D printing process. In other study,
it has been reported that the use of hydrofluoric acid could overcome this problem [29].

The titanium specimens used herein were not subjected to special surface treatments.
In fact, the current, widely used sandblasted or acid-etched techniques are known to
increase the biocompatibility of titanium by maximizing the surface roughness of com-
mercially pure titanium or titanium alloys [30]. Despite the advantages of such surface
treatments, we did not perform it in consideration of the simplicity of the manufacturing
process, and as excessive surface treatment may cause deformation of the set pore design.
We envisioned that all used surfaces were treated the same to avoid additional effects of
the surface treatment. Actually, according to one study, SLM-fabricated structures with
native, sandblasted, acid-etched, polished, or vibratory grinded surfaces show identical
cyto-compatibility with osteoblast compared with conventional titanium surfaces [27].

In this study, statistical differences in bone formation according to pore design were
not identified. Regardless of the pore design, the percentage of new bone and surface
density in the pore structure were observed in approximately 25% and 8 mm2/mm3,
respectively, over 6 weeks. Research on titanium pore design has been actively conducted,
even before the introduction of 3D printing. Under in vitro examination, there was a
study that demonstrated better bone formation in square-shaped pores [11], and another
study showed that tissue amplification was superior in hexagonal-shaped pores [31]. One
study indicated that a larger pore throat size, which affects the interconnection, is more
advantageous for bone ingrowth [32], and another study indicated that the straight edges
and convexities in the pore design are the least favorable for cell growth [12].

The results were also inconsistent in a comparative study on the pore design of
porous titanium made with 3D printing that can be searched in the current medline
database. Deng et al. studied porous titanium manufactured by the SLM method with
four pore designs (diamond, triangular, circular, cubic) having a size of 650 µm and
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a porosity of 65%. In a specimen of diamond pore shape, more bone formation was
observed in animal experiments, and slower flow rates were observed with computational
fluid dynamics, which would help blood vessel growth [33]. In addition, Zhao et al.
compared the octahedral and tetrahedron structures of porous titanium fabricated by the
SLM method and demonstrated that cell proliferation was better in the octahedral unit
with immunofluorescence [34]. Van Bael et al. studied the pore shape and curvature, and
their results showed that an obtuse angle between the pores was more prone to cause cell
blockage than an acute angle [13].

Although statistical significance was not observed herein, several peculiarities were
discovered. Histologically, ingrowth of the compact bone was observed in the specimen
area close to the cortical layer, and ingrowth of the spongeous bone was observed in the
specimen area close to the marrow layer. In addition, no difference in bone formation
according to the implantation period was observed radiographically, suggesting that the
maturation and calcification of bone tissue proceeded slowly before 6 weeks.

In this study, experiments related to cell affinity such as cell adhesion were not
performed. Because except the pore design, the material and surface treatment were the
same between the specimens, it was thought that there would be no significant difference
in cell affinity. Even considering the existing literature, there is no disagreement about the
high cell affinity of 3D-printed porous titanium. At 1 to 2 weeks after cell culture, more
cell binding, filopodia, and lamellipodia were observed comparing to initial time [35]. In
addition, it is reported that there was no significant difference in this tendency even when
the specimen pore size was changed [25].

In addition to cell affinity, trabecular anisotropy may be considered in order for future
porous specimens to adapt to loading conditions. As there are studies on bone mechanical
integrity according to the open site of the pore [36,37], trabecular anisotropy according
to the pore design should be investigated in the future. Besides that, the lack of sample
size, short-term observation period, and non-loading environment are limitations of this
study. Moreover, due to the absence of a device capable of superimposing the STL file
used in the scaffold design and the CT data of the actually manufactured specimen, the
printing accuracy could not be measured in this study. Studies addressing these aspects in
the future would lead to more reliable results with regard to the effect of pore design on
bone formation, which could not be observed herein.

5. Conclusions

High-porosity 3D printed titanium scaffolds that were constructed using the SLM
method have high biocompatibility and bone conductivity in vivo. During the 6-week
observation period, the proportion of new bones in the 3D-printed titanium scaffold
was approximately 25%. However, radiologically and histologically, differences in bone
formation according to the three types of pore design or implantation period were not
observed.
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