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Abstract

The  profiling  of  plasma  cell-free  DNA  (cfDNA)  is  becoming  a  valuable  tool  rapidly  for  tumor  diagnosis,

monitoring  and prognosis.  Diverse  plasma cfDNA technologies  have  been in  routine  or  emerging  use,  including

analyses of mutations, copy number alterations, gene fusions and DNA methylation. Recently, new technologies in

cfDNA analysis  have been developed in laboratories,  and potentially  reflect  the status of  epigenetic  modification,

the  immune  microenvironment  and  the  microbiome  in  tumor  tissues.  In  this  review,  the  authors  discuss  the

principles,  methods  and effects  of  the  current  cfDNA assays  and provide an overview of  studies  that  may inform

clinical applications in the near future.
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Introduction

Molecular  characterization  of  tumors  has  revolutionized
the  field  of  precise  oncology,  with  genomic  profiling
strategies  guiding  treatment  selection  for  multiple  cancer
types  (1,2).  Traditionally,  molecular  profiling  uses  tumor
tissues  derived  from  tumor  biopsy  or  surgical  resection,
with  the  disadvantages  of  invasiveness  (3),  a  lack  of  real-
time  monitoring  (4,5)  and  regional  limitations  (6).  More
recently,  liquid  biopsies,  particularly  cell-free  DNA
(cfDNA)  from  plasma,  have  emerged  as  important
supplementary tools to standard biopsy (7-10).

Plasma cfDNA refers to fragmented DNA presents in
the noncellular component of the blood, which has been

released through cell apoptosis or necrosis (11). Notably,
cfDNA is usually 150−200 base pairs in length (4,8,12) and
presents at a concentration of 10−15 ng per milliliter (8) in
the plasma of healthy persons, with a half-life shorter than
2  h  (4,8).  Plasma  cfDNA  originates  from  the  death  of
multiple  cell  types,  such  as  hematopoietic  cells  and
histiocytic  cells  (4).  Specifically,  cfDNA released  from
tumor cells is named circulating tumor DNA (ctDNA).

In tumor tissues,  variances have been observed in the
cellular  composition  and molecular  status  compared to
healthy  controls.  Cellular  composition  refers  to  the
subtypes  and  numbers  of  tumor  cells,  immune  cells,
stromal cells and microbiome (13,14). The molecular status
differs in various factors, including genomic, transcriptomic
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and epigenetic variances (15-17). Effective characterization
of these variances may potentially be translated into clinical
practice in the early screening, diagnosis and prognosis of
patients with tumors (18). Earlier plasma ctDNA analyses
used next-generation sequencing (NGS) to assess somatic
alterations (including mutations, copy number alterations,
gene fusions and DNA methylation) (3,19-24) and were in
routine  clinical  use  with  commercially  available  tests.
Currently, new cfDNA tests, including specific fragment
patterns (25), transcription start site (TSS) coverage (5), T
cell receptor sequencing (26) and associated microbiome
cfDNA analysis (27), have been developed in the laboratory
(Figure  1).  These  cfDNA techniques  effectively  reflect
genomic  variance,  epigenetic  modification,  micro-
environment interaction and the associated microbiome
status  of  tumor  tissues,  which  show potency  in  clinical
translation. In this review, we will discuss these emerging
techniques  of  plasma cfDNA assays  and their  potential
clinical applications in the near future.

Canonical cfDNA analysis methods

Testing  cfDNA  mutations,  fusions  and  copy  number
alterations

Tumor  genotyping  (mutations,  fusions  and  copy  number
alterations)  to  identify  oncogenic  driver  mutations  and
mechanisms  of  resistance  to  targeted  therapeutics  has
become  important  in  precise  oncology  (28-30).  Most

commonly  used  NGS  techniques  enable  the  reliable
detection  and  genomic  profiling  of  cfDNA  samples  with
effects  comparable  to  those  of  tumor  biopsy  sequencing,
particularly  among  patients  with  advanced  diseases  (23,
31-36).

Detection  of  cfDNA  mutations,  fusions  and  copy
number variations (CNVs) has been widely used in some
cancer types for genomic profiling and treatment selection
(19,37-44). The National Comprehensive Cancer Network
(NCCN) guidelines (version 4. 2020) for non-small cell
lung cancer  (NSCLC) recommend repeated testing  for
EGFR, ALK, ROS1, BRAF, MET and RET through biopsy or
plasma  testing  if  insufficient  tissues  are  available.  For
hormone-receptor (HR) positive/human epidermal growth
factor  receptor  2  (HER2)  negative  breast  cancer,  the
NCCN guidelines recommend an assessment of PIK3CA
mutations with tumor tissues or liquid biopsies to identify
candidates for alpelisib plus fulvestrant treatment. ERBB2
(HER2) plasma copy number detection in cfDNA can be
used  to  guide  anti-HER2  therapy  in  patients  with
colorectal cancer (45).

In  addition  to  treatment  selection,  key  potential
applications of recent plasma ctDNA genomic profiling
include  risk  stratification,  response  assessment  and
resistance monitoring (44,46-53).  Plasma ctDNA levels
combined  with  the  gene  mutation  status  have  been
examined as prognostic biomarkers across multiple cancer
types for risk stratification. For example, in a clinical trial
of  patients  with  BRAFV600  mutation-positive  metastatic

 

Figure 1 Diverse plasma cfDNA analysis techniques. cfDNA, cell-free DNA; TSS, transcriptional start site.
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melanoma treated with dabrafenib or trametinib, patients
negative  for  BRAF  mutations  in  cfDNA  had  longer
progression-free survival (PFS) and overall survival (44).
Regarding the response assessment, studies of ctDNA in
patients with advanced pancreatic cancer have reported that
a decrease in plasma levels of mutant KRAS  cfDNA two
weeks after treatment appears to be an early indicator of
the  response  to  chemotherapy  (54,55).  Plasma  ctDNA
analysis has also contributed to monitoring resistance to
targeted  therapies  (19,56-58).  For  instance,  NCCN
guidelines  support  plasma-based mutant  EGFR  T790M
testing  to  identify  acquired  resistance  to  EGFR  TKI
treatment  in  patients  with  NSCLC  (37).  Acquired
resistance to osimertinib in patients with EGFR-mutant
NSCLC is  mediated  by  various  mechanisms,  including
MET amplification, HER2 amplification and various fusions
(NTRK,  RET,  ALK  and  BRAF),  which  are  potentially
detectable by plasma ctDNA NGS (38,39). Plasma ctDNA-
identified BRCA reversion mutations have been shown to
indicate acquired resistance to PARP inhibitor treatment in
patients with prostate cancer (59,60).

DNA methylation testing

DNA methylation is a key epigenetic change involving the
addition of a methyl group to cytosine nucleotides, and this
modification  is  used  to  control  genes  and  their  genetic
programs  (61-63).  Epigenetic  reprogramming  plays  an
important  role  in  carcinogenesis.  The  unique  levels  and
patterns of cytosine methylation reflect the tissues of origin
and  the  timing  that  epigenetic  reprogramming  has
occurred  (63).  Most  types  of  cancers  exhibit  a  DNA
methylation landscape involving the net loss of global DNA
methylation and an increase in the levels of methylcytidines
at  regulatory  regions.  Thus,  this  methylation  landscape
may  serve  as  a  potential  cancer  biomarker  to  identify  the
cancer type and stage (64).

A previous study enrolling 6,689 participants (2,482 with
cancer,  4,207  without  cancer)  indicated  that  cfDNA
sequencing leveraging informative methylation patterns
detected more than 50 cancer types across all stages with
high  specificity  (65).  In  another  study,  a  targeted  set
combining genomic alterations (TP53, RB1, CYLD and AR)
and  epigenomic  alterations  (hypomethylation  and
hypermethylation  of  20  differentially  methylated  sites)
applied to ctDNA was capable of identifying patients with
neuroendocrine prostate cancer (56). Detection of early-
stage tumors is still difficult due to the limited amount of

ctDNA released into circulation. A methodology termed
cell-free methylated DNA immunoprecipitation and high-
throughput sequencing (cfMeDIP-seq) was reported that
these  methylated  cfDNA  fragments  could  describe
comprehensive profiling of methylated cfDNA and detect
cancer in early stages (66). Two studies successively used
this  technology  for  the  early  detection  of  renal  cell
carcinomas and the diagnosis  of  central  nervous system
tumors (67,68).

Novel cfDNA analysis methods

Fragmentation pattern detection

The  cfDNA  fragment  length  is  approximately  167  bp  in
healthy  individuals,  suggesting  release  from  apoptotic
caspase-dependent cleavage (69,70). As cancer cells usually
have an altered chromatin structure and other genomic and
epigenomic  abnormalities,  the  lengths  of  cancer-driven
cfDNA  fragments  are  more  variable  than  those  of  non-
cancer  cfDNA  (71,72).  Tumor-guided  personalized  deep
sequencing  and  xenograft  experiments  were  performed  to
establish  the  size  distribution  of  mutant  cfDNA,  and  an
enrichment  of  cancer  cell-derived  cfDNA  with  fragment
sizes ranging from 90 bp to 150 bp was observed, which are
shorter than non-cancer cell-derived cfDNA fragments. In
particular,  cfDNA  fragments  bearing  tumor-specific
mutations  were  significantly  shorter  than  fragments
without  these  mutations  (73).  As  cancer-cell  cfDNA
fragments  exhibit  a  significant  difference  in  length
compared  with  non-cancer-cell  cfDNA  fragments,  the
cfDNA  fragmentation  pattern  may  serve  as  a  sensitive
biomarker to detect cancer.

An approach called “DNA evaluation of fragments for
early interception (DELFI)” was developed to specifically
and accurately detect a large number of abnormalities in
cfDNA  by  performing  genome-wide  analysis  of
fragmentation patterns (25).  The first  step is  to remove
low-quality  reads  and  irrelevant  reads  to  obtain  high-
quality sequencing reads. In particular, duplicated reads,
low  mappable  reads  and  blacklist  region  reads  were
removed. Additionally, the length of genome bins is fixed
to  optimize  fragmentation  patterns.  Whole  genome
autosomes  were  divided  into  three  forms,  including
isometric, adjacent and nonoverlapping bins, with lengths
ranging from tens of kb to several Mb, and the number of
reads within different intervals was counted. Subsequently,
a  locally  weighted  scatterplot  smoothing  (LOWESS)
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regression analysis was applied to calculate the guanine and
cytosine (GC)-adjusted coverage and account for biases in
coverage attributable to GC content. Finally, researchers
calculated the ratios  of  the short  to long fragmentation
profile for each individual and compared the ratios in the
two groups using a Wilcoxon rank sum test to compare the
variability of fragment lengths from two groups.

The cfDNA fragmentation pattern can be detected as a
proof-of-principle approach in tumor diagnosis. Sensitive
detection of genomic alterations in plasma cfDNA relies on
the amount of ctDNA released by tumor cells.  Notably,
low-pass  genome  sequencing  of  cfDNA  sensitively
discovers tens to hundreds of tumor-specific abnormalities
through a cfDNA fragmentation pattern analyses,  while
high-depth genome sequencing is needed to detect tumor-
derived alterations in a cfDNA mutation analysis. As the
cfDNA fragmentation pattern reflects a cell-type specific
nucleosome occupation pattern, this detection method is
also useful to identify the tissue of origin. Cristiano et al.
analyzed  the  fragmentation  patterns  of  245  healthy
individuals and 236 patients with various types of cancer,
including  breast,  colorectal,  lung,  ovarian,  pancreatic,
gastric and bile duct cancer (25). The authors developed a
machine  learning  model  incorporating  fragmentation
patterns, which had sensitivities of detection ranging from
57%  to  >99%  among  the  seven  cancer  types  at  98%
specificity, with an overall area under the curve (AUC) of
0.94. Furthermore, this approach can be combined with
mutation-based cfDNA analyses to identify the tissue of
origin  in  91%  of  patients  with  cancer.  Mouliere  et  al.
surveyed  cfDNA fragment  sizes  in  344  plasma samples
from 200 patients with 18 different cancer types and 65
healthy controls (73). They integrated fragment length and
copy number analyses of cfDNA to achieve an AUC>0.99
compared to an AUC<0.8 without fragmentation features
in  advanced  cancer  identification.  More  specifically,
increased  identification  of  cfDNA  from  patients  with
glioma and renal and pancreatic cancer was achieved with
an  AUC>0.91  compared  to  an  AUC<0.5  without
fragmentation features.

Transcriptional start site (TSS) coverage

TSS is the location where transcription starts at the 5’-end
of  a  gene  sequence.  Its  accessibility,  which  is  affected  by
nucleosome  occupancy,  is  associated  with  gene  activation
or  silencing  in  a  tissue-specific  manner  (74,75).  Whole-
genome  sequencing  of  cfDNA  and  identification  of  TSS

coverage  can  provide  functional  information  about  cells
releasing  their  DNA  into  circulation.  Transiently,  it  will
show  depleted  coverage  at  the  TSS  for  active  genes.  In
contrast, at promoters of inactive genes, increased coverage
may reflect  the  denser  nucleosome packaging of  repressed
genes (76,77).

Based on the whole genome sequencing of cfDNA, Ulz
et al. established a method for analyzing TSS coverage to
predict gene expression in specific tissues (5). The first step
is to locate TSSs in the reference genome by searching the
Ensembl database. After removing low-quality reads, the
sequences  were  aligned  to  obtain  BAM  files  and
subsequently  identify  coverage  around  TSS  locations.
Next, the authors identified nucleosome-depleted regions
(NDRs) as open chromatin regions, which were defined as
from −150 bp  to  +50  bp  around the  TSS.  Then,  NDR
coverage  was  normalized  to  the  mean  coverage  of
surrounding  regions:  TSS coverage  from −3,000  bp  to
−1,000  bp  and  from  +1,000  bp  to  +3,000  bp.  Finally,
normalized  NDR  coverage  was  used  to  predict  gene
expression activity. For one specific gene in bulk samples, if
the normalized NDR coverage in most of the samples is
less  than  1,  this  gene  is  predicted  to  be  active.  If  the
majority of values is greater than 1, this gene is predicted to
be silent.

Due to the TSS coverage of cfDNA possesses sensitivity
and accuracy to predict whether genes are expressed, it can
be used as an informative tool to determine the expression
of  cancer-related  genes  in  primary  tumors  from blood
samples.  This  information  may  be  used  in  disease
stratification for  treatment decisions.  For example,  Ulz
et al. first performed RNA-seq of matched primary tumors
in  addition  to  whole-genome  sequencing  of  cfDNA in
proof-of-concept studies (5). They obtained the 100 most
highly  expressed  genes  from  RNA-seq  analysis  of  the
primary  tumor  and  found  that  >85%  were  correctly
classified  in  the  expressed  cluster  by  the  TSS coverage
analysis.  This  approach  was  suitable  for  analyzing
expression levels of specific single genes, which may serve
as biomarkers for tumor treatment. The authors analyzed
426 plasma samples from patients with metastatic cancer
(colon,  128;  prostate,  139;  breast,  125;  lung,  31;  other
tumor entities, 3) to test whether this approach is broadly
applicable. They found that 51.6% of these samples had at
least  100  genomic  bins  suitable  for  the  TSS  coverage
analysis.  Specifically,  certain regions,  such as high-level
amplifications,  which  frequently  contain  cancer  driver
genes, were always amenable to these analyses.
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T cell receptor sequencing

Immune  checkpoint  inhibitors  (ICIs)  enhance  antitumor
immune  responses  by  restoring  T  cell  function  (78,79).
The  identification  of  indicators  of  the  response  to
immunotherapy  is  key  for  treatment  decisions  (80).  Most
researchers  have  focused  on  identifying  tumor  cell  states
(81),  while  recent  studies  report  that  infiltrated  immune
cell  types  and  states  are  changed  in  response  to
immunotherapy.  Ribas et  al. characterized  102  tumor
biopsies  obtained  from  53  patients  with  metastatic
melanoma treated with the PD-1 antibody pembrolizumab.
PD-1  blockade  increases  the  frequency  of  T  cells,  B  cells
and  myeloid-derived  suppressor  cells  in  tumors,  while
CD8+ effector memory T-cells were the main expanded T-
cell  phenotype  detected  in  patients  in  response  to  therapy
(82). Riaz et al. reported reduced mutation and neoantigen
loads in patients with drug-responsive advanced melanoma
after  treatment  with  the  anti-PD1  antibody  nivolumab.
Moreover,  transcriptomic  results  showed  increased
numbers  of  CD8+  T  cells  and  natural  killer  cells  that
correlated  with  the  treatment  response.  T  cell  receptor
sequencing (TCR-seq) showed that expanded T cell clones
were  accompanied  by  neoantigen  loss  (83).  Huang et  al.
identified  pharmacodynamic  changes  in  circulating
exhausted CD8 T cells (Tex cells) after treatment with the
PD-1-targeting antibody pembrolizumab (84). In addition,
two  studies  identified  correlations  between  T  cell
repertoires and CD8+ memory effector cytotoxic T cells in
peripheral blood with the response to ICIs in patients with
metastatic melanoma and may serve as dynamic biomarkers
of immune activation (26,85).

T cell maturation occurs along with clonal reduction and
substantial  T-cell  death  because  progenitor  cells  must
undergo  rounds  of  selection  before  they  become
immunocompetent naïve T cells (86). As dying cells release
DNA into the circulation, T cell-derived cfDNA can be
sequenced. Complementarity determining region-3 (CDR
3)  of  the  TCR,  which  is  highly  variable,  is  unique  to
individual T cell clones (87,88). Sequencing CDR3 regions
in cfDNA may provide methods to monitor T cell states.

Recently, Valpione et al. performed a TCR-seq analysis
of  peripheral  blood  mononuclear  cells  (PBMCs)  with
paired cfDNA to assess early immune activation following
ICI treatment (26).  The rearrangement efficiency score
(RES)  [productive/(productive  +  nonproductive)]  was
directly used to assess the TCR region CDR3 as a measure
of TCR changes in PBMCs and cfDNA. In healthy donors,

the level of nonproductive TCR sequences in cfDNA was
higher than that in PBMCs, suggesting that nonproductive
TCR sequences were released by T cells from a failure of
thymic selection. After initial ICI treatment, the cfDNA
RES was higher in patients who subsequently responded to
ICIs,  while  the  PBMC  RES  in  both  responders  and
nonresponders  was  0.  A  higher  cfDNA  RES  indicated
increased peripheral T cell turnover in responding patients.
Moreover, flow cytometry results revealed that the change
in cfDNA RES was caused by the expansion of a subset of
immune effector T cells.

Based  on  this  finding,  the  activation  of  this  immune
effector T cell population may be applied to monitor the
early immunotherapy response and thus may guide the next
step of treatment selection (89,90). Immunological changes
are induced by multiple factors. Future studies should focus
on combining more biomarkers in serial TCR-seq analyses
of cfDNA to achieve high accuracy and specificity and to
translate the available techniques into clinical use.

Microbiome cfDNA analysis

In  the  past  few  years,  studies  have  indicated  that  the
microbiome  participates  in  modulating  cancer  initiation,
progression  and  metastasis,  as  well  as  the  response  to
cancer therapy (91-98). For example, Fusobacterium and its
associated  microbiome  colonize  both  primary  and
metastatic sites of human colorectal cancers. Treatment of
mice  bearing  xenografts  with  the  antibiotic  metronidazole
reduced  the  bacterial  load,  cancer  cell  proliferation  and
overall  tumor  growth  (91).  The  microbiota  was  also
discovered  to  play  a  role  in  mediating  tumor  resistance  to
the chemotherapeutic drug gemcitabine in colon carcinoma
models  (93,94).  The  local  microbiota  provokes
inflammation  associated  with  lung  adenocarcinoma
progression by  activating lung-resident  γδ T cells  (95).  By
examining  the  oral  and  gut  microbiomes  of  patients  with
melanoma  undergoing  anti-PD-1  immunotherapy,
Gopalakrishnan et al. observed significant differences in the
diversity  and  composition  of  the  gut  microbiome  in
responders  compared  with  non-responders  (99).
Characterization  of  the  microbiome  in  patients  with
multiple  tumor  types  indicated  distinct  microbial
compositions  in  these  patients  (27).  For  example,  the
Firmicutes and Bacteroidetes phyla were the most abundant
species  detected  in  patients  with  colorectal  tumors,  while
Proteobacteria dominated the microbiome of  patients  with
pancreatic  cancer.  The  microbiomes  of  patients  with
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breast, lung, and ovarian cancer also showed distinct tumor
type-specific compositions (100-102).

Based on accumulating evidence, blood-based microbial
DNA  (mbDNA)  is  clinically  informative  in  cancer
(103,104).  However,  due  to  the  low microbial  biomass,
problems of contaminants and batch effects hampered the
use of blood-based microbial DNA detection in the clinic.
Poore et al. established a pipeline to analyze mbDNA in
blood,  which used improved algorithms for eliminating
contaminant sequences and machine learning to identify
microbial signatures (27). First, whole genome sequencing
is  employed  in  mbDNA  profiling.  After  removing  the
irrelevant  read  pairs  that  map  to  the  human  reference
genome,  the  remaining  reads  are  mapped  to  known
bacterial,  archaeal  and viral  genomes  with  the  ultrafast
Kraken algorithm or Shogun algorithm in RepoPhlan. This
database contains 5,503 viral genomes and 66,279 bacterial
or archaeal genomes. Next, the batch effect of datasets are
corrected using normalization methods, such as the Voom
algorithm. Furthermore, the authors employed machine
learning  methods  to  identify  microbial  signatures  that
discriminate among various types of cancer and compared
their performance.

By  implementing  this  pipeline,  Poore  et  al.  analyzed
18,116  tumor  samples  from  10,481  patients  with  33
different  tumor  types  in  The  Cancer  Genome  Atlas
(TCGA)  database,  together  with  nonneoplastic  tumor-
adjacent  tissues  and  blood  samples,  as  well  as  matched
tissues from individuals without cancer (27). By reanalyzing

whole-genome sequences as well as RNA-sequencing data
from TCGA, the authors successfully established microbial
signatures to distinguish tumor and nontumor tissues and
to identify tumor types. Next, they validated their data by
analyzing cell-free plasma samples, including samples from
69  individuals  without  cancer  and  100  patients  with
prostate,  lung or  skin  cancer.  The accuracy of  cfDNA-
based detection was similar to that  of  the tumor biopsy
analysis and tumor type identifications.

Blood-based microbial DNA analysis has great potential
for tumor detection and tumor type identification, even
low-grade tumor stages, with a high discriminatory rate
among  healthy  individuals  and  patients  with  cancer.
However,  more  investigations  must  be  performed  to
address technical and biological factors limiting the analysis
of cancer sequencing data for microorganisms with a low
biomass.

Summary

Novel  techniques  in  cfDNA  analysis,  including
fragmentation  patterns,  TSS  coverage,  TCR  changes  and
microbial  signatures,  have  wide  clinical  applications
(Figure  2).  These  novel  techniques  reflect  the  status  of
epigenetic  modification,  the  immune  microenvironment
and the microbiome in tumor tissues, which play important
roles in carcinogenesis.  Thus, a deep understanding of the
related  carcinogenesis  mechanism  is  required,  which  will
provide  more  biomarkers  to  test.  For  example,  key

 

Figure 2 Potential clinical applications of cfDNA technologies. cfDNA, cell-free DNA; TSS, transcriptional start site.
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transcription  factors  and  related  genes  involved  in  tumor
initiation  can  be  used  as  targets  in  the  TSS  analysis.
Further  validation in more patients  with different  types  of
cancer  is  necessary  to  effectively  translate  these  novel
techniques  into  clinical  applications.  Moreover,  the
combination of various methods of cfDNA analysis will add
value  to  future  use  and  increase  the  specificity  and
sensitivity.
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