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Abstract: The pathogenomics of carbapenem-resistant Aeromonas veronii (A. veronii) isolates recovered
from pigs in KwaZulu-Natal, South Africa, was explored by whole genome sequencing on the
Illumina MiSeq platform. Genomic functional annotation revealed a vast array of similar central
networks (metabolic, cellular, and biochemical). The pan-genome analysis showed that the isolates
formed a total of 4349 orthologous gene clusters, 4296 of which were shared; no unique clusters were
observed. All the isolates had similar resistance phenotypes, which corroborated their chromosomally
mediated resistome (blaCPHA3 and blaOXA-12) and belonged to a novel sequence type, ST657 (a satellite
clone). Isolates in the same sub-clades clustered according to their clonal lineages and host. Mobilome
analysis revealed the presence of chromosome-borne insertion sequence families. The estimated
pathogenicity score (Pscore ≈ 0.60) indicated their potential pathogenicity in humans. Furthermore,
these isolates carried several virulence factors (adherence factors, toxins, and immune evasion),
in different permutations and combinations, indicating a differential ability to establish infection.
Phylogenomic and metadata analyses revealed a predilection for water environments and aquatic
animals, with more recent reports in humans and food animals across geographies, making A. veronii
a potential One Health indicator bacterium.

Keywords: genomics; Aeromonas veronii; intensive pig farming; abattoir; antibiotics; mobile genetic
elements; global phylogeny

1. Introduction

Aeromonas spp. are Gram-negative, rod-shaped, non-sporulating, non-acid-fast, and facultative
anaerobic bacteria that have been recognized as emerging nosocomial pathogens [1]. They belong to the
family Aeromonadaceae, class Gammaproteobacteria that encompasses three genera, viz., Tolumonas,
Oceanimonas and Aeromonas [2,3]. Aeromonas share many similar biochemical characteristics with
Enterobacterales but are easily differentiated, with Aeromonas being oxidase-positive [4]. The Aeromonas
genus has a complex, dynamic taxonomy due to the expanding number of new species and its high intra-
and interspecies genetic variability [5,6]. This genus currently comprises 36 species, with A. dhakensis,
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A. hydrophila, A. caviae, A. salmonicidai, and A. veronii being the most clinically relevant and pathogenic
species [3,7,8].

Aeromonas spp. have been implicated in a range of diseases in animals and humans, including
gastroenteritis, septic arthritis, peritonitis, osteomyelitis, myositis, ocular infections, meningitis,
cholangitis, pneumonia, hemolytic uremic syndrome, and urinary tract infections [9–11]. Members of
this genus are widely distributed across numerous ecosystems. A. veronii has been isolated from the
environment (air, water and soil), food animals (shellfish, poultry, cattle, and pigs), as well as various
human infections, making it a potential One Health indicator pathogen [5,12–15]. Faecal carriage rates
of Aeromonas in normal humans are thought to be between 0% and 4% [16], while carriage rates in
patients with symptomatic diarrhea range between 0.8 and 7.4 [17].

The virulence and pathogenesis of Aeromonas have been described as multifaceted and linked to
the expression of genes that encode different metalloproteins, secretion systems, structural components,
and toxins [4,18–20]. Studies have also reported the expression of different immune-related genes
in the host, following an Aeromonas infection, including those involved in apoptosis, cell signaling,
and pathogen recognition [3,21]. Although these virulence factors may confer variable abilities to
establish infection, knowledge of A. veronii pathogenicity is currently incomplete. Also, despite the
apparent increase in the incidence of this emerging pathogen globally, information on A. veronii in
humans, animals, and the environment in Africa is limited. Thus, in this study, we describe for the
first time in Africa, the comparative genomics of A. veronii recovered from pigs in KwaZulu-Natal,
South Africa.

2. Materials and Methods

2.1. Ethical Approval

This study was approved by the Animal Research Ethics Committee (AREC/079/018D), University
of KwaZulu-Natal (UKZN, Durban, South Africa). Permission for animal sampling was obtained from
the Department of Agriculture, Forestry and Fisheries, Republic of South Africa (Ref 12/11/15). The State
Veterinarian and the Health and Safety Officers at the abattoir were duly consulted. All samplers took
a compulsory competency to ensure that all health and safety standards were met, and the necessary
precautions were taken during animal sampling.

2.2. Sampling

This study was part of a larger point-prevalence study undertaken to determine the molecular
epidemiology of carbapenem-resistant bacteria in humans (from public hospitals), food animals
(a food processing plant with an abattoir), and the environment (a wastewater treatment plant)
in uMgungundlovu, KwaZulu-Natal, South Africa. The current study focused on pigs. A total of
345 rectal swabs were collected from pigs, post-slaughter at an abattoir, using nylon-flocked swabs.
Swabs were transported in 5 mL of Amies gel transport medium on ice to a reference laboratory
authorized to process animal samples and processed within 6 h of sample collection.

2.3. Isolation and Identification

2.3.1. Screening of Carbapenemase-Producing Isolates

All rectal swabswereculturedonChromIDCARBAchromogenicagar (BioMérieux, Marcy l’Étoile, France)
as described previously [22,23], with an incubation period of 18 to 24 h at 37 ◦C. Carbapenemase-negative
Klebsiella pneumoniae ATCC 700603 and carbapenemase-positive Klebsiella pneumoniae ATCC BAA-1705 served
as controls.
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2.3.2. Confirmation of Isolates and Determination of Antibiotic Susceptibility Profiles

The carbapenem-resistant isolates obtained were sub-cultured onto MacConkey plates and
subjected to phenotypic identification and susceptibility testing using the VITEK 2 (BioMérieux,
Marcy l’Étoile, France) automated platform. The Clinical and Laboratory Standards Institute
(CLSI) interpretative criteria were used to categorize isolates as susceptible or resistant [24].
The following β-lactam antibiotics were tested: ampicillin, amoxicillin, amoxicillin-clavulanate,
ceftriaxone, ceftriaxone, cefepime, cefuroxime, cefoxitin, ceftazidime, imipenem, meropenem
and piperacillin-tazobactam.

2.4. DNA Purification, Genome Sequencing and Pre-Processing of Sequence Data

Isolates that were confirmed as Aeromonas were sub-cultured on nutrient agar (Sigma-Aldrich,
St. Louis, MO, USA) at 37 ◦C for 24 h. Genomic DNA was then extracted from these pure cultures
using the Quick-DNA™ Bacterial Miniprep Kit (Inqaba Biotechnical Industries (Pty) Ltd., Pretoria,
South Africa). The extracted DNA was quantified using a Nanodrop 8000, Qubit (Thermo Scientific,
Waltham, MA, USA) and verified on an agarose gel electrophoresis. A paired-end library (2 × 300 bp)
was prepared using Illumina Nextera XT DNA Sample Preparation Kit and sequenced on a MiSeq
machine (Illumina, San Diego, CA, USA). The generated sequenced reads were quality assessed,
trimmed, and de novo assembled using the SKESA Assembler (version 2.3; https://github.com/ncbi/
SKESA), with default parameters for all software, unless otherwise specified.

2.5. Genome Visualization and Annotation

The genomes of the isolates were visualized using the GView Server [25]. The National Center for
Biotechnology Information (NCBI) Prokaryotic Genome Annotation Pipeline (PGAP; version 4.3) [26],
and Rapid Annotation using Subsystem Technology (RAST) Server (version 2.0) [27] were used for
annotation of the size, GC content, number of contigs, N50, L50, number of RNAs, protein-coding
sequences for subsystem categorization, and comparison of the isolates. The OrthoVenn2 web
server [28] was used to identify orthologous gene clusters that were either unique or shared among
A. veronii strains. The analysis was performed with default parameters for the protein-coding genes of
the strains.

2.6. Whole Genome Sequencing-Based Confirmation and Molecular Typing of Aeromonas Veronii

The generated contigs from the WGS data were used to confirm the identity of the isolates
on the Pathogenwatch platform [29]. The assembled genomes were submitted to the Aeromonas
MLST database, which assessed the allelic profiles of six housekeeping genes to assign the new
sequence type (ST) [30]. An eBURST [31] algorithmic analysis was performed in the MLST database
(https://pubmlst.org/aeromonas/) to ascertain whether the novel ST was a single-locus variant (SLV) or
double-locus variant (DLV) of the known STs. The STs of globally deposited A. veronii genomes were
obtained from the PATRIC database (https://www.patricbrc.org/view/Taxonomy/2).

2.7. Antibiotic Resistance Genes, Efflux Genes, and Mobile Elements Identification

The bacterial analysis pipeline of GoSeqIt via ResFinder [32], Antibiotic Resistance
Gene-Annotation database (ARG-ANNOT) [33], and the Comprehensive Antibiotic Resistance Database
(CARD) [34] tools were also used to annotate and identify resistance and efflux genes. PHAge Search
Tool [35] server was used for the identification, annotation, and visualization of prophage sequences.
The presence of insertion sequences and transposons was determined by blasting contigs on the ISFinder
database [36], while the presence of integrons was ascertained from the PGAP and RAST subsystems
and blasted on the IntegronFinder database. The distribution of CRISPR-Cas systems in A. veronii
genomes was determined by CRISPRfinder [37]. Annotations from the Restriction-Modification Finder
predicted the R-M system in the isolates [38].

https://github.com/ncbi/SKESA
https://github.com/ncbi/SKESA
https://pubmlst.org/aeromonas/
https://www.patricbrc.org/view/Taxonomy/2
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2.8. Assessment of Pathogenic Potential and Prediction of Putative Virulence Factors

The pathogenic potential of the A. veronii isolates was assessed using the PathogenFinder web
service under the automated mode [39]. All isolates were subjected to the pathogenicity prediction
using Fasta formatted genome data. Virulence determinants (sequences and functions), corresponding
to four major bacterial virulence factors (adherence, motility, secretion system and toxin) associated
with A. veronii, were searched for in the pathogenic bacteria database, VFanalyzer [40] and validated
by blasting assembled genomes to a pseudomolecule generated by concatenating a set of target genes
using the NCBI in-house BLASTN tool. The known A. veronii B565 (4,551,783 bp, Accession number:
NC_015424) was used as the reference genome.

2.9. Global Phylogenomic Relationship and Metadata Analysis

A phylogenomic analysis was undertaken to compare the genomes of the study isolates with
all available A. veronii genomes downloaded from GenBank and PATRIC via CSI Phylogeny-1.4 [41].
The genome of Tolumonas auensis DSM 9187 (GenBank accession number: CP001616) of the
Aeromonadaceae family was used to root the tree, facilitating the configuration of the phylogenetic
distance between the isolates on the branches. A bootstrapped indicator with 100 replicates was applied
to identify recombined regions and provide the phylogenetic accuracy in groups with little homoplasy.
Figtree (http://tree.bio.ed.ac.uk/software/figtree/) was used to visualize and edit the phylogenetic tree.
The phylogeny was visualized alongside annotations for isolate metadata (WGS in silico molecular
typing, source, and country) using Phandango [42], to provide a comprehensive analysis of the
generated phylogenomic tree.

2.10. Data Availability

The raw read sequences and assembled whole-genome contigs have been deposited in GenBank.
The data is available under project number PRJNA564235.

3. Results

3.1. Prevalence and Phenotypic Resistance Profiles of A. Veronii Isolates

Five (5) carbapenem-resistant (CR) A. veronii isolates were obtained from 5 different pig samples,
giving a carriage rate of 1.5% (5/345) among the sampled pig population. The isolates exhibited similar
resistance phenotypes, all of them displaying 100% resistance to ampicillin, amoxicillin and imipenem,
except for piperacillin-tazobactam to which only one isolate showed resistance (Table 1).

Table 1. Susceptibility pattern of A. veronii isolates.

Antibiotics
Resistance Phenotypes 1

A5 A31 A34 A86 A136

Ampicillin (AMP) R R R R R
Amoxicillin (AMX) R R R R R

Amoxicillin-clavulanate (AMC) I S S S I
Piperacillin-tazobactam (TZP) S S S S R

Cefuroxime (CXM) S S S S S
Cefotaxime (CTX) S S S S S
Ceftriaxone (CRO) S S S S S
Ceftazidime (CAZ) S S S S S

Cefepime (FEP) S S S S S
Cefoxitin (FOX) S S S S S
Imipenem (IMI) R R R R R

Meropenem (MER) S S S S S
1 S = susceptible; I = intermediate; R = resistant.

http://tree.bio.ed.ac.uk/software/figtree/
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3.2. Genome Confirmation, Statistics, Annotation, and Visualization

The global Pathogenwatch platform confirmed the phenotypic identity of the A. veronii genomes.
The genomic features of the sequences, in terms of size, GC content, number of contigs, N50, L50,
number of RNAs and number of protein-coding sequences are listed in Supplementary Materials
Table S1. The genome size of the A. veronii isolates ranged from 4.64 Mb to 4.77 Mb, with GC content of
58.2–58.5 and a coverage range between 99% to 102%. Comparative visualization analysis, via the
GView server (Figure 1), showed a similarity of DNA synteny with >98% coverage and identity from
the AVNIH2 reference in all the A. veronii genomes.
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Figure 1. Comparative visualization of the isolates (n = 5) with the A. veronii reference strain (AVNIH2,
Accession number: LRBO00000000). The map was constructed using the GView online server
(https://server.gview.ca/). The concentric circles represent comparisons between AVNIH2 and, starting
with the inner circle, genome assemblies from A. veronii genomes (isolate ID: A5, A31, A34, A86 and
A136). Colour codes are given for each isolate with a synteny identity, ranging from >98%.

Pan-genome and ortholog analysis revealed that all the isolates formed a total of 4349 clusters
and shared 4296 orthologous clusters (98.8%) (Figure 2). The singletons ranged from 10 to 42 gene
clusters. The isolates shared a similar range of orthologous clusters (nrange= 26–30) with each other;
however, no unique orthologue gene cluster (n = 0) was found (Figure 3).
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Figure 3. SEED subsystem category for A. veronii genomes. Comparison of functional categories in
5 A. veronii genomes based on SEED. The functional categorization is based on the roles of annotated
and assigned genes. Each coloured bar represents the number of genes assigned to each category.

3.3. Defence Systems (CRISPRCas Cluster and Restriction-Modification (R-M) System), Antibiotic Resistome,
Mobilome and Genetic Environment Analysis

The isolates shared a similar resistome (same resistance and efflux genes), with the mobilome
comprised of variable insertion sequence families (Table 2 and Figure 4), while plasmids, integrons
and intact prophages were absent. However, isolates contained the same incomplete prophage
(PHAGE_Escher_PA28 [Accession number: NC_041935]). The blaCPHA3 and blaOXA-12 genes were
located on the chromosome, with >97% homology to Aeromonas veronii strain AVNIH1 (Accession no.
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CP047155.1) and Aeromonas veronii strain 17ISAe (Accession no. CP028133.1) (Table S3). The isolates
contained 4–5 clustered, regularly interspaced, short palindromic repeat (CRISPR) arrays with no Cas
element (Table 2). None of the strains harboured the restriction-modification (R-M) system.

Table 2. Summary of specimen source, sample type, and genotypic characteristics of the isolates.

Isolate In Silico Typing Defence Systems Resistome Mobilome 2 Pathogenicity 3

ID MLST 1 CRISPR (Cas) No. of Insertion Sequences Score (Pathogenic Families)

A5 ST657 4 (0) OXA-12,
cphA3, 45 0.607 (30)

A31 ST657 5 (0) OXA-12,
cphA3, 68 0.607 (30)

A34 ST657 5 (0) OXA-12,
cphA3, 73 0.607 (30)

A86 ST657 4 (0) OXA-12,
cphA3, 43 0.603 (29)

A136 ST657 5 (0) OXA-12,
cphA3, 45 0.607 (30)

1 Isolates belonged to the same clone with sequence type (ST657). 2 None of the isolates possessed a
restriction-modification (R-M) system, plasmids, integrons and intact prophage. The isolates contained the
same incomplete prophage (PHAGE_Escher_PA28 [Accession number: NC_041935]. 3 Pathogenicity score predicted
potential pathogenicity in humans.
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3.4. Molecular Typing, Global Epidemiological and Phylogenomic Analysis

In silico determination of the sequence types (STs) of the isolates, using the Aeromonas MLST
scheme resulted in an undescribed ST comprising new alleles for gltA_473, groL_445, gyrB_465,
metG_470, ppsA_512 and recA_519. Allele sequences were submitted for curation and assigned to the
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new ST657 (Table 2). BURST (Based Upon Related Sequence Types) analysis identified the novel ST657
as a satellite clone (more distantly) with no single-, double nor triple-locus variants of global curated
A. veronii STs.

The metadata analyses of the five isolates, together with the 49 global strains, showed the diversity
of A. veronii sequence types (n = 29), country of origin (n = 13) and sources. The most prevalent
sequence types were ST23 (n = 9), ST657 (n = 5, study isolates), ST91 (n = 4), ST166 (n = 3), ST485
(n = 3) and ST50 (n = 2) (Figure 5 and Table S4). The A. veronii isolates were from different sources,
predominantly animal hosts (n = 38; mostly from fish sources [n = 25], pigs [n = 6] and cow [n = 4]),
followed by humans (n = 10) and the environment (n = 6). The USA (n = 17), China (n = 10), Greece
(n = 9), South Africa (n = 5) and India were the countries with the highest number of isolates deposited
on the databases.Microorganisms 2020, 8, x FOR PEER REVIEW 9 of 17 
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The phylogenomic analyses via the WGS SNP tree differentiated the global strains into three
clusters (I, II and III) (Figures 5 and 6). The study isolates were found in Cluster I with a 100%
branch conservation and close lineage to two international stains, KLG7 (UK) and A8-AHP (India)
from the environment and fish source, respectively. Cluster II contained strains (n = 14) which
were mostly of animal origin (n = 11), except for three strains which were from humans (AVNIH2,
VBF557 and FC951). Cluster III was the largest group and contained strains from diverse sources
(humans, animals, and environment) (Figures 5 and 6). Six highly conserved genetic subclades (A-E)
were identified, which depicted a clustering of isolates mainly according to their sequence types (clonal
lineages) and sources (Figure 6). Moreover, the results of the global phylogenetic tree demonstrated
the complexity and diversity of A. veronii regarding geography, source, and clonality, with many
unresolved clusters.
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Figure 6. A circular cladogram of global A. veronii genomes depicting the association between isolates
in three clusters (I, II and III). The KwaZulu-Natal (South Africa) isolates belonged to the smallest
cluster I and were mainly related to international strains KLG7 (UK) and A8-AHP (India). Sub-clades
(A-E) depicted a clustering of isolates, mainly according to sequence types/sources.

3.5. Pathogenic Potential and Putative Virulence Factors

The mean pathogenicity score of 0.60 indicated the potential pathogenicity of A. veronii in humans
and was found to match 30 pathogenic families. The whole virulome analysis predicted a total of
200 putative virulence-encoding genes belonging to six major virulence factor classes of Aeromonas,
namely, adherence factor (lateral flagella, mannose-sensitive hemagglutinin pilus, polar flagella,
tap type IV pili and type I fimbriae), secretion system (T2SS and T3SS), toxins (aerolysin/cytotoxic
enterotoxin and hemolysin), anaerobic respiration (nitrate reductase), antiphagoctyosis (capsular
polysaccharide) and immune evasion (capsule and LOS) with minor differences (Figure 7 and Table S5).
A total of 195 conserved virulence factors were observed across the isolates.
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4. Discussion

Aeromonas spp. are important human pathogens and colonizers and have also been increasingly
isolated in animals (food-animals, wildlife, and companion animals), and the environment (soil,
water, and air) globally. They, thus, have potential as One Health indicator bacteria for monitoring
the spread of antibiotic-resistant bacteria between humans, animals and the environment [4,43–47].
However, information on this pathogen in food animals, using high-throughput technologies such as
whole genome sequencing in Africa, is lacking. In this study, we describe for the first time in Africa,
the comparative genomics of five A. veronii isolates recovered from pigs in South Africa. We also show
the phylogenomic relationship between this novel strain and all globally deposited A. veronii genomes
with complete metadata (country, sources and sequence types), as their incidence and geographic
spread is vital to understand the evolution of this emerging pathogen which is on a global rise.

Analyses of the genomic data revealed a high degree of genomic synteny (>98%), suggesting a
close association between the study isolates (Figure 1). All the isolates shared orthologous clusters
(98.8%) with no unique gene cluster (Figure 2), indicating a relatively large set of core functions with
low variable sections as well as a vast array of similar central networks (Figure 3) which are crucial
for their survival in the microbial community [48]. The high degree of similarity between the isolates
predicted by the different analyses also corroborated the novel clonal lineage (ST657), where the
isolates possessed the same genetic make-up with low variation. For instance, mobilome analysis of
the ST657 highlighted the lack of plasmids, integrons and intact prophages in this lineage. However,
variability in chromosome-borne insertion sequence (IS) families was observed (Table 2 and Figure 4).
More so, the isolates contained the same incomplete prophage (Escher_PA28) which did not harbor
any resistance and virulence genes. A similar scattered IS pattern was previous reported in A. veronii
by Tekedar et al. [20]. Further analyses of this clonal lineage (ST657) depicted a unique satellite-variant,
implying that it was distantly related to global sequence types, hence does not have any ancestral
linkage with the STs found in the Aeromonas MLST database.
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Bacteria often accrue defence systems which offer protection against foreign DNA invasion and
viral predation [49,50]. Regarding the CRISPR-Cas defence systems consisting of two main components,
CRISPR array and associated genes (Cas), the A. veronii genomes encoded the CRISPR elements with
no Cas system (Table 2). This shows that the genomes of the isolates contained short repeat clusters
which have been implicated in bacterial adaptation strategies, ranging from immune evasion and
tissue tropism to the modulation of environmental stress tolerance. This finding was similar to a
study by Tekedar et al. [20], which confirmed the presence of CRISPR elements in all compared
A. veronii isolates (n = 41), with only a few (n = 4) harbouring the Cas elements. This implies that the
complete CRISPR-Cas systems are less prevalent in A. veronii, probably because of the lack of nucleotide
biosynthesis capacity [51]. Moreover, the Cas systems were predominantly found in human isolates,
suggesting the need for further studies to understand the CRISPR-Cas-mediated host interactions.

A. veronii has been reported in different food animals and products including pigs, chicken,
cattle, sheep, buffalo and fish [10,46,52]. The consumption of undercooked/raw meat or meat
products is an important route for human infection with Aeromonas spp. [4,10]. The carriage rate
of carbapenem-resistant A. veronii isolates was 1.5%, which was comparable to the prevalence rate
in food-producing animals in Europe (<1%) and in the lower range of the resistance reported in
both Africa (2–26%) and Asia (1–15%) [53]. Although the overall prevalence of carbapenem-resistant
A. veronii in food animals appears to be low, the transmission of these pathogens from food animals
to their derived products could be a threat to consumers, supporting the transmission of resistant
bacteria and their determinants between commensal and pathogenic microorganisms with unknown,
but potentially severe, consequences for human health [53,54].

The resistance phenotypes corroborated the presence of blaCPHA3 and blaOXA-12 conferring
resistance to imipenem and penicillin (ampicillin and amoxicillin) (Tables 1 and 2). The Aeromonads,
including veronii and A. hydrophilia, have been reported to harbour conserved resistance genes on their
chromosome, conferring intrinsic resistance against these antibiotics [20,55,56]. More so, they often
harbour genes that code for the production of β-lactamases such as class B metallo-β-lactamase,
class C cephalosporinase, and class D penicillinases [3,5,41,42]. However, Aeromonas spp. are reported
to be susceptible to monobactams, third-and fourth-generation cephalosporins, aminoglycosides,
and fluoroquinolones, as found in this study [3].

The pathogenic potential (Pscore), with the probability ranging from 0 to 1, is used to predict the
ability of bacteria to cause infection in humans [39,48]. This theoretical estimation of the pathogenic
potential, using trained algorithms to differentiate between pathogenic or commensal strains, predicted
a relatively higher average probability (Pscore ≈ 0.60), suggesting that the clone (ST657) (Table 2) could be
potentially pathogenic to humans. However, it originated from a non-human source, highlighting
the role of Aeromonas spp. from food animal sources as potential human pathogens [4]. The global
emergence of Aeromonas spp. in all One Health settings (human-animal-environment), makes it a
potential One Health indicator organism.

Several insertion sequences were found in our isolates (Table 2 and Figure 4). Insertion elements
are significant in the evolution of Aeromonas genome [57], contributing to its resistome and virulome
through the incorporation of additional genes, genome reduction and rearrangement, gene decay and
inactivation, and expansion of flanking regions [58,59]. The virulome analysis revealed the possession
of a battery of determinants which play a significant role in their survival and pathogenesis, comparable
to previously reported studies on Aeromonas spp. [5,20,55,60] and supporting the pathogenic potential
of this pathogen. The ST657 clone contained an array of six putative virulence factor classes, which
were mostly conserved across the isolates, suggesting that A. veronii relies heavily on these factors for
host invasion, immune evasion, tissue damage, and competition in diverse ecological niches (Figure 7
and Table S5). Adherence factors were the most prevalent putative virulence determinants followed
by secretion systems and toxins (Figure 7 and Table S5) in contrast to virulence factors possessed by
A. veronii isolated from fish samples, where the secretion system and its components were found to be
the most predominant [20]. This observation could imply that predominating virulence factors may be



Microorganisms 2020, 8, 2008 12 of 16

host-specific. Interestingly, differences in the virulome of the ST657 lineage were evident. Some of
the isolates lacked specific genes within the sub-components of adherence factors, secretion systems
and immune evasion virulence factors. For example, the T2SS sub-component of the secretion system,
which is known for exporting hydrolytic enzymes and aids in the gut colonization [61,62], lacked the
exeH gene in isolate A31. The expression of this putative virulome probably confers a competitive
advantage, contributing to its success as a pathogen [48]. Moreover, the genomic detection of these
virulence genes could aid in identifying targets for the development of novel vaccines for this emerging
pathogen [63,64].

Global epidemiological comparison of deposited A. veronii genomes revealed the diverse nature
of this pathogen regarding its host, clonal lineages, and geographical distribution (Figure 5 and
Table S4). This diversity implies that the A. veronii can serve as good One Health indicator pathogen to
understand and track the geographical spread of antibiotic resistance. Phylogenomic analysis depicted
the clustering of group members from disparate geographies. Interestingly, the study isolates were
closely related to strains from the UK and India, from different lineages (Figure 7), but not close enough
to suggest import into South Africa from other countries. The small number of global deposited strains
with insufficient metadata made it challenging to make much inference from the tree analysis on the
transmission dynamics of this species, as there were many unresolved clusters. It is thus recommended
that more studies be carried out in all the sectors (human, animal and environment) to harness the
ability of genomics and bioinformatic analysis in making useful predictions about the dynamics of
emerging pathogens in the One Health context.

5. Conclusions

The comparative genomics of A. veronii revealed the clonal dominance of the novel strain, ST657,
isolated from South Africa. The genomic data presented lends useful insights into the pan-genome,
resistome, defense system, virulome, pathogenic potential, clonal lineages, global dissemination,
and phylogenetic relationship of this pathogen. To the best of our knowledge, this is the first
comprehensive genomic analysis of A. veronii isolates in Africa and presents this species as a potential
One Health indicator.
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PATRIC database, Table S5: Table of the virulence factor distribution in the 5 A. veronii genomes.
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