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Abstract

Background

The UN’s Sustainable Development Goals are devoted to eradicate a range of infectious

diseases to achieve global well-being. These efforts require monitoring disease transmis-

sion at a level that differentiates between pathogen variants at the genetic/molecular level.

In fact, the advantages of genetic (molecular) measures like multiplicity of infection (MOI)

over traditional metrics, e.g., R0, are being increasingly recognized. MOI refers to the pres-

ence of multiple pathogen variants within an infection due to multiple infective contacts.

Maximum-likelihood (ML) methods have been proposed to derive MOI and pathogen-line-

age frequencies from molecular data. However, these methods are biased.

Methods and findings

Based on a single molecular marker, we derive a bias-corrected ML estimator for MOI and

pathogen-lineage frequencies. We further improve these estimators by heuristical adjust-

ments that compensate shortcomings in the derivation of the bias correction, which implicitly

assumes that data lies in the interior of the observational space. The finite sample properties

of the different variants of the bias-corrected estimators are investigated by a systematic

simulation study. In particular, we investigate the performance of the estimator in terms of

bias, variance, and robustness against model violations. The corrections successfully

remove bias except for extreme parameters that likely yield uninformative data, which can-

not sustain accurate parameter estimation. Heuristic adjustments further improve the bias

correction, particularly for small sample sizes. The bias corrections also reduce the estima-

tors’ variances, which coincide with the Cramér-Rao lower bound. The estimators are rea-

sonably robust against model violations.

Conclusions

Applying bias corrections can substantially improve the quality of MOI estimates, particularly

in areas of low as well as areas of high transmission—in both cases estimates tend to be

biased. The bias-corrected estimators are (almost) unbiased and their variance coincides

with the Cramér-Rao lower bound, suggesting that no further improvements are possible
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unless additional information is provided. Additional information can be obtained by combin-

ing data from several molecular markers, or by including information that allows stratifying

the data into heterogeneous groups.

Introduction

The UN’s Sustainable Development Goals (SDGs; see [1]) are devoted to eradicate a range of

infectious diseases to achieve global well-being. These efforts require monitoring disease trans-

mission at a resolution that differentiates between pathogen variants at the genetic/molecular

level. This is because, when switching the focus from disease control toward elimination,

routes of transmission need to be identified (cf. [2]), which requires to distinguish between

pathogen variants that are circulating within an endemic population and those that are

imported. The gold standards to measure transmission are still the entomological inoculation

rate (EIR) and the basic reproduction number R0 [3, 4]. However, molecular metrics, e.g., mul-

tiplicity of infection (MOI) and molecular force of infection (mFOI), are recognized as being

more appropriate [4]. Moreover, genetic (molecular) measures like multiplicity of infection

(MOI) have advantages over traditional metrics, e.g., R0, which rely on incidence data and

healthcare records that are notoriously difficult to maintain. Although technically more chal-

lenging, the former can be appropriately estimated from selected study sites with an appropri-

ate sample designs. The importance of MOI is well established in malaria and increasingly

becoming recognized in other infectious diseases [5].

The SDG particularly aim to end the malaria epidemic by the year 2030. Malaria is caused

by several species of unicellular eukaryotic parasites of genus Plasmodium. It is a vector-borne

disease transmitted by several species of anopheles mosquitoes. With half of the world’s popu-

lation living at the risk of infection, malaria is considered a major obstacle to global develop-

ment. While programs such as the President’s Malaria Initiative (PMI) substantially

contributed in lowering transmission, by introducing long-lasting insecticide-treated bed nets,

rapid diagnostic tests (RDTs) and artemisinin-based combination therapies (ACTs) since the

early 2000s, in 2018 the number of malaria cases increased after several years of steady decrease

(WHO 2018 [6]). Nevertheless, plans to eradicate malaria in several endemic regions remain

ambitious, e.g., in India malaria elimination is targeted by 2030 [7]. Recently, successful

malaria-control interventions are challenged by the spread of (i) insecticide resistance [8, 9],

(ii) HRP2/3 deletions in the parasite’s genome [10, 11], which cause false-negative RDT results,

and (iii) drug resistance. Particularly, the spread of artimisinin resistance (especially mutations

in the propeller region of the K13 gene of P.falciparum) in the greater MeKong subregion is a

source of concern [12]. This entails putting forward efficient tools for monitoring malaria epi-

demiology and reliably measure the impact of new and existing control interventions aiming

to reduce malaria transmission.

MOI’s incidence (or superparasitism per se) is epidemiologically an important metric of

exposure in infectious diseases (cf. [13]). However, the definitions of MOI, or complexity of

infection (COI) [14, 15], are ambiguous in the literature (cf. Model background, Alternative

definitions of MOI). Here, MOI refers to the number of super-infections due to multiple infec-

tious contacts, which often (but not always) lead to multiclonal infections [16, 17]. Apart from

their association to transmission, multiclonal infections are believed to affect intra-host

dynamics, characterized by complex interactions between genetically distinct parasite lineages

[18]. In malaria, the epidemiological importance of MOI in relation to disease severity (and its
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implications on identifying mutations associated with drug resistance) are well recognized

[19–21]. The concept of MOI applies to other infectious diseases likewise, although it has not

been recognized as much as in malaria.

In many studies, ad-hoc methods are used to provide estimates for MOI and lineage fre-

quencies from molecular/genetic data. Although these methods are intuitive, they usually yield

biased results. In several studies, an estimation of MOI is derived as the total number of dis-

tinct genotypes detected at a marker divided by the number of disease-positive samples [22].

Regularly, this approach is applied to multiple markers to derive one estimate of MOI per

marker [23, 24]. Some authors calculate MOI for each sample in a dataset as the maximum

number of alleles observed across several marker loci (typically STR markers, e.g., [18, 25]), or

the mean number of alleles across all loci [26]. For SNP data, in [27] counts of the number of

heterozygous SNPs are used in each sample to define multiclonal infections relating to MOI.

Because haplotypes super- or co-infecting a host can carry the same allele at one or many loci,

these approaches might substantially underestimate MOI. On the contrary, if a large number

of markers is considered, MOI might be overestimated as sequencing or allele-calling errors

accumulate. (See Model background, Alternative definitions of MOI for a formal discussion.)

A formal approach is to build a uniform statistical framework providing adequate estima-

tions of MOI while accounting for confounding factors. In the context of malaria, such a

framework was introduced by [28] and further developed by [16, 29]. This approach employs

molecular data from a collection of blood samples of disease-positive patients to obtain maxi-

mum-likelihood estimates (MLEs) for MOI and the frequency spectrum of pathogen lineages.

A comprehensive investigation on the MLEs’ performance showed that the method has the

typical desirable asymptotic properties of an estimator, i.e., asymptotic unbiasedness, strong

consistency, and efficiency [17]. In spite of these large-sample properties, the method yields

biased results in finite-sample settings. More precisely, while lineage-frequency (allele-fre-

quency) estimates are unbiased, the MOI estimate is typically biased. The bias of the MOI esti-

mator was assessed in detail in [17]: the estimator is most biased in either low- or high-

transmission setting for the following reasons. While in low-transmission setting, the estimates

will typically slightly underestimate the true parameter, occasionally in the data samples with

several lineages present are over-represented, which results in substantial overestimates of the

true parameter. Overall this leads to positive bias, which is substantial in relative terms but not

in absolute terms. In high-transmission settings, it is likely that samples with multiple lineages

are over-represented, which lead to substantial overestimates due to the Poisson model (cf.

[17]). In mathematical terms, the bias of the MLE is of order OðN � 1Þ [30]. In areas of high

transmission, in future studies the problem of bias can be solved by aiming for larger sample

sizes. However, in low-transmission settings, bias is appreciable even for moderate sample

sizes. This is a considerable shortcoming, because collecting a large number of clinical samples

in low-transmission settings is challenging—transmission intensities correlate with disease

prevalence through MOI. Therefore, applying a bias correction becomes essential—particu-

larly in areas of low and high transmission, when the collection of large sample sizes is not fea-

sible. Moreover, bias depends on the skewness of the lineage-frequency distribution, with

markers with more balanced distributions—typically reflecting neutral markers—leading to

less biased results (cf. [17]). Molecular markers which are under selection will tend to have

more skewed lineage-frequency distributions, e.g., markers in the vicinity of drug resistance

associated genes in malaria or PCR-RFLP data on msp genes. In such situations, it is also rec-

ommendable to apply bias corrections.

Here, we present an analytical bias adjustment to the MLE, which reduces bias to the order

OðN � 2Þ. We adopt the method for bias correction outlined in [31], which requires the likeli-

hood function to be “well-behaved’’, i.e., fulfills the standard regularity conditions. This is the
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case here. The method derives the second-order biases of the MLEs for MOI and lineage fre-

quencies. We provide explicit formulas for bias in terms of the true and estimated parameters.

Moreover, we consider a heuristic approach to introduce several adjustments to the bias cor-

rections. To investigate the improvement by bias correction, we conduct a systematic numeri-

cal study. Namely, performance of the MLE is compared to its bias-corrected counterparts by

quantifying the estimator’s empirical bias (accuracy) and variance (precision). Moreover, the

robustness of the estimators is investigated under model violations assuming that MOI follows

a negative binomial distribution rather than a Poisson distribution as assumed by the method

introduced here. MOI estimates tend to be most biased in areas of either low or high transmis-

sion. The bias correction substantially reduces bias of MOI estimates in such situations.

Readers with a more applied focus, shall feel free to skip the more technical parts of the

Model Background, and the Analytical Results and move directly to Finite Sample Properties.

Model background

To estimate the distribution of MOI, we adapt the model of [28], which is also described in

[16]. We refer to “lineages” as pathogen variants, identified by allelic variants at a single locus

and synonymously use the terms “lineage” and “allele”. Lineages can also be interpreted as

haplotypes in a non-recombining region. Now, let us consider n different lineages circulating

in a given pathogen population. Let us denote the lineages by A1, . . ., An and their frequencies

by p1, . . ., pn, respectively. The frequencies can be subsumed by the vector p = (p1, . . ., pn). At

each infective event, exactly one lineage is transmitted to a host. However, hosts can be super-

infected multiple times with the same or different lineages. Let mk be the number of times a

host is (super-)infected by lineage Ak. Therefore, m = m1 + . . . + mn is the number of times a

host is (super-)infected during the course of its infection (see Fig 1). Note that the model can

be reinterpreted to also cover co-infections, i.e., the transmission of several lineages at one

infectious bite (see [5] Section 2.1.1).

Fig 1. Illustration of observable and unobservable information. Illustration of information contained in blood samples. The top row illustrated three

(super-)infections. The bottom row illustrates the respective information about the infection that can be reconstructed from a blood sample. The first

individual was infected by m = 4 lineages, three times with the orange and once with the blue lineage. Hence, the orange and blue lineages are observed

in the blood sample, while the pink and green lineages were not observed. In the middle, a super-infection with m = 3 lineages is illustrated which

differs from the first infection but results in the same observation. All four lineages were infecting in the third example, however, m = 6 super-infections

occurred.

https://doi.org/10.1371/journal.pone.0261889.g001
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We assume infective events to be independent. Hence, conditioned on being super-infected

m times, the probability that the host is infected mk times with lineage Ak (k = 1, . . ., n) follows

a multinomial distribution, i.e., PðmjmÞ ¼ m
m

� �
pm ≔ m!

m1!...mn !
pm1

1 . . . pmn
n . The quantity m is

called multiplicity of infection (MOI) or complexity of infection (COI) [14]. Note that this def-

inition is not uniformly used in the literature, especially not in empirical studies (cf. Introduc-

tion). With no underlying statistical framework, MOI is often referred to as the number of

different lineage variants found in a clinical specimen, e.g., blood sample, taken from an

infected host (e.g. [17]).

If infections with the disease are rare and independent, the natural assumption is that MOI

is Poisson distributed, or more precisely follows a conditional Poisson distribution (CPD), i.e.,

km ¼
1

el � 1

l
m

m!
; m � 1; ð1Þ

as only disease-positive hosts are considered. Under this assumption, the distribution of MOI

is identified by the Poisson parameter λ. The average MOI is

c ¼
l

1 � e� l
ð2Þ

(cf. [29]). In practice, for a given infection, m is unknown (see Fig 1) and it is impossible to

reconstruct m = (m1, . . ., mn). However, it is possible to detect the absence/presence of lineages

within an infection. Let xk 2 {0, 1} denote the absence/presence of lineage Ak in a blood sam-

ple. Therefore, the observed data obtained from a blood sample is represented by the configu-

ration x = (x1, . . ., xn) 2 {0, 1}n\{0} and relates to the true infection via x = sign(m). Notably,

the excluded configuration 0 represents an uninfected host (m = 0). The probability of a clini-

cal sample having configuration x is given by

Qx ¼
1

el � 1

Yn

k¼1

ðelpk � 1Þ
xk ; ð3Þ

according to [16]. This model is identifiable, i.e., different sets of parameters lead to different

distributions of x (cf. [17]).

The model parameters λ and p can be jointly estimated by maximum-likelihood method

from N disease-positive clinical samples, i.e., from N configurations x(1), . . ., x(N). Collectively

we denote this dataset by X . Let Nk be the number of clinical samples in which lineage Ak is

observed, i.e.,

Nk ¼
XN

j¼1

xðjÞk ; ð4Þ

where xðjÞk indicates the absence/presence of lineage Ak in the j-th sample. The log-likelihood

function is given by

‘ðl; pÞ ¼ � N logðel � 1Þ þ
Xn

k¼1

Nk logðe
lpk � 1Þ; ð5Þ

cf. [16]. The MLE is found by maximizing the Lagrange function defined by

Lðl; b; pÞ ¼ ‘ðl; pÞ þ bð1 �
Xn

k¼1

pkÞ; ð6Þ

where β is the Lagrange multiplier. Under the Poisson assumption (1), the values N and
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N1, . . ., Nn form a sufficient statistic (cf. [16]). Clearly, the values
N1

N ; . . . ;
Nn
N are the estimated

prevalences of the lineages in the pathogen population.

Alternative definitions of MOI

A downside in the definition of MOI or COI is that these terms are ambiguously defined in the

literature. Typically in the theoretical literature MOI is defined as the number of super-infec-

tions or co-infections in the same way as here, e.g., [32–36]. It was also defined in the same

way in [28, 37] without explicitly referring to the term MOI, but rather to the “number of

malaria clones in blood samples” or “multiple infections”, respectively. This is similar for [38].

In [39], MOI was defined as the Poisson parameter λ rather than to the realizations of a Pois-

son distribution. In [14, 15, 34] the terms MOI or COI were defined somehow ambiguously,

by referring verbally to the number of distinct haplotypes within an infection, but formally to

the same quantity as here. In empirical studies, MOI is often referred to the number of distinct

pathogen haplotypes within an infection. This quantity is then typically estimated from

unphased data, e.g., as the maximum (e.g. [40]) or average (e.g., [41]) of the number of alleles

across several markers. Note however, that a number of empirical studies would use MOI

exactly as defined here, e.g. [2, 13]. The same is true in [42], where the estimates of haplotype

frequencies are based on the same definition of MOI as the one used here.

In any case, defining MOI as here is convenient, because the alternative definitions derive

from it. For instance, if MOI was defined as the Poisson parameter as in [39], the connection is

obvious. If MOI was defined as the number of the number of distinct lineages within an infec-

tion as in [40], the distribution of MOI could be easily derived from Eq (3). For instance the

probability of an infection with one detectable lineage would be

X

x :

jxj ¼ 1

Qx ¼
1

el � 1

Xn

k¼1

ðelpk � 1Þ: ð7Þ

In general, the probability to observe m = 1, . . ., n different lineages in a sample is given by

X

x :

jxj ¼ m

Qx; ð8Þ

which is combinatorically more involved, but straightforward to calculate numerically.

Maximum-likelihood estimate

The maximum-likelihood estimate (MLE) for the model parameters θ = (λ, p) exists, is unique,

and lies in the interior of the parameter space except in two pathological situations [16, 29]. In

the first, only one lineage is found in each blood sample (
Pn

k¼1

Nk ¼ N), i.e., there is no sign of

super-infections. In the second, at least one lineage is found in every blood sample, i.e., Nk = N
for at least one k. For regular data (non-pathologic data), the MLE of the model parameters is

given by

p̂k ¼ �
1

l̂
log 1 �

Nk

N
ð1 � e� l̂Þ

� �

; ð9aÞ
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where l̂ is derived by iterating

ltþ1 ¼ lt �

lt þ
Xn

k¼1

log 1 �
Nk

N
ð1 � e� ltÞ

� �

1 �
Xn

k¼1

Nk

Nelt � Nkðelt � 1Þ

; ð9bÞ

(cf. [16]). The sequence (9b) converges monotonically, at a quadratic rate from any initial

value l1 � l̂. Hence, by choosing λ1 sufficiently large, the iteration is guaranteed to converge.

In [17] the large and finite sample properties of the MLEs (9) were studied in detail. In par-

ticular, it was proven that the MLE has the typical desirable asymptotic properties, i.e., it is

asymptotically unbiased ( lim
N!1

Eðθ̂Þ ¼ θ), strongly consistent (θ̂!a:s: θ), and asymptotically effi-

cient ( lim
N!1

IN Varðθ̂Þ ¼ Inþ1, where IN denotes the Fisher information and In+1 is the (n + 1)-

dimensional identity matrix, cf. [17]).

Under the standard regularity conditions, the MLE is only asymptotically unbiased. In par-

ticular, it carries a bias of order OðN � 1Þ. Additionally, the MOI parameter has no upper

bound, which leads to disproportionately large estimates of λ in cases that super-infections

(i.e. samples containing many different lineages) are over-represented in the data. Hence, the

estimator’s performance can suffer in terms of precision if sample size is small, i.e., the estima-

tor is biased. However, the estimator can be bias-corrected, which is the aim of this work.

Cramér-Rao lower bound

The estimator’s covariance matrix is well approximated by the Cramér-Rao lower bound

(inverse Fisher information). For the model, the Cramér-Rao lower bound can be derived

explicitly as follows (cf. [17]).

Remark 1. The entries of the inverse Fisher information matrix I ð� 1Þ

N ¼ ðtijÞ are derived as

tð11Þ ¼
1

N
ðel � 1Þ

2

el
g

el � 1 � g
; ð10aÞ

tð1jÞ ¼
1

N
ðel � 1Þ

2

lel
elpj � 1 � pjg
el � 1 � g

; ð10bÞ

tðiiÞ ¼
1

N
ðel � 1Þ

2

l
2el

elpi � 1

el � 1
þ
p2
i g � 2piðelpi � 1Þ þ

ðelpi � 1Þ2

el � 1

el � 1 � g

 !

; ð10cÞ

tðijÞ ¼
1

N
ðel � 1Þ

2

l
2el

pipjg � piðelpj � 1Þ � pjðelpi � 1Þ þ
ðelpi � 1Þðelpj � 1Þ

el � 1

el � 1 � g
; ð10dÞ

where

g ¼
Xn

k¼1

ðelpk � 1Þ ð10eÞ

for i, j = 2, . . .n + 1, i 6¼ j.
This was proven in [17]. For a simplified alternative proof see S1 Appendix. For practical

purposes, reporting the average MOI (ψ) is more appropriate compared with the Poisson
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parameter (λ). Since MLEs are transformation respecting, ĉ ¼ l̂

1� e� l̂
holds. The Cramér-Rao

lower bound for ĉ can be calculated as shown in the next remark (cf. [17]).

Remark 2. Let (λ, p1, . . ., pn) denote the true but unknown parameters, and let τ(ii), τ(ij) and γ
be given by (10c), (10d) and (10e), respectively. The Cramér-Rao bound of the MLE
ðĉ; p̂1; . . . ; p̂nÞ, is given by

~tð11Þ ¼
elðel � 1 � lÞ

2

Nðel � 1Þ
2

g

el � 1 � g
ð11aÞ

~tð1jÞ ¼
el � l � 1

lN
elpj � 1 � pjg
el � 1 � g

; ð11bÞ

~tðiiÞ ¼ tðiiÞ ; ð11cÞ

~tðijÞ ¼ tðijÞ ; ð11dÞ

where i, j = 2, . . .n + 1 and ĉ ¼ l̂

1� e� l̂
with l̂ being the MLE of λ. Note that (11) cannot be calcu-

lated explicitly as the true parameters are unknown. However, it is estimated by substituting the
true parameters with the MLE.

Analytical results

The approach applied here is “corrective”, i.e., the bias-corrected MLE is constructed by sub-

tracting the bias (estimated at the MLE) from the original MLE. This method requires the log-

likelihood function (5) to be regular with respect to all derivatives up to (and including) the

third order [31, 43]. We employ the general formula provided in [31] to derive the second-

order bias of the MLE.

Bias correction

The MLE’s bias is of order OðN � 1Þ. Indeed, bias might be quite large for samples of size

N< 100, especially if the true λ is small, which translates to fewer super-infections (cf. [17]).

Since transmission intensity correlates not only with MOI but also with disease prevalence, it

will be difficult to collect a large number of samples in low-transmission settings, rendering N
� 80 − 100 a realistic sample size [44–47]. On the contrary, in high-transmission regions,

super-infections with high MOI are common. However, if the lineage-frequency distribution

is skewed, individuals are frequently infected by identical lineages, and hence samples do not

provide good evidence for the true MOI—MOI will be underestimated (cf. Fig 1). Therefore, it

is important to apply a bias correction to (9). We employ a correction that reduces the bias to

the order OðN � 2Þ (cf. [30]).

Let

Y ≔ fðl; b; pÞ j l 2 Rþ; b 2 R and p 2 int Sng ð12Þ

denote the parameter space of the model, where int Sn ¼

�

ðx1; . . . ; xnÞ 2 R
n

�
�
�
�
Pn

k¼1

xk ¼

1 and 0 < xk < 1 8k
�

is the interior of the (n − 1)–dimensional simplex. For convenience of

notation we write θ = (θ1, . . ., θn+2) for parameter vectors (λ, β, p1, . . ., pn) 2 Θ wherever
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appropriate. Using this notation, the moments of the log-likelihood derivatives are

kij ≔ E
@

2
L

@yi@yj

 !

; ð13aÞ

kijl ≔ E
@

3
L

@yi@yj@yl

 !

; ð13bÞ

and

kij;l ≔ E
@

2
L

@yi@yj

 !
@L

@yl

� � !

: ð13cÞ

Note that the above moments of the log-likelihood derivatives equal the joint cumulants of the

log-likelihood derivatives (cf. [31], Chapter 2, p.16), hence we refer to them as such. The fol-

lowing derivatives of the cumulants are also needed:

kðlÞij ≔
@kij
@yl

: ð14Þ

The second-order bias is calculated to be

BθðŷsÞ ≔ Eðŷs � ysÞ ¼
Xnþ2

i;j;l¼1

tðsiÞtðjlÞ
1

2
kijl þ kij;l

� �

þOðN � 2Þ;

(cf. [31]). Using the Bartlett identity kijl þ kij;l � k
ðlÞ
ij ¼ 0 (see [31]), this can be rewritten as

BθðŷsÞ ¼ Eðŷs � ysÞ ¼
Xnþ2

i;j;l¼1

tðsiÞtðjlÞ kðlÞij �
1

2
kijl

� �

þOðN � 2Þ: ð15Þ

In matrix form, (15) becomes

Bθðθ̂Þ ¼ Eðθ̂ � θÞ ¼ I � 1

N A vecðI � 1

N Þ þOðN � 2Þ; ð16Þ

where vecðI � 1

N Þ is the (n + 2)2-dimensional vector obtained by stacking the columns of the

inverse Fisher information, i.e.,

vecðI � 1

N Þ ¼ ðt
ð11Þ; . . . ; tððnþ2Þ1Þ; . . . ; tð1ðnþ2ÞÞ; . . . ; tððnþ2Þðnþ2ÞÞÞ

T

¼ ðtð11Þ; . . . ; tð1ðnþ2ÞÞ; . . . ; tððnþ2Þ1Þ; . . . ; tððnþ2Þðnþ2ÞÞÞ
T
:

ð17Þ

The latter equality holds because I � 1

N is symmetric. Furthermore, the (n + 2)2 × (n + 2)-matrix

A is constructed as

A ¼ Aðy1Þ;Aðy2Þ; . . . ;Aðynþ2Þ
� �

; ð18aÞ

i.e., as the concatenation of the (n + 2) × (n + 2)-matrices AðylÞ having elements

aðlÞij ¼ kðlÞij �
1

2
kijl; i; j; l ¼ 1; . . . ; ðnþ 2Þ: ð18bÞ

In terms of the model parameters λ and p this is summarized in the following result.

PLOS ONE Bias-corrected maximum-likelihood estimation of multiplicity of infection

PLOS ONE | https://doi.org/10.1371/journal.pone.0261889 December 29, 2021 9 / 28

https://doi.org/10.1371/journal.pone.0261889


Result 1. The MLE l̂ of the MOI parameter λ has second-order bias

Bθðl̂Þ ¼
1 � e� l

Nðel � 1 � gÞ

g

2
el þ 1
� �

�
el � 1

el � 1 � g

X

1�i<j�n

elpi � 1
� �

elpj � 1
� �

 !

þOðN � 2Þ;

ð19aÞ

where

g ¼
Xn

k¼1

elpk � 1: ð19bÞ

The second-order bias for the MLE p̂ of lineage frequency pk is

Bθðp̂kÞ ¼
1� e� l

2lNðel � 1� gÞ

�
1

l
elpk� 1� pkg
� �

lðelþ1Þ� 2ðel � 1Þ
� �

þ ðelpk� 1Þ
2

þ
el � 1

el � 1� g

�

g pkg � e
lpk þ 1

� �
þ

elpk � 1

el � 1
� pk

� �
Xn

j¼1

ðelpj � 1Þ
2

��

þOðN � 2Þ:

ð19cÞ

The proof of the result is presented in S1 Appendix. As the true parameters are unknown,

estimates for the second-order bias are obtained by substituting the MLE for the true parame-

ters and neglecting all terms of order OðN � 2Þ. This yields the bias-corrected estimates as

follows:

Result 2. The bias-corrected MLE (BCMLE) of the MOI parameter λ is

l̂ðbcÞ ¼ l̂ � Bθ̂ðl̂Þ; ð20aÞ

where

Bθ̂ðl̂Þ ¼
1� e� l̂

Nðel̂ � 1� ĝÞ

ĝ

2
el̂þ1
� �

�
el̂ � 1

el̂ � 1� ĝ

X

1�i<j�n

el̂ p̂ i � 1
� �

el̂ p̂ j � 1
� �

 !

: ð20bÞ

The bias-corrected estimate of the lineage frequency pk is

p̂ðbcÞk ¼ p̂k � Bθ̂ðp̂kÞ; ð20cÞ

where

Bθ̂ðp̂kÞ ¼
1� e� l̂

2l̂Nðel̂ � 1� ĝÞ

�
1

l̂
el̂ p̂k � 1� p̂kĝ
� �

l̂ðel̂þ1Þ� 2ðel̂ � 1Þ
� �

þðel̂ p̂k � 1Þ
2

þ
el̂ � 1

el̂ � 1� ĝ

�

ĝ p̂kĝ � e
l̂ p̂kþ1

� �
þ

�
el̂ p̂k � 1

el̂ � 1
� p̂k

�
Xn

j¼1

ðel̂ p̂ j � 1Þ
2

��

:

ð20dÞ

In the above ĝ ¼
Pn

k¼1

el̂ p̂k � 1, and θ̂ ¼ ðl̂; p̂1; . . . ; p̂nÞ is given by (9).

We explore the properties of the bias-corrected estimate in a systematic simulation study

below. Before we do so, we make some heuristic changes to the BCMLE in the next section.
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Heuristically improved bias corrections

The MLE (9) is only meaningful for regular data. (Remember for pathological data the MLE

does not exist or lies on the boundary of the admissible parameter space, where the asymptotic

properties of the MLE do not hold.) Therefore, also the bias correction is only meaningful for

regular data. Since the general derivation of the second-order bias correction (given in [31]) is

not conditioned on regular data, it corrects the actual bias by too much. We therefore heuristi-

cally adjust the bias correction by multiplying it with the probability of observing regular data.

This applies only to the MOI estimate. The lineage frequencies are a probability distribution

normalized by 1 and cannot be multiplied by a constant.

In [17] the probability of observing pathological data was derived. It is given by

q ≔
1

ð1� e� lÞN
1�
Yn

j¼1

1� ð1� e� lpjÞN
� �

 !

þ
Xn

j¼1

elpj � 1

el � 1

 !N

�
Xn

j¼1

elpj � 1

el � 1

� �N

: ð21Þ

The probability of observing regular data is then given by 1 − q. This involves the true

unknown parameters. However, we can use the MLE or even the BCMLE as a plug-in estimate

to adjust the BCMLE as follows:

Remark 3. Assuming regular data, a heuristically adjusted BCMLE of the MOI parameter is

l̂ðhbc1Þ ¼ ð1 � q̂Þl̂ðbcÞ; ð22aÞ

where

q̂ ≔
1

ð1� e� l̂ÞN
1�
Yn

j¼1

1� ð1� e� l̂ p̂ jÞN
� �

 !

þ
Xn

j¼1

el̂ p̂ j � 1

el̂ � 1

 !N

�
Xn

j¼1

el̂ p̂ j � 1

el̂ � 1

 !N

: ð22bÞ

The lineage frequency estimates are not adjusted, i.e.,

p̂ðhbc1Þk ¼ p̂ðbcÞk ; ð22cÞ

for k = 1, . . ., n. We refer to (22) as the first version of a heuristically adjusted BCMLE
(HBCMLE1).

The heuristic adjustment can also be done in a two-step procedure, i.e., first calculating the

BCMLE according to Result 2, and then use this estimate as a plug-in for the heuristic adjust-

ment. We obtain the following.

Remark 4. As an alternative to the HBCMLE1 given in Remark 3 we can define

l̂ðhbc2Þ ¼ ð1 � q̂ðbcÞÞðl̂ � Bθ̂ ðbcÞ ðl̂ÞÞ; ð23aÞ

and

p̂ðhbc2Þk ¼ p̂k � Bθ̂ ðbcÞ ðp̂kÞ; ð23bÞ

where q̂ðbcÞ is given by (22b) with l̂ and p̂j replaced by l̂ðbcÞ and p̂
ðbcÞ
j , respectively. Similarly,

Bθ̂ ðbcÞ ðl̂Þ and Bθ̂ ðbcÞ ðp̂kÞ are given by (20b) and (20d) with l̂ and p̂j replaced by l̂ðbcÞ and p̂
ðbcÞ
j ,

respectively. This estimator is referred to as HBCMLE2.

Many other heuristic adjustments are possible, i.e., corrected estimates do not have to be

adjusted by multiplying with a constant as in Remarks 3 and 4. We present only one possibil-

ity, whose properties will be numerically investigated in the following.
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Remark 5. Assuming regular data, a heuristically adjusted BCMLE of the MOI parameter is

l̂ðhbc3Þ ¼ ð1 � q̂ðbcÞÞl̂ � Bθ̂ðl̂Þ; ð24aÞ

where q̂ðbcÞ is calculated as in Remark 4. The lineage-frequency estimates are not adjusted, i.e.,

p̂ðhbc3Þk ¼ p̂ðbcÞk ; ð24bÞ

for k = 1, . . ., n. We refer to (24) as the third version of a heuristically adjusted BCMLE
(HBCMLE3).

Next, we compare the performance of the MLE and bias-corrected MLEs in a systematic

numerical study. The simulations are described in S1 Appendix (Simulation study) with the

MLE.

Finite sample properties

For large samples no bias correction is necessary, because the maximum-likelihood estimate

has the usual desirable asymptotic properties (asymptotically unbiased, efficient, strongly con-

sistent) as shown in [17]. However, for small samples it can be substantially biased. In such

case a bias correction can substantially improve he estimator.

Bias of the original estimator—Demand for bias correction

The bias of the original estimator was studied in detail in [17]. On average, the estimator tends

to overestimate the true parameter. In relative terms, bias is highest in areas of either low- or

high transmission, i.e., for either λ< 0.2 (or ψ< 1.1) or λ> 1.5 (or ψ> 1.9). The relative bias

as a function of ψ has a bathtub shape, with a strong decline for small values. The reasons are

as follows. The Poisson parameter λ is positive. Hence, it has a lower but no upper bound. If

the true parameter λ is small, in a dataset samples with several lineages present will be occa-

sionally over-represented. This leads to substantial overestimates—ML estimators are known

to be sensitive to outliers (cf. [48] Section 5.5). (Note, when defining the bias by the median

rather than by the mean, the estimator would be substantially less biased, see [17]). In areas of

high transmission (large true λ), the number of samples containing several lineages varies sub-

stantially in datasets. The reason is that the Poisson distribution has mean and variance λ, i.e.,

for larger λ, the variance of MOI is larger. Thus, frequently samples harboring several lineages

are either over- or under-represented in datasets. In the former case the Poisson parameter λ is

substantially overestimated, while in the latter case it is underestimated—however these esti-

mates have a lower bound. In principle sample size can be increased to avoid bias. This is easier

in high-transmission areas. However, in absolute terms bias will be substantial compared with

low-transmission areas. Importantly, bias increases substantially if the lineage frequency distri-

butions are skewed. The reason is that super-infections with the predominant lineages are

common, which give no (or little) evidence of multiple infections. Thus, the number of distinct

observable lineages in a sample does not adequately reflect the actual (unobservable) number

of super-infections. Since is it often impossible to increase the sample size sufficiently, bias cor-

rections should be applied to the estimator.

Assessing the estimator’s bias

Since there is no closed solution for the MLE, it is impossible to assess its bias analytically for a

given sample size. The estimator’s bias for a given true parameter θ needs to be numerically

estimated by, e.g., Monte Carlo simulations. In [17] the finite sample properties of the MLE in

terms of bias and variance were investigated by a comprehensive simulation study.
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Also the finite sample properties of the bias corrected versions of the estimator need to be

studied numerically. Importantly, the bias correction applied here was derived from a general

asymptotic approximation, because the MLE’s true bias cannot be derived analytically. Hence,

also the bias correction is not perfect for small sample sizes. Therefore, it is important to study

the properties of the bias correction for ‘small’ sample sizes and its improvements compared to

the original estimator.

Here, we compare the bias-corrected estimator and the original one. Using numerical simu-

lations, we systematically estimate the bias and variance of the BCMLE and its heuristically

adjusted variants for representative sets of model parameters under different sample sizes. Fur-

thermore, we study the estimates’ robustness to model violations, by assuming that MOI fol-

lows a negative binomial distribution (corresponding to an over-dispersed Poisson

distribution). The numerical investigations were implemented in R [49]. The heart of the code

(the code to generate simulated data, and the implementation of the estimators and all func-

tions) is available at GitHub (https://github.com/Maths-against-Malaria/MOI-Bias-correction.

git, https://doi.org/10.5281/zenodo.5119425). A detailed description of the simulation study is

given in S1 Appendix (Simulation study).

Estimates of the MOI parameter

In this section, we investigate the performance of the BCMLE and the heuristically adjusted

estimates of average MOI ψ in terms of accuracy (relative bias) and precision (coefficient of

variation). The Poisson parameter λ ranges from 0.1 to 0.5 (ψ ranges approximately between

1.05 and 1.27) in low-transmission areas, from 0.5 to 1.5 (ψ between 1.27 and 1.9) in interme-

diate-transmission areas, and 1.5 to 2 (ψ between 1.9 and 2.4) in high-transmission areas. We

refer to ψ in this ranges as small, intermediate, and large.

The bias corrected maximum likelihood estimate—BCMLE. Bias. The bias correction

noticeably improves the MLE. For any sample size, the BCMLE of the average MOI, i.e.,

ĉðbcÞ ¼ l̂ðbcÞ

1� e� l̂ðbcÞ
, has bias less than 0.5% for intermediate and large ψ, and balanced or slightly-

skewed lineage-frequency distributions (with frequency of dominant lineage < 0.8; see Fig 2).

In this case, the bias correction removes bias efficiently for intermediate and large ψ. Although,

the MLE is slightly more biased for small sample sizes N, the bias correction results in low bias

almost independent of sample size N (Fig 2, see also Section Relative bias in %, S2 Appendix

for a comprehensive range of parameters). The reason is that Bθðl̂Þ (see Eq 19a) is of order

N−1 and the estimator is corrected more for smaller sample sizes. Concluding, for intermediate

and high average MOI, the BCMLE is accurate independently of sample size. However, sample

size needs to be adjusted to meet a desired precision goal, i.e., increasing sample size lowers

the estimator’s variance to the desired level.

The bias is not noticeably corrected for very small ψ. In this case, the MLE and the BCMLE

carry almost a similar amount of bias. The reason is, the bias is small due to the scale of the

parameter and large only in relative terms. Furthermore, the relative bias is derived condi-

tioned on regular data, whereas the bias correction does not condition on such data. This fact

motivated us to consider heuristically adjusted estimators (see Analytical results, Heuristically

improved bias corrections). The occurrence of pathological data is substantial for small aver-

age MOI (cf. Section Probability of regular data, S2 Appendix).

For highly-skewed lineage-frequency distributions (characterized by only one predominant

lineage at high frequency, while all other lineages have low frequency), the bias correction does

not improve the estimates (see Fig 2B, 2D and 2F). In this case, the BCMLE is noticeably biased

if the sample size is small (N< 100) except for intermediate ψ (but notably depends on a com-

bination of the number of lineages and the skewness—cf. Fig 2D with Fig 2B and 2F).
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Fig 2. Bias of MOI estimates. The figure shows the relative bias in % of the BCMLE ĉðbcÞ (solid lines) and MLE ĉ (dashed lines) as a function of the true

parameter ψ based on simulated data created by the conditional Poisson model. Each panel assumes a different lineage-frequency distribution p shown

at the top of each panel. Each colored line corresponds to a different sample size N.

https://doi.org/10.1371/journal.pone.0261889.g002
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Because Bθðl̂Þ increases with increasing skewness of the lineage-frequency distribution, the

bias of the MLE is corrected more strongly as skewness increases. This is more evident if

N< 100. In fact, the bias correction may result in negative bias (see Fig 2F). This is the case for

highly-skewed lineage-frequency distributions (if the dominant lineage has frequency > 0.8).

The BCMLE tends to be underestimated for large ψ (ψ> 1.5). In this parameter range observa-

tions are not very informative, as multiple infections, which contain lineages other than the

predominant one, are rare. However, if the average MOI is small to intermediate (ψ< 1.5) or

sample size sufficiently large (N> 100), the BCMLE performs reasonably better than the MLE

for these lineage-frequency distributions (see Fig 2). Notably, if average MOI is large, transmis-

sion is high, and it is realistic to collect sufficiently large datasets (N> 100).

Coefficient of variation. For all combinations of model parameters, the BCMLE has a

smaller coefficient of variation (CV) than the MLE (Fig 3, see also Section Relative bias in %,

S2 Appendix for a comprehensive range of parameters). Not surprisingly, for large sample size

the CVs of both estimators approximate the theoretical prediction (the square root of the Cra-

mér-Rao lower bound divided by the true value of ψ) very well. For smaller sample size

(N< 200) the CV of the BCMLE is better approximated by its theoretical prediction than the

MLE. For small ψ the CV of the BCMLE is always smaller than its theoretical prediction, while

that of the MLE can get larger for skewed lineage-frequency distributions (frequency of the

predominant lineage >0.8; Fig 3B, 3D and 3F). For intermediate and large ψ and skewed dis-

tributions the CVs of the BCMLE and MLE are smaller than their theoretical predictions. Par-

ticularly, the CV of the BCMLE can be substantially smaller. The reason is that most samples

in this parameter range do not adequately reflect the true MOI because super-infections with

the predominant lineage are likely. This results in frequent underestimates (and rare overesti-

mates), and hence reduced variation in the estimates. For highly-skewed lineage-frequency

distributions (predominant frequency >0.9) the BCMLE has substantially reduced variance (3

to 5 percentage points) compared with the MLE and the theoretical prediction for intermedi-

ate and large ψ (see Fig 3B and 3F).

Therefore, the BCMLE is an (almost) efficient estimator for ψ in a finite sample sense—

except for very skewed lineage frequencies, large average MOI and small sample size. In this

parameter range, the BCMLE has noticeably lower variance than the MLE. Although this is

desirable, this will not per se result in a better performance of the BCMLE in terms of the

mean squared error. Remember, for large ψ the BCMLE has a substantial negative bias. Any-

how, the BCMLE overall outperforms the MLE.

Model violations. The model violation has a noticeable effect on the MLE’s performance

(see Section 5, S2 Appendix for results for a comprehensive range of parameters). The MLE

largely overestimates the true ψ if overdispersion is added to the data. While bias is still small

for low amounts of overdispersion (10% overdispersion compared to the mean; Fig 4A and

4B) and acceptable for overdispersion as much as 50% (Fig 4C and 4D), it gets substantial for

high overdispersion (> 100%; Fig 4E and 4F).

Bias increases mainly for small true ψ. With overdispersion, it is more likely to observe

datasets that contain samples with multiple lineages. For such datasets MOI will be substan-

tially overestimated.

Under the alternative model, the bias correction is not as effective as it is under the original

model, and the BCMLE also carries a relatively large bias if overdispersion is high. However,

the bias correction performs independently of the amount of overdispersion. (This is reason-

able since the second-order bias is calculated under the original model which assumes that the

true mean and variance are equal). If MOI follows a negative binomial distribution, the
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Fig 3. Variance of MOI estimates. Similar to Fig 2 but for the coefficient of variation in %. The dotted lines are the respective predictions based on the

Cramér-Rao lower bounds.

https://doi.org/10.1371/journal.pone.0261889.g003
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Fig 4. Robustness of MOI estimates against model violations. The figure shows the bias of the BCMLE ĉðbcÞ (solid lines) and MLE ĉ (dashed lines) in

% as a function of the true parameter c ¼
rð1� pÞ
pð1� pr Þ. The datasets are generated from the conditional negative binomial model whereas the estimates are

derived from the conditional Poisson model. The panels in different rows correspond to different levels of overdispersion indicated by α. Panels on the

left and right assume a different lineage-frequency distributions p shown at the top of each panel. Line colors correspond to a different sample sizes (N).

https://doi.org/10.1371/journal.pone.0261889.g004
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BCMLE performs better than the MLE by having typically 1 to 2 percent points less bias, and

smaller CV than the MLE for balanced or slightly-skewed lineage-frequency distributions.

The model violation also affects the CV noticeably. The CV increases mainly for small and

intermediate ψ, whereas the increase is moderate for large ψ. This is intuitive, because for

small ψ, the true parameter is sometimes substantially overestimated due to the overrepresen-

tation of samples with multiple lineages in some datasets. This increases the variance of the

estimator substantially. The higher overdispersion, the larger the increase in the CV for small

and intermediate ψ (compare Fig 5A with Fig 5C and 5E, and Fig 5B with Fig 5D and 5F). The

BCMLE has a slightly lower CV than the original estimator (compare Fig 3C and 3D with

Fig 5).

Heuristically adjusted estimates. The occurrence of pathological data, for which the

MLE does not exist (or is degenerate), is not properly incorporated in the general derivation of

the bias correction. To resolve this approximately, we proposed several heuristic adjustments

to the BCMLE, which essentially conditions the correction on the occurrence of regular data.

In fact, bias can change substantially (see Fig 6). The amount of adjustment depends on the

likelihood of observing pathological data (q; cf. also Section 3 in S2 Appendix). For large sam-

ple size pathological data is unlikely and all estimates are similar, which is not surprising

because they are asymptotically equivalent. For small sample size pathological data can be

common, depending on the true parameters.

For small ψ, small datasets are often pathological. The heuristic adjustments properly

down-correct bias of the estimators. The heuristic adjustments are stronger for more skewed

lineage-frequency distributions because pathological data is more likely. This is a desirable

property of the heuristic adjustments. Hence, they are preferable compared to the BCMLE. All

heuristic adjustments are similar (see Fig 6).

For intermediate ψ, degenerate data becomes less likely and the heuristic adjustments are

less relevant. This is particularly true for balanced frequency distributions. In this case the heu-

ristic adjustments do not change the BCMLE noticeably (see Fig 6A, 6C and 6E). For skewed

distributions, pathological data is still likely and the heuristic adjustments tend to improve the

BCMLE (Fig 6D). However, the adjustments are too strong for extremely skewed distributions

(Fig 6B and 6F), and the estimators substantially underestimate the true parameter. There is

still no clear difference between the adjusted versions of the estimator.

For large ψ, similar observations are made as for intermediate ψ. However, for skewed dis-

tributions the likelihood of pathological data increases substantially, as the predominant line-

age is likely to occur in all samples. The result is a substantial underestimation of the true

parameter. Also differences between the heuristically corrected versions become obvious (see

Fig 6B, 6D and 6F). The HBCMLE1 underestimates the most, and the HBCMLE2 the least.

Hence, the HBCMLE2 is the most desirable estimator.

For balanced lineage-frequency distributions the MLE’s variance was close to the Cramér-

Rao lower bound, which coincided with the BCMLE’s variance. Thus, not surprisingly the heu-

ristic adjustments cannot further improve the estimator (see Fig 7A, 7C and 7E). These are

hence almost unbiased and their variance coincides with the minimal variance of an unbiased

estimator. For skewed lineage-frequency distributions the adjustments lead to a reduction in

variance compared with the BCMLE. In fact, the variance is lower than the Cramér-Rao lower

bound (note that the estimators are also clearly biased in this case). The HBCMLE1 has the

lowest and the HBCMLE2 the highest variance of the adjusted estimators. These differences

vanish as sample size increases.

Model violations have the same effect for the heuristically adjusted estimators as for the

BCMLE. This is because, similar to Bθðl̂Þ, the probability of regular data is derived under the
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Fig 5. Variance if MOI estimates under model violations. Similar to Fig 4 but for the coefficient of variation in %.

https://doi.org/10.1371/journal.pone.0261889.g005
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Fig 6. Bias of heuristically adjusted MOI estimators. Shown is the relative bias in % of the heuristically adjusted estimators (HBCMLE1—ĉðhbc1Þ,

HBCMLE2—ĉðhbc2Þ, HBCMLE3—ĉðhbc3Þ) along with the relative bias in % of the MLE ĉ and BCMLE ĉðbcÞ as a function of the true parameter ψ based on

simulated data created by the conditional Poisson model. Each panel assumes a different lineage-frequency distribution p shown at the top of each panel.

Colors correspond to different estimators. The relative bias in each panel is derived from S = 100, 000 randomly generated datasets of sample size 40.

https://doi.org/10.1371/journal.pone.0261889.g006
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Fig 7. Variance of heuristically adjusted MOI estimators. Similar to Fig 6 but for the coefficient of variation in %. The dotted lines are the respective

predictions based on the Cramér-Rao lower bounds.

https://doi.org/10.1371/journal.pone.0261889.g007
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original model and remains independent of the level of overdispersion. However, in the case

in which skewness is high, they carry less negative bias under the model violation compared to

the original model. This is because, the average MOI is largely overestimated. Similarly, the

HBCMLE2 is preferred over the other two adjusted estimators (see Section 5.3, S2 Appendix).

Overall, the HBCMLE2 performs best. In the assessment of bias and variance one needs to

consider sample size. In practice, larger sample sizes are feasible for larger ψ as disease preva-

lence is higher. Therefore, the bias correction for small ψ is more important than that for large

ψ (see Section 2, S2 Appendix for comprehensive results).

Lineage frequencies

Unlike for the average MOI, the MLE for lineage frequencies is almost unbiased [17]. Thus,

not surprisingly, the bias correction has little influence on bias of lineage-frequency estimates,

particularly for balanced and slightly-skewed lineage-frequency distributions (see S1A Fig; see

also Section Relative bias in % in S2 Appendix).

For skewed frequency distributions and small average MOI, the MLE tends to overestimate

rare lineages in small datasets. The reason is that rare lineages are easily over-represented. For

instance, if ψ = 1 (only single infections) a lineage with frequency 10% has an estimated fre-

quency of 12.5% if it occurs in five samples in a dataset of size N = 40—an overestimate by

25%. If a lineage with frequency 1% is found in one sample, its frequency is estimated to be 4%

—a relative overestimate of 300%. For large ψ, predominant frequencies are overestimated

while minor frequencies are underestimated. The reason is the over-representation of predom-

inant lineages if MOI is high. For skewed frequency distributions the bias correction success-

fully removes bias almost independently of sample size. Bias remains only for small ψ, but

vanishes as sample size increases (see S1B Fig). The MLE is less accurate (i.e. more biased) for

lineages with low frequency because uncertainty is higher for them as datasets harbor less

information about them. This fact is adequately compensated by the bias correction.

Only for highly-skewed frequency distributions, the bias corrections over-correct and yield

inferior estimates compared with the MLE (see Section 4.1 in S2 Appendix).

Regarding the heuristic adjustments, only HBCMLE2 adjusts the frequency estimates. This

adjustment is negligible (see S2 Fig).

While frequency estimates are almost unbiased, they have substantial variance in terms of

the CV. The variance of the estimates decreases substantially with increasing sample size. Not

surprisingly, estimates of small frequencies have high variance. The variance of the estimates is

not affected by the bias correction (see S3 Fig).

Measuring the performance of frequency estimates by the Euclidean distance or the Kull-

back-Leibler information captures bias and variance, indicates overall good performance of

the estimators (cf. [17]). The bias correction does not show a significant improvement (see S4

Fig).

Discussion

The importance of MOI (or complexity of infection) in malaria and other infectious diseases is

increasingly being recognized. It is an important metric that scales with transmission intensi-

ties [33] and hence allows to monitor the efficiency of control interventions on temporal and

spatial scales. Moreover, it mediates the relationship between lineage frequencies and preva-

lence, e.g., of drug-resistance associated mutations or HRP2/3 gene deletions in malaria. While

a lineage’s frequency refers to its relative abundance in the pathogen population, its prevalence

refers to the probability of observing the lineage in an infection. The difference, between fre-

quency and prevalence, was argued to be particularly important in the context of seasonal
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malaria [5]. Despite its widespread applications in empirical studies, the definition of MOI is

still ambiguous. In fact, MOI is often derived by heuristic estimates. Whereas such approxima-

tions have been useful, these estimators lack a statistical foundation that allows to evaluate

their quality. Hence, there is still a gap between empirical applications and theory. With data

being generated more systematically and molecular/genetic studies becoming more wide-

spread, there is a high demand to base estimates on a solid statistical framework.

The statistical framework used by [16] allows estimating MOI and lineage frequencies

based on a concise statistical framework by maximum likelihood—and thus also by Bayesian

methods. The method is appropriate for lineages characterized by a single molecular marker

(microsatellite marker, SNP) or haplotypes in a short non-recombining region. Importantly

MOI is defined here as the number of super-infections, which is an unobservable quantity.

Notably, the interpretation of the statistical model is more flexible and it can be interpreted as

modelling super- and co-infections (cf. Model background). In empirical studies MOI is often

defined differently. In section Alternative definitions of MOI it is explained how these esti-

mates are simply derived from the estimator proposed here. The large- and finite-sample prop-

erties of the estimator have been thoroughly studied [17]. In fact it has been shown, that the

estimator satisfies the usual desirable (asymptotic) properties, e.g., asymptotic unbiasedness,

strong consistency, efficiency, sufficiency [17]. However, the estimator, particularly for MOI is

biased if the sample size is small. This is particularly true if average MOI is low, i.e., in endemic

areas of low transmission, where large sample sizes are often infeasible.

In areas of high transmission, bias can be reduced by increasing sample size, however only

in relative terms. In absolute terms bias will be still larger than in low-transmission settings.

Furthermore, another source of bias is skewed lineage frequency distributions. Neutral molec-

ular markers such as microsatellite markers at chromosomes without known genes under

selection seem most appropriate. In general, MOI can be estimated from any molecular

marker. In case of malaria, microsatellite markers in the vicinity of genes conferring drug

resistance, might be strongly affected by genetic hitchhiking and thus have very skewed fre-

quency distributions (see [5, 50]). A similar logic applies to PCR-RFLP of msp genes, which

have been repeatedly found to be under selection [51]. Applying bias corrections in such situa-

tions is important to improve the quality of the estimates. Similarly, when aiming to compare

recent with retrospective data, or when aiming to regularly estimate the frequency distribu-

tions and MOI in the course of a national malaria control program sample, researchers might

be forced to work with relatively small samples, in which cases bias corrections are essential.

To compensate for the systematic errors of the maximum-likelihood method in small sam-

ples, we derived a bias-corrected version of the original estimator. More precisely, we followed

the approach of [31] to derive a bias-corrected estimate, which has bias of order OðN � 2Þ. To

evaluate the performance of the bias-corrected estimator for MOI and lineage frequencies, we

conducted a systematic numerical study. We investigated the accuracy (bias) and precision

(variance) of the bias-corrected estimator and heuristically adjusted variants for a comprehen-

sive set of parameters.

The bias-corrected estimator clearly outperforms the original estimator for small sample

sizes (N� 75). For intermediate sample size (70� N� 150) the bias correction still yields rele-

vant improvements. For larger sample sizes the need for a bias correction becomes less rele-

vant. For all sample sizes, the corrected estimator is (almost) unbiased, except for extreme

parameter values (very low or high MOI and skewed lineage-frequency distributions).

Although the bias-corrected estimator is still biased for extreme parameters, it substantially

improves the original estimator. The case of low MOI and skewed lineage-frequency distribu-

tions is particularly relevant—e.g., in the context of mutations conferring drug resistance in

malaria in areas of low transmission (typically skewed frequency distributions occur at
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markers linked to positions conferring drug-resistance due to genetic hitchhiking [50, 52]).

The bias correction also reduces the estimator’s variance, namely, it matches the minimum

variance for an unbiased estimator, i.e., the Cramér-Rao lower bound, except for extreme

parameters. For very skewed frequency distributions, the variance of the corrected estimator is

even lower than the Cramér-Rao lower bound—this is possible because the estimator is biased.

In areas of low and high transmission the MOI estimates are almost biased (cf. [17]). In

such situations, the bias correction substantially improves the estimates. (The improvements

for intermediate transmission—intermediate λ—are less noticeable since the original estimates

are not as biased in this case.)

We further studied the robustness of the estimators with regard to model violations.

Namely, when assuming that MOI is over-dispersed, i.e., it follows a negative binomial distri-

bution rather than a Poisson distribution, the estimators still perform reasonably if overdisper-

sion is not too strong (up to 50% overdispersion). Notice that mosquito biting rates follow a

negative binomial distribution [33]. However, not each bite is infectious, and not each infec-

tious bite leads to an infection. The resulting number of infective (infectious bites leading to

infection) will still be binomially distributed but overdispersion is reduced to a level that justi-

fies the assumption of Poisson-distributed MOI [5].

The heuristic adjustments to the bias-corrected estimator further reduce bias and variance,

particularly the estimator HBCMLE2 (23). The corrected estimators are (almost) unbiased and

have variance almost identical to the Cramér-Rao lower bound. This suggests that further

improvements are not possible without adding additional information, i.e., increasing sample

size or extending the statistical model to include further data (information).

Notably, there exist alternative methods to reduce the bias of estimators. Straightforward,

but computationally extensive methods include parametric and non-parametric bootstrap bias

corrections [53]. The performance of such methods needs to be explored. Both methods will

likely not perform well if the data set does not properly reflect the population. This is particu-

larly true for small sample size for which the bias correction is necessary. The advantage of the

method used here, is that the bias correction is derived from the general model, not a particu-

lar dataset. Only the parameter estimates from the data are used as plug-ins.

Our comprehensive simulation study serves also as a lookup-table for study design to deter-

mine an appropriate sample size to achieve certain performance goals for the estimator. If

there is prior knowledge of the true parameter range, the plots in S2 Appendix help to deter-

mine the proper sample size to achieve a given accuracy and precision of the estimators.

The maximum-likelihood method of [16] to derive MOI, as well as lineage frequencies and

prevalences, is implemented in the R package MLMOI [54], which allows to import and

manipulate several types of molecular data in a flexible way, targeted to users without a strong

background in programming. The bias-corrected estimates introduced here will be added to

the package in the near future. Further improvements on the model, such as allowing for more

flexible distributions for MOI, e.g., the negative binomial distribution, are currently in

progress.

Supporting information

S1 Appendix. Mathematical appendix.

(ZIP)

S2 Appendix. Additional figures showing detailed results.

(ZIP)
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S1 Table. Summary of model parameters.

(ZIP)

S1 Fig. Bias of lineage-frequency estimates. The figure shows the relative bias in % of the

BCMLE (plots on the right in each panel) and the MLE (plots on the left in each panel) of line-

age frequencies p as a function of the true parameter ψ based on simulated data created by the

conditional Poisson model. Each panel assumes a different lineage-frequency distribution p
shown at the top of each panel. In panel A, the relative bias in % of only one lineage frequency

is illustrated, because all lineage frequencies are equal and their relative bias is almost identical.

Different rows in panel B correspond to different lineage frequencies. Each colored line corre-

sponds to a different sample size N.

(ZIP)

S2 Fig. Bias of heuristically adjusted lineage-frequency estimates. As S1 Fig but for the

BCMLE vs the HBCMLE2.

(ZIP)

S3 Fig. Variance of lineage frequency estimates. Similar to S1 Fig but for the coefficient of

variation in %. The dotted lines are the respective predictions based on the Cramér-Rao lower

bounds.

(ZIP)

S4 Fig. Euclidean distance and Kullback-Leiber divergence. The figure shows the Euclidean

distance (A) and Kullback-Leiber divergence (B) between the true frequencies and BCMLEs

(solid lines) and the true frequencies and MLEs (dashed lines) for a lineage-frequency distribu-

tion as a function of the true parameter ψ based on simulated data created by the conditional

Poisson model. The lineage-frequency distributions are shown at the top of each panel. Each

colored line corresponds to a different sample size N.

(ZIP)
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