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Osteoarthritis (OA) is a prevalent joint disease, which is associated with

progressive articular cartilage loss, synovial inflammation, subchondral

sclerosis and meniscus injury. The molecular mechanism underlying OA

pathogenesis is multifactorial. Long non-coding RNAs (lncRNAs) are non-

protein coding RNAs with length more than 200 nucleotides. They have

various functions such as modulating transcription and protein activity, as

well as forming endogenous small interfering RNAs (siRNAs) and microRNA

(miRNA) sponges. Emerging evidence suggests that lncRNAs might be involved

in the pathogenesis of OA which opens up a new avenue for the development

of new biomarkers and therapeutic strategies. The purpose of this review is to

summarize the current clinical and basic experiments related to lncRNAs and

OA with a focus on the extensively studied H19, GAS5, MALAT1, XIST and

HOTAIR. The potential translational value of these lncRNAs as therapeutic

targets for OA is also discussed.
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Introduction

Osteoarthritis (OA) is a prevalent joint disease in aging and obese populations,

resulting in joint pain, stiffness, and movement limitation (1). It has been estimated that

OA affects more than 240 million people all over the world which is projected to double in

the next 20 years (2). OA is regarded as one of the leading causes of major health and

socioeconomic burdens in many countries (3). OA was once considered as a disease of

articular cartilage alone. However, it is now generally believed that OA pathogenesis is

associated with pathological changes of other joint tissues, such as synovial inflammation,

subchondral bone remodeling and meniscal degeneration (4, 5). Risk factors, such as aging,
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obesity, trauma, genetic predisposition, and bone density, have

been implicated in the onset and development of OA (6). Despite

these well documented factors and other routinely used clinical

parameters such as patient history and radiographic examination,

there is still a lack of sensitive approach to detect OA at its

reversible stage (7, 8). In the clinics, multiple conservative

treatments are available at the early stage of OA, such as

physical measures or pharmacological anti-inflammatory and

analgesic drugs (6). Surgical interventions, such as osteotomies

and total replacement surgeries are served as the ultimate

therapeutic options to rehabilitate the persistent pain and

functional limitations of patients suffering from severe OA (9,

10). Obviously, these approaches are not able to halt or the

progressive degeneration in the joints. Collectively, a better

understanding of the molecular mechanism underlying this

complex pathogenesis will provide an insight into the

development of more specific and sensitive biomarkers as well

as disease-modifying drugs for OA prevention and treatment (11).

In human genome, approximately 2% of genome is made up

of protein-coding genes. The remaining 98% genome was

thought to be nonfunctional evolutionary leftovers. It is now

evidenced that these widely distributed non-coding genomes can

be classified into two groups, namely short (< 200 nucleotides)

and lncRNAs (> 200 nucleotides) which have diverse biological

functions in various human diseases (12). In general, lncRNAs

modulate the expression of target genes or the activity of

downstream pathways by direct binding to DNA, RNA and

proteins (13). Increasing evidence reveals that there are

differential expressions of lncRNAs at cellular and tissue levels

in human OA condition (14), suggesting the undefined roles of

lncRNAs in OA development and progression (15), and

potentially a new class of biomarkers for OA (16).

To supplement our current understanding as summarized in

previous reviews and to update the landscape of lncRNAs

research in OA (17, 18), this review takes a more

comprehensive approach to critically review the current

findings about the role of lncRNAs in OA pathobiology and

diagnosis with emphasis on those extensively studied lncRNAs,

including lncRNA H19, GAS5, MALAT1, XIST and HOTAIR

and their effects on various joint tissues, and to propose novel

treatment strategies via targeting lncRNAs.

This review on clinical and basic studies was conducted to

provide a current understanding about the lncRNAs research on

multiple joint tissues of OA pathogenesis through searching

published articles on the PubMed, Google Scholar, and

ScienceDirect databases from February 2003 to August 2022.

The searching keywords include (“long non-coding RNA” OR

“lncRNA”) AND (“osteoarthritis” OR “arthritis” OR

“osteoarthritis treatment”) AND (“plasma” OR “synovial fluid”

OR “body fluid” OR “cartilage” OR “synovium” OR “subchondral

bone” OR “meniscus” OR “chondrocyte” OR “synoviocyte” OR

“osteoblast” OR “exosome” OR “nanoparticle” OR “siRNA” OR

“Gene-editing”).
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Classification and function
of lncRNAs

One common classification of lncRNAs is based on their

positions to protein-coding genes: (i) Sense lncRNAs and (ii)

antisense IncRNAs are those overlap with the same and opposite

strand of coding genes, respectively; (iii) Intronic lncRNAs are

those locate in the same intronic region of protein-coding genes.

While (iv) bidirectional lncRNAs are transcribed from the same

promoter as the protein-coding genes, but in the opposite

direction and (v) long intergenic noncoding RNAs (lincRNAs)

locate in the genomic interval between two genes (19) (Figure 1).

In addition, lncRNAs can be further classified by their

interactions with targets, including decoy lncRNAs, guide

lncRNAs, scaffold lncRNAs, stabilizing lncRNAs and

competitive endogenous-lncRNAs. Decoy lncRNAs sequester

DNA-binding proteins to limit their bindings to DNA

recognition elements. Guide lncRNAs recruit chromatin

remodeling agents to impart specificity to genomic locations

through either DNA-protein or RNA-DNA recognition. While

scaffold lncRNAs join several proteins together in a complex,

and stabilizing lncRNAs bind to target mRNA transcripts,

stabilize and promote their translations. Competitive

endogenous-lncRNAs (ceRNAs) or ‘RNA sponges’ compete

with miRNAs to limit their effects on protein-coding mRNA

targets (20).

Extensive research over the past decade has deciphered

various biological functions of lncRNAs (21). In general,

lncRNAs regulate gene expression via chromatin modification,

transcription and post-transcriptional processes (22). During

chromatin modification, lncRNAs recruit chromatin remodeling

complexes to specific chromatin loci (23). Transcriptional

regulation is the core role of lncRNAs in which they serve as

pervasive enhancers or promoters of transcription. In addition,

lncRNAs also behave as RNA binding proteins, transcription

factors and RNA polymerase (RNAP) II in regulating the

initiation of transcription (21). During post-transcriptional

regulation, lncRNAs mediate mRNA dynamics in both cis-

and trans-targets (24). Overall, lncRNAs serve as master

regulators of gene expression, and it is not surprising that the

value of lncRNAs in key aspects of OA progression has attracted

considerable attention.
Overview of lncRNAs in
OA pathogenesis

Currently, most of the studies focused on the lncRNAs

functions in OA cartilage/chondrocyte. Given that OA is a

disease of the whole joint (25), it is of clinical value to provide

an overview regarding the lncRNAs expression in different joint

tissues. The section summarizes some recent key findings about
frontiersin.org
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the dysregulation of lncRNAs expression and their potential

biological roles in cartilage degradation, synovial inflammation,

dysfunction of subchondral bone homeostasis and meniscus

injury. The full list of literature search can be referred to Table 1.
lncRNAs in Cartilage

Cartilage is an integral part of the skeletal system and is

mostly composed of chondrocytes. Chondrocytes can secrete

cartilage matrix and maintain joint activity (124), making this

cell type indispensable to the dynamic and continuous

processes of extracellular matrix (ECM) deposition and

remodeling to maintain homeostasis of cartilage (125).

However, such balance is disrupted in OA, and finally

resulting in degeneration of cartilage matrix (notably type II

collagen, COL2), production of fibrous ECM, aberrant

proliferation, senescence and hypertrophy of chondrocytes,

as well as secretion of inflammatory cytokines (126).

Previous studies described the abnormal expression of

lncRNAs in OA cartilages or chondrocytes, indicating the

probable l ink between lncRNAs and the aberrant
Frontiers in Immunology 03
chondrocyte function (127, 128). Liu and colleagues are one

of the pioneer groups to profile lncRNA in human OA cartilage

tissues, providing a new insight into the mechanism of cartilage

injury and the progression of ECM degradation (52). Similarly,

Hoolwerff and colleagues reported the differential expression of

lncRNAs with OA pathophysiology in cartilage, and they

discussed the potential of antisense lncRNA P3H2-AS1 on

collagen chain assembly in lesioned OA cartilage via the

regulation of P3H2 expression (129). On the other hand,

Pearson et al. identified 125 lncRNAs were differentially

expressed upon IL-1b stimulation in primary human OA

chondrocytes. Amongst, two novel lncRNAs, namely

ClLinc01 and ClLinc02, were found to mediate the secretion of

proinflammatory cytokines in IL-1 stimulated human

chondrocytes, suggesting that some lncRNAs might mediate the

response of chondrocytes to inflammation and inflammation-

driven cartilage degeneration within the OA joint (92). Of note,

different types of cellular model, such as cartilage derived primary

cell culture or immortalized cell line with or without prior

stimulation, were used in previous studies to delineate the effects

of various lncRNAs on chondrocytes (130). Whether these effects

are associated with or even causative factors in OAdevelopment or
frontiersin.org
FIGURE 1

Biogenesis and function of lncRNAs. Classification of lncRNAs into five classes: sense lncRNAs, intronic lncRNAs, lincRNAs, antisense lncRNAs
and bidirectional lncRNAs, based upon their genomic locations and transcription. LncRNAs regulate the expression of genes in the cytoplasm by
interacting directly with microRNAs (miRNAs) or proteins, and stabilizing mRNA transcripts. Noncoding transcripts in the nucleus are known to
regulate gene expression at the level of chromatin modification, transcription and post-transcriptional processing. In addition, lncRNAs are
considered as biomarkers or participant in tissue crosstalk by entering the bloodstream directly, or bound to carrier proteins, even incorporated
into extracellular vesicles which can be further released into bloodstream.
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TABLE 1 The dysregulated lncRNA in clinical OA samples.

LncRNA Human tissue/ Expression in Potential targets Cellular process Proposed molecular mechanism References

675 host (26)

eraction with miR106-5p (27)

eraction with p53 (28)

eraction with miR140-5p (29)

(30)

eraction with miR21 in autophagy (31)

eraction with miR34a (32)

eraction with miR137 (33)

(34)

eraction with miR145 (35)

ulated PI3K/Akt pathway by interacting with miR127-5p (36)

(37)

(38)

ulated DNMT3A by interacting with miR149-5p (39)

ulated GNG5 by interacting with miR675-3p (40)

ulated MAPK signaling by interacting with miR211 (41)

eraction with miR376 (42)

ulated ADAM10 by interacting with miR222-3p (43)

ulated BCL2L13 by interacting with miR130a-3p (44)

ulated STGB by interacting with miR1277-5p (45)

ulated CXCL12 by interacting with miR107 (46)
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cells OA

H19 OA Cartilage Upregulated COL2A1, COL9A1, COL10A1, CILP, and HTRA1 ECM anabolism mi

OA chondrocyte Upregulated PCNA, CyclinD1, and cleaved Caspase 3 Cell proliferation In

OA Cartilage Upregulated IL-38 Inflammatory response Int

OA Cartilage Upregulated Bax and Bcl2 Cell apoptosis In

COL2A1, MMP1, and MMP13 ECM degradation

ALP, OCN, and BSP Ossification

OA synovium Upregulated – – –

GAS5 OA chondrocyte Upregulated MMP2, MMP3, MMP9, MMP13, and ADAMTS4 ECM degradation In

OA chondrocyte Upregulated Bax and Bcl2 Cell apoptosis In

OA Cartilage Upregulated Caspase 3, Bax, and Bcl 2 Cell apoptosis In

OA synovium Downregulated Caspase 3, and Bax Cell apoptosis –

MALAT1 OA chondrocyte Upregulated ADAMTS5, COL2A1, ACAN, and COMP ECM degradation In

OA Cartilage Upregulated OPN Cell proliferation Re

OA synoviocytes Upregulated IL-6 and CXCL8 Inflammatory response –

OA Subchondral
bone

Upregulated PGE2 Inflammatory response –

OA Cartilage Upregulated Cleaved caspase3 and Bcl2 Cell apoptosis Re

COL2 and aggrecan ECM degradation

OA Cartilage Upregulated Cleaved caspase3 and Bcl2 Cell apoptosis Re

COL2A1 and MMP13 ECM degradation

IL-6 and IL-8 Inflammatory response

OA Cartilage Upregulated CXCR4 Cell proliferation Re

OA synovium
(Macrophagy)

Upregulated IL‐4, IL-6, IL-10, IL‐1b, and TNF‐a Inflammatory response Int

ICAM1, MMP3, MMP9, and MRP8 Migration

OPN, ACAN, and COL2 in chondrocyte Crosstalk

HOTAIR OA Cartilage Upregulated Bcl2, cleave caspase3, p62 and LC3B Cell apoptosis Re

COL2, COL10, SOX9, and MMP13, ECM degradation

IL-6, IL-10 and TNF-a Inflammatory response

OA Cartilage Upregulated Cleaved caspase3, Survivin, Bcl2 and Bax Cell apoptosis Re

OA Cartilage Upregulated IL-1b and TNF-a Inflammatory response Re

Aggrecan and COL2 ECM degradation

OA Cartilage Upregulated Aggrecan, COL2, MMP13 and MMP9 ECM degradation Re

– Cell apoptosis
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TABLE 1 Continued

LncRNA Human tissue/
cells

Expression in
OA

Potential targets Cellular process Proposed molecular mechanism References

raction with promotor (47)

ulated FUT2/WNT aixs by interacting with miR17-5p (48)

ulated WIF1/WNT pathway (49)

genetic regulation (50)

ulated FRK by interacting with miR 663a (51)

entin inhibition (52)

raction with miR27 (53)

ivating autophagy (54)

ulated TMSB4 by interacting with miR152 (55)

raction with miR149 (56)

ulated TRAF3 by interacting with miR27b-3p (57)

(34)

raction with miRNAs (58)

raction with miR204-5p (59)

ulated SphK2 by competing with miR577 (60)

ulated JAK2/STAT3 signaling by interacting with miR216a- (61)

ulated DANCR by interacting with miR19a (62)

ulated HIF-1a, HIF-1a target genes, and PI3K/AKT/mTOR
way

(63)

(64)

raction with miR206 (65)

raction with miR451 (66)

ulated TGF-b signaling by interacting with miR22 (67)

ulated FGFR1 by interacting with miR376-3p (68)

(Continued)
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OA chondrocyte Upregulated ADAMTS5
MMP13, ADAMTS5, COL2, and ACAN

ECM degradation Int

OA Cartilage Upregulated Cleaved caspase3, cleaved caspase9 and Bax ECM degradation Re

Cell apoptosis

OA Cartilage Upregulated COL2, MMP9, MMP13, TIMP3, ACAN and ADAMTS5 ECM degradation Re

HOTTIP OA chondrocyte Upregulated HoxA cluster – Ep

OA Cartilage Upregulated – Cell proliferation Re

CIR OA Cartilage Upregulated MMP13, ADAMTS5, COL2, COL1, and ACAN ECM degradation Vim

OA chondrocyte Upregulated MMP13 ECM degradation Int

OA Cartilage Upregulated COL2A1, and MMP13 ECM degradation Ac

MSR OA Cartilage Upregulated COL2A1, ACAN, MMP13, and ADAMTS5 ECM degradation Re

PVT1 OA Cartilage Upregulated COL2, ACAN, MMP3, MMP9 and MMP13 ECM degradation Int

PGE2, NO, IL-6, IL-8, and TNF-a Inflammatory response

OA Cartilage Upregulated Cleaved caspase3 and autophagy Cell apoptosis Re

OA synovium Upregulated Caspase 3, and Bax Cell apoptosis –

Nespas OA chondrocyte Upregulated COL2, COL1, MMP2 and MMP13 ECM degradation Int

UCA1 OA Cartilage Upregulated COL2, COL4, and MMP13 ECM degradation Int

– Cell proliferation

DANCR OA Cartilage Upregulated Caspase3 and Bcl2 Cell apoptosis Re

OA Cartilage Upregulated IL-6 and IL-8 Inflammatory response Re
5p

OA Cartilage Upregulated IL-1, IL-6, IL-8, and TNF-a Inflammatory response Re

– Cell apoptosis

LncHIFCAR OA Cartilage Upregulated MMP1, MMP3 and MMP13 ECM degradation Re
patTNF-a and IL-6 Inflammatory response

Bcl2, Bax, and Cytochrome C Cell proliferation

FAS-AS1 OA Cartilage Upregulated COL2, MMP1 and MMP13 ECM degradation –

– Cell proliferation –

FOXD2-AS1 OA Cartilage Upregulated CCND1 Cell proliferation Int

p21 OA chondrocyte Upregulated Bcl2, and Bax Cell apoptosis Int

TM1P3 OA chondrocyte Upregulated MMP13 ECM degradation Re

TNFSF10 OA chondrocyte Upregulated IL-6 and IL-8 Inflammatory response Re

– Cell proliferation
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TABLE 1 Continued

LncRNA Human tissue/
cells

Expression in
OA

Potential targets Cellular process Proposed molecular mechanism References

action with miR140-5p (69)

lated SP1/NF-kB axis by interacting with miR145 (70)

action with miR30a-5p (71)

lated KDM5C by interacting with miR423-5p (72)

action with miR27b-3p (73)

lated TLR4/NF-kB axis by interacting with miR15a-5p (74)

lated FUT1 by interacting with miR17-5p (75)

lated ONECUT2/Smurf2/GSK-3b axis (76)

lated CDK9 by interacting with miR206 (77)

lated TCF4 by interacting with miR211-5p (78)

lated TRPS1 by interacting with miR126-5p (79)

lated ATF3 (80)

lated Wnt/b-catenin pathway by interacting with miR150 (81)

lated DDX6 by interacting with miR152-3p (82)

action with miR9-3p (83)

action with miR 140-3p/TLR4 axis (84)

action with miR199-3p (85)

lated FSHR by interacting with miR330-5p (86)
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– Cell apoptosis

LINC01534 OA Cartilage Upregulated MMP3, MMP9, MMP13, COL2 and aggrecan ECM degradation Inte

NO, PGE2, TNF-a, IL-6, and IL-8 Inflammatory response

NKILA OA Cartilage Upregulated Bcl2, Bax, and cleaved caspase3 Cell apoptosis Reg

LINC00461 OA Cartilage Upregulated IL-6, IL-10 Inflammatory response Inte

COL2, MMP2, MMP3 and MMP13 ECM degradation

– Cell proliferation

LOXL1-AS1 OA Cartilage Upregulated Cleaved Caspase 3, Cleaved Caspase 9, and Bax Cell apoptosis Reg

IL-6, IL-8 Inflammatory response

PCAT-1 OA chondrocyte Upregulated Cleaved Caspase3, Bcl2, and Bax Cell apoptosis Inte

ARFRP1 OA Cartilage Upregulated CCND1, Bcl2, and Bax Cell apoptosis Reg

TNF-a, IL-6, and IL-1b Inflammatory response

TUG1 OA Cartilage Upregulated MMP13, COL2 and aggrecan ECM degradation Reg

– Cell apoptosis

LINC00671 OA Cartilage Upregulated Col2A1, Aggrecan, MMP3, MMP13, ADAMTS4, and
ADAMTS5

ECM degradation Reg

RMRP OA Cartilage Upregulated – Cell proliferation Reg

KCNQ1OT1 OA Cartilage Upregulated IL-1b, TNF-a and IL-6 Inflammatory response Reg

COL2, COL10, and MMP13 ECM degradation

OA Cartilage Downregulated COL2, and MMP13 ECM degradation Reg

– Cell proliferation

RP11-364P22.2 OA Cartilage Upregulated Col2A1, Aggrecan, and MMP13 ECM degradation Reg

Caspase3, and NF-kB Cell apoptosis

Cox2 OA Cartilage Upregulated Ki67 and PCNA Cell proliferation Reg

Caspase3, Caspase9, and Bax Cell apoptosis

CASC19 OA Cartilage Upregulated IL-6, IL-8, and TNF-a Inflammatory response Reg

– Cell apoptosis

MIR22HG OA Cartilage Upregulated COL2A1, ACAN, MMP13, ADAMTS5 ECM degradation Inte

– Cell apoptosis

LINC01385 OA Cartilage Upregulated IL-6, TNF-a, PGE2 Inflammatory response Inte

LINC00707 OA Cartilage Upregulated – Cell apoptosis Inte

OA Cartilage Upregulated – Cell apoptosis Reg

COL2, ACAN, MMP13, MMP3 ECM degradation

IL-6, TNF-a Inflammatory response
r
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TABLE 1 Continued

LncRNA Human tissue/
cells

Expression in
OA

Potential targets Cellular process Proposed molecular mechanism References

lated SIRT1 by interacting with IGF2BP2 (87)

lated TAK1/NF-kB aixs by interacting with PRMT1 (88)

action with miR671-5p (89)

(90)

lated FOXO1 by interacting with miR361-5p (91)

(92)

(93)

action with miR34a (94)

action with miR26a (95)

lated autophagy by interacting with miR141-3p (96)

lated H3F3B by interacting with miR10a-5p (97)

lated TGFBR3 by interacting with miR181a‐5p (98)

lated BMPR2/MAPK aixs by interacting with miR125b (99)

lated YAF2 by interacting with miR141 (100)

lated IGF1 by interacting with miR126 (101)

lated TGFBR2/Smad3 axis by interacting with miR590-3p (102)

lated SOX4 by interacting with miR373-3p (103)

lated SOX5 by interacting with miR373-3p (104)

(Continued)
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LINC00680 OA Cartilage Upregulated – Cell proliferation Reg

COL2, ACAN, MMP13, ECM degradation

PILA OA Cartilage Upregulated MMP13, MMP3, ADAMTS4 ECM degradation Reg

– Cell apoptosis

DLEU1 OA Cartilage Upregulated COL2, ACAN, ADAMTS5 and MMP3 ECM degradation Inte

IL‐1, IL‐6, and TNF-a Inflammatory response

MEG3 OA Cartilage Downregulated VEGF Angiogenesis –

OA chondrocyte Downregulated Ki67 and PCNA Cell proliferation Reg

Bcl2 and Bax Cell apoptosis

MMP13, ADAMTS5, COL2, ACAN ECM degradation

CILinc01 OA chondrocyte Downregulated IL-6 Inflammatory response –

CILinc02 OA Cartilage Upregulated IL‐1, IL‐6, and IL‐17 Inflammatory response –

TIMP1, MMP1 and MMP13 ECM degradation –

– Cell apoptosis –

UFC1 OA Cartilage Downregulated – Cell proliferation Inte

SNHG5 OA Cartilage Downregulated SOX2 Cell proliferation Inte

OA Cartilage Downregulated MMP13, ADAMTS5, COL3 and ACAN ECM degradation Reg

Cleaved caspase3 Cell apoptosis

OA Cartilage Downregulated Cleaved caspase3, and cleaved caspase9 Cell apoptosis Reg

COL2, and ADAMTS5 ECM degradation

OA Cartilage Upregulated MMP13 and ADAMTS5 ECM degradation

Reg

Caspase3 Cell apoptosis

HOTAIRM1-1 OA Cartilage Downregulated – Chondrogenic
differentiation

Reg

Cleaved caspase3, cleaved caspase9, Bcl2 and Bax Cell apoptosis

COL2, COL10, and aggrecan ECM degradation

LINC00341 OA Cartilage Downregulated Bcl2, and Bax Cell apoptosis Reg

DNM3OS OA Cartilage Downregulated Cleaved caspase3, Bcl2, and Bax Cell proliferation Reg

PART1 OA Cartilage Downregulated Cleaved caspase3, cleaved caspase9 and Bax Cell apoptosis Reg

OA Cartilage Downregulated MMP13, COL2, and ACAN ECM degradation Reg

Bcl2, Bax and cleaved caspase3 Cell apoptosis

NEAT1 OA Cartilage Downregulated ACAN, Col2a1, MMP3, MMP13, and ADAMTS5 ECM degradation Reg

IL-1, TNF-a, IL-6, and IL-8 Inflammatory response
u
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TABLE 1 Continued

LncRNA Human tissue/
cells

Expression in
OA

Potential targets Cellular process Proposed molecular mechanism References

Regulated PLA2G4A by interacting with miR543 (105)

Regulated GPR120 by interacting with miR15b-5p (106)

Regulated PGRN by interacting with miR29b-3p (107)

Regulated HRAS/MAPK axis by interacting with miR101 (108)

Regulated SNHG7/PPARg axis by interacting with miR214-5p (109)

Regulated SOX9 by interacting with miR138 and miR145 (110)

Interaction with miR30a-5p (111)

Regulated TGFBR2 by interacting with miR302d-3p (112)

Regulated SIRT1 by interacting with miR138-5p (113)

Regulated PI3K/AKT signaling (114)

Regulated NRF2 by interacting with miR1323 (115)

Regulated STAT3 (116)

Regulated DUSP4 by interacting with miR122-5p (117)

Interaction with miR770 (118)

Interaction with miR142-5p (119)

Regulated MAP3K4 (120)

Regulated TLR4/NF-kB axis by interacting with miR6891-3p (121)

Regulated FRZB/WNT signaling (122)

Regulated SESN3 by interacting with miR212-5p (123)

; ALP, Alkaline phosphatase; OCN, Osteocalcin; BSP, Bone sialoprotein; ACAN, Aggrecan;
tin; TIMPs, Tissue inhibitor of metalloproteinases; CXCL, C-X-C Motif Chemokine Ligand;
xygen species; SOD, Superoxide Dismutase; PBMCs, Peripheral Blood Mononuclear Cells.
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– Cell apoptosis

OA Cartilage Upregulated MMP3, MMP9, and MMP13 ECM degradation

IL-6, and IL-8 Inflammatory response

p-Akt1 and Bcl2 Cell proliferation

LINC00662 OA chondrocyte Downregulated TNF‐a, IL‐6, and IL‐8 Inflammatory response

Cleaved caspase3, cleaved caspase9 and Bax Cell apoptosis

OIP5-AS1 OA Cartilage Downregulated IL-6, IL-8, and TNF-a Inflammatory response

Bax Cell apoptosis

LINC00623 OA Cartilage Downregulated MMP13, and COL2 ECM degradation

Cleaved caspase3, and cleaved caspase7 Cell apoptosis

SNHG7 OA Cartilage Downregulated Cleaved Caspase3, Cleaved Caspase7 Cell apoptosis

IL-1b, TNF-a and IL-6 Inflammatory response

ROR OA Cartilage Downregulated COL2, ACAN, MMP13 and COL10 Chondrogenesis

OIP5-AS1 OA Cartilage Downregulated Caspase 3, Caspase 9, Bax, and Bcl2 Cell apoptosis

IL-6, IL-8, and TNF-a Inflammatory response

FGD5-AS1 OA Cartilage Downregulated – Cell apoptosis

MCM3AP-AS1 OA Cartilage Downregulated – Cell apoptosis

MEG8 OA Cartilage Downregulated Caspase3 Cell apoptosis

IL-6 and TNF-a Inflammatory response

ZFAS1 OA Cartilage Downregulated ROS, SOD, and Catalase Oxidative stress

IL-1b, TNF-a and IL-6 Inflammatory response

– Cell apoptosis

GACAT3 OA synoviocytes Upregulated Caspase3 Cell proliferation

ANRIL OA synoviocytes Upregulated Cleaved caspase3, Bax, and Bcl2 Cell proliferation

PCGEM1 OA synoviocytes Upregulated PARP and caspase9 Cell proliferation

OA synoviocytes Upregulated Chondrocyte apoptosis and cartilage matrix degradation Crosstalk

AK094629 OA synovium Upregulated IL-6 Inflammatory response

IGHCg1 PBMCs Upregulated IL-6 and TNF-a Inflammatory response

AC005165.1 OA Subchondral
bone

Downregulated – –

LOC107986251 OA Menisci Upregulated – –

COL, Collagen; CILP, Cartilage intermediate layer protein; ECM, Extracellular matrix; PCNA, Proliferating cell nuclear antigen; MMPs, Matrix metalloproteinase
ADAMTS, A disintegrin and metalloproteinase with thrombospondin motifs; COMP, Cartilage oligomeric matrix protein; PGE2, Prostaglandin E2; OPN, Osteopon
CXCR, C-X-C chemokine receptor; MRP, Multidrug resistance-associated protein; CCND1, Cyclin D1; VEGF, Vascular endothelial growth factor; ROS, Reactive
s
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progression requires further investigation with appropriate

transgenic animal models.
lncRNAs in Synovium

Synovium is a specialized connective membrane lining the

inner surface of synovial joint capsules, and almost 75% of cells

in the synovium are fibroblast-like synoviocytes (FLS) (131).

Increasing evidence shows that FLS secretes proinflammatory

cytokines which mediate the degradation of cartilage during OA

progression (132), which has been speculated to be associated

with disease progression (133). Till now, the effects of lncRNAs

on OA synovium remains elusive. Early work by Xiang and

colleagues identified the differential expressions of 17 lncRNAs

in OA synovium of aged patients undergoing total knee

replacement surgery, in which some of these lncRNAs were

found to be related to immune response. The recruitment of

younger control subjects requiring arthroscopic meniscectomy

in this case-control study is ethically sound but not ideal to

exclude the influences of the acute injury of meniscus on the

lncRNAs in the synovial microenvironment (134). Li and

colleagues focused on a hepatocellular carcinoma associated

lncRNA (ANRIL) and found a higher level of ANRIL in the

OA cartilage tissue when compared with that of normal cartilage

tissue obtained from subjects requiring traumatic emergency

amputation without OA or rheumatic arthritis. Then primary

chondrocytes isolated from the collected cartilage tissues, and

commercially available normal and OA synoviocytes were used

to show differentially upregulated ANRIL expression in OA

synoviocytes but not in OA chondrocytes. It appears that

ANRIL dysregulation in OA is cell-type specific, affecting the

proliferation of synoviocytes via binding to miR-122-5p (117).

However, it should be noted that the information of the subjects

where those chondrocytes and synoviocytes derived from (such

as age and sex) were not provided, which should be taken

into consideration.
lncRNAs in Subchondral bone

Impaired mineralization is a pathological feature of

osteoarthritic subchondral bone. Such distinct microstructural

alterations, including sclerotic changes and osteophyte

formation, are both believed to arise from elevated bone

turnover with an increase in osteoblastic over osteoclastic

activities (135). In addition, the subchondral bone is also

considered as a major site of OA pain, likely due to the

innervation with sensory neurons and vascular channels (136).

From bone remodeling perspective, it is evidenced that several

lncRNAs could regulate osteoblast and osteoclast activities, and
Frontiers in Immunology 09
there are attempts to modulate lncRNAs expression in vivo via

various strategies (137). Therefore, it is of interest to ask whether

aberrant subchondral bone remodeling in OA is associated with

lncRNAs dysregulation. By comparing subchondral bone

samples collected from hip and knee, Tuerlings and colleagues

identified 21 lncRNAs differentially expressed between preserved

and lesioned OA subchondral bone significantly. It is interesting

to note that a further stratified analysis identified 15 lncRNAs

were differentially expressed in knee samples but none in hip

samples (122). These findings prompt to further research

questions. 1) Whether lncRNAs differential expression in OA

subchondral bone is site-specific and associated with aberrant

mechanical loading? 2) What are the biological functions of

these lncRNAs in OA subchondral bone remodeling? Further

investigation on the effects of lncRNAs on osteoblasts,

osteoclasts and osteocytes functions related to subchondral

bone mineralization and remodeling is warranted to develop a

more comprehensive understanding of the lncRNAs and their

roles and therapeutic values in OA.
lncRNAs in Meniscus

Meniscus is a crucial tissue for supporting the structure,

stability, and biomechanical function of the knee joint (138).

During OA progression, it undergoes various histopathological

changes, including tears, calcification, and atypical cell

arrangement (139). Till now, there is limited studies exploring

the mechanism of meniscal pathogenesis in OA, and only two

studies were found to investigate the expression level of lncRNAs

in OA meniscus tissues. The work by Brophy and colleagues

depicted the transcriptome profile in the meniscus between end

stage OA patients and patients undergoing arthroscopic partial

meniscectomy with no evidence of OA. The subjects in the OA

groupwere older and hadhigher BMI. Twenty-six and 10 lncRNAs

were found up- and down-regulated in the OA group, respectively.

Lnc-RPL19-1 and lnc-ICOSLG-5 were highlighted because of their

correlations with some cartilage disease related genes. qPCR was

performed to validate the microarray results (140). Recently, Jiang

and colleagues performed a whole-transcriptome profile of

lncRNAs dysregulation using isolated meniscus cells from OA

patients with and without IL-1b, suggesting a potential crosslink

between menisci and cartilage during OA. Of note, LCN2 and

RAB27B were consistently upregulated in both OA meniscus and

IL-1b treated primary meniscus cells derived from three OA

meniscus samples, and appears to be associated with OA severity

(123). Although different samples were used in the analysis, these

twoworks both illustrated the potential link between inflammatory

phenotype inmeniscus and lncRNAs, which is subjected to further

investigation to confirm the molecular mechanisms and biological

functions of these lncRNAs in OA meniscus injury.
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Clinical biomarkers of lncRNAs for
OA diagnosis

In general, the secretion and transport of lncRNAs into

extracellular environment are mediated by three manners (1):

Direct release of extracellular RNAs by joint tissues and cells (2).

Encapsulated in high density lipoprotein (HDL) or apoptosis

bodies or associated with protein complexes (3). Packed in

membrane vesicles, such as exosomes and micro-vesicles

(141). In clinical research, serum and synovial fluid are often

the preferred biological fluid samples for OA biomarker

discovery (142). Recent detections of the extracellular lncRNAs

in these biological fluids of OA subjects implicate that they

might serve as alternative indicators for OA onset and

progression (Table 2).
Circulation

Previous studies have shown that there is a relationship

between the blood level of lncRNAs and OA progression
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(Table 2). For instance, lncRNA DILC (145), and lncRNA

FER1L4 (146) were also found to be closely associated with

OA inflammatory condition in plasma. As ANCR is known to

regulate TGF-b signaling, Li and colleagues proposed that the

plasma levels of TGF-b1 and ANCR could differentiate OA

patients from healthy control subjects. They found a higher

TGF-b1 and a lower ANCR level in OA plasma (N=62) when

compared with that of healthy controls (N=46), which was

inversely correlated. The mean area under curve (AUC) for

OA plasma TGF-b1 and ANCR were 0.8929 and 0.8845,

respectively (147). However, it is not shown if combination of

plasma TGF-b1 and ANCR could enhance the sensitivity and

specificity. Zhou et al. indicated that the expression of lncRNA

H19 was negatively correlated with bone metabolic index of OA

patients, such as Procollagen I N-Terminal Propeptide (PINP),

N-MID-Osteocalcin, bone Gla protein (BGP), and bone alkaline

phosphatase (BALP). Particularly, lncRNA H19 is highly

correlated with K-L grading, VAS, WOMAC and Lysholm

scores, suggesting H19 was associated with disease severity in

OA patients (144). These two biomarkers discovery studies show

encouraging AUC value, however, discussion on confounding

factors and validation with separate cohort were missing.
TABLE 2 LncRNAs as biomarkers for OA diagnosis.

LncRNA Human Samples Expression in
OA

Sample size(Health vs
OA)

AUC Correlation References

ATB Serum Downregulated 76 vs 98 0.8902 No significant association with the
clinical data

(143)

H19 Peripheral Blood Upregulated 100 vs 103 0.891 K-L grading, and Bone metabolism
indexes

(144)

DILC Plasma Downregulated 52 vs 87 0.9321 IL-6 (145)

Synovial Fluid Downregulated 14 vs 22 – –

FER1L4 Plasma Downregulated 49 vs 81 0.9221 IL-6 (146)

Synovial Fluid Downregulated 16 vs 19 –

ANCR Plasma Downregulated 62 vs 46 0.8845 TGF‐b1 (147)

MIR4435-
2HG

Plasma Downregulated 58 vs 78 – – (148)

Synovial Fluid Downregulated 0.96

LUADT1 Synovial Fluid Downregulated 60 vs 60 – – (149)

CAIF Synovial Fluid Downregulated 60 vs 60 0.89 miR1246 and IL-6 (150)

PMS2L2 Synovial Fluid Downregulated 62 vs 62 – OA stages (151)

HOTAIR Synovial Fluid Upregulated 13 vs 21 – – (152)

CASC2 Synovial Fluid Upregulated 60 vs 60 – miR93-5p (153)

CTBP1-AS2 Synovial Fluid Upregulated 62 vs 62 – miR130a (154)

GAS5 Synovial Fluid Downregulated 45 vs 45 – – (155)

Synovial Fluid Downregulated 62 vs 62 – – (34)

Peripheral Blood Mononuclear
Cells

Downregulated 60 vs 67 – – (156)

LINC00167 Peripheral Blood Leukocytes Downregulated 60 vs 60 0.879 No significant association with the
clinical data

(157)

PVT1 Serum/Serum Exosomes Upregulated 30 vs 30 – miR93-5p (158)

Synovial Fluid Upregulated 62 vs 62 – – (34)

PCGEM1 Synovial Fluid Exosomes Upregulated 20 vs 42 0.879 OA Stages, and WOMAC Index (159)
fr
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Synovial fluid

Based on current findings, it is reasonable to speculate that the

expression of lncRNAs is cell and tissue specific in OA joint.

Therefore, the information from research on synovial fluid is

likely to provide additional clues on the clinical values of lncRNAs

as OA biomarkers. Qi and colleagues showed lower levels of CAIF

in the synovial fluid collected from the hip and knee of OA

patients, and CAIF was inversely and significantly correlated with

IL-6 expression level (150). Meanwhile, Xiao and colleagues

reported lower levels of lncRNA MIR4436-2HG in both plasma

and synovial fluid of OA patients. The mean AUC for CAIF and

MIR-4435-2HG were found to be 0.89 and 0.96, respectively. It is

interesting to note that 1 or 3 months treatment including

exercise, prescription of non-steroidal anti-inflammatory drugs

(NSAIDs) and joint burden reduction seems to increase the

plasma level of MIR-4435-2HG (148). Although the study

design, the details of these treatment and the compliance were

not mentioned, this preliminary result suggests that lncRNAs level

in circulation could be modulated. In these studies, healthy

volunteers were recruited as control group for the collection of

synovial fluid. If the collections of synovial fluid from mild to

moderate stages are also ethically feasible, it will be of clinical

interest to determine the correlations between lncRNAs level in

synovial fluid and OA severity and progression in order to explore

the prognostic value of those selected lncRNAs.

Others

LncRNAs in cells/extracellular carriers within the blood and

synovial fluid are another sources of biomarker candidates (160).

The expression profile of lncRNAs in peripheral blood

leukocytes of OA patients showed that LINC00167 may serve

as a potential early diagnosis marker for OA in clinical practice

(157). In addition, lncRNA GAS5 in the peripheral blood

mononuclear cells isolated from the knee of OA patients was

also lower than that of healthy subjects, indicating a novel

marker for occurrence and progression of OA (156). The first

study of IncRNA profiles in human OA synovial exosomes by

Wu et al. found that exosomal lncRNA PCGEM1 is a potential

indicator to distinguish the early stage of OA from the late-stage.

Moreover, the expression of lncRNA PCGEM1 in synovial

exosome rather than that in plasma was found to be closely

associated with the WOMAC Index (159).
Biological functions of lncRNAs in
OA pathogenesis

lncRNA H19

H19 lncRNA is located on chromosome 11p15.5, and its

transcription product, H19 RNA, primarily resides in cytoplasm
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(161). It is the first reported mammalian lncRNA (162), which is

highly expressed during fetal stage but markedly down-regulated

after birth. H19 was found to be upregulated in OA cartilage, and

appears to be associated with the disease progression (26, 163,

164). In primary human chondrocytes, H19 and H19-derived

miR675 increased the matrix production of differentiated

chondrocytes via activating COL2 transcription (165).

Furthermore, H19 could regulate the proliferation and apoptosis

of chondrocytes treated by IL-1b via sponging miR106a-5p (27).

Meanwhile, lncRNA H19 upregulated IL-38, which is bound to

IL- 36R and brought about suppression of knee joint

inflammation in mouse chondrocytes (28). Inconsistent

outcomes were observed in different in vitro models and upon

different stimulations. Knockdown of lncRNA H19 could alleviate

apoptosis and inflammatory response via sponging miR130a in

LPS-stimulated human C28/I2 chondrocytea (166). Furthermore,

the effect of H19 silencing suppressed the expression of matrix

metalloproteinases (MMPs) family (MMP1 and MMP3) via

targeting miR-140-5p in human HC-A chondrocyte cells ,

suggesting a protective role of H19 on the degradation of the

chondrocyte extracellular matrix (29). Besides OA chondrocyte,

H19 RNA level in OA synovial tissue was also found to be

significantly higher those that in synovium of normal and

trauma joint (30). However, there is a lack of strong evidence

supporting that H19 RNA upregulation is a sign of inflammation

of synovial FLSs nor polarization of synovial macrophages (167).

Notably, rats FLS-derived exosomal lncRNA H19 was found to

promote chondrocyte viability and migration, as well as inhibit

ECM degradation in IL-1b-induced chondrocytes by targeting

miR106b-5p expression (168). Altogether, these studies suggest

that lncRNA H19 may play an essential role in the crosstalk

between synovium and cartilage during OA progression, and

H19-targeted therapy is expected to open new perspectives for

OA management.
lncRNA GAS5

The growth arrest-specific 5 (GAS5) lncRNA is located on

chromosome 1q25.1 and consists of 12 exons with a short open

reading frame (ORF) (169). Its name reflects its nature and

predominant expression in growth-arrested cells (170). As such,

GAS5 is mainly responsible for suppressing multiple anti-

apoptotic genes, thereby enhancing the vulnerability of cells to

pro-apoptotic signals (171). In OA cartilage, GAS5 was found to

be upregulated with positive correlation pattern to the disease

stages (172, 173). Overexpression of GAS5 was reported to

increase the activity level of chondrocyte catabolism (several

MMPs), and apoptosis (31). Meanwhile, GAS5 can serve as

negative regulators for miR21 (31), miR34a (32), miR137 (33),

miR144 (173) and miR27a (174). It is also evidenced that GAS5

could directly target KLF2 to alleviate LPS-induced

inflammatory damage in murine chondrocytic ATDC5 cell
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line (175). On the contrary, the expression levels of GAS5 in

synovial fluid and tissues were significantly lower in OA (34,

155), which possibly implicate different functions of GAS5 in

OA synovium. Considering the small sample size (N=45) and a

lack of in vivo functional analysis, future study is required to

evaluate the function of GAS5 in OA synovium by including a

clinical study with a larger sample size and experiments with

appropriate animal models.
lncRNA MALAT1

Metastasis-associated lung adenocarcinoma transcript 1

(MALAT1), also known as NEAT2 for nuclear-enriched

abundant transcript 2, is transcribed by RNA polymerase II at

human chromosome 11q13 (176). It is a highly abundant nuclear

transcript localized to the nuclear speckles and have a longer half-

life (9–12 h) than other lncRNAs owing to bipartite triple helix

structure (177, 178). MALAT1 is upregulated in human OA

cartilage and IL-1b-induced chondrocyte cells (35).

Overexpression of MALAT1 in human chondrocytes inhibited

cells viability and promoted cartilage ECM degradation through

targeting miR145 (35). Also, lncRNA MALAT1 overexpression in

human C28/I2 chondrocyte cells was proved to promote

chondrocyte migration, inflammation suppression, and ECM

degradation (179). Besides, MALAT1 could act as sponges for

other miRNAs, like miR127-5p (36), miR150-5p (180) and

miR146a (181), thus likely to play some regulatory roles in OA

cartilage. It should be noted that lower level of MALAT1 was also

reported in IL-1b stimulated rat chondrocytes, which enhanced cell

proliferation and type II collagen (Col II) expression by blocking

JNK signaling activation (182). In synovium, the synovial fibroblasts

isolated from OA patients had a higher expression of MALAT1

compared with that of normal subjects, which could be owing to

proinflammatory challenge in synoviocytes especially to IL-6 and

CXCL-8 (37). It is worth mentioning that MALAT1 is the first

lncRNA to be investigated in OA subchondral bone. Higher

expression level of MALAT1 was reported in both knee and hip

subchondral bone of patients with OA, and its expression in the

osteoblasts appears to be associated with the production of

inflammatory prostacyclins. Since the subchondral bone is

considered to be an important site of OA pain, MALAT1 may

play an important role in the development of OA bone pain and

inflammation (38). Based on current evidence, it appears that

MALTA1 plays more pro-inflammatory role in OA synovial and

subchondral bone, which represents a potential candidate for

research on OA pathogenesis and therapeutic target.
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lncRNA XIST

X-inactive specific transcript (XIST) encodes a 17-kb

lncRNA which, despite being capped, spl iced and

polyadenylated, it is retained in the nucleus (183). lncRNA

XIST and its associated chromatin modifying complex play

vital roles in the regulation of the X-chromosome inactivation

process (184). Emerging evidence indicates that it is correlated

with the modification of ECM component of OA (185). XIST

was upregulated in OA cartilage and promoted MMP-13 and

ADAMTS-5 expression in human chondrocytes, indicating its

role in ECM degradation through functioning as a ceRNA of

miR1277-5p (186). Notably, the consistency results could be

seen in the studies of XIST in terms of repressing the

development of OA as indicated by different models. For

instance, in IL-1b induced human C28/I2 chondrocyte cells,

the knockdown of XIST expression suppressed the production of

IL-6, TNF-a, PGE2 and NO through the interaction with

miR130a (187). XIST regulated IL-1b-induced chondrocyte

growth, apoptosis and ECM synthesis through sponging with

miR-142-5p in human chondrosarcoma cell line SW1353 (188).

Moreover, the silencing of XIST could promote cell viability but

inhibit cell apoptosis through acting as a sponge for miR149-5p

in human CHON-001 chondrocyte cell line (39). In addition,

XIST expression was significantly upregulated in the OA

synovium compared with that in normal synovium. More

importantly, XIST/miR376c‐5p/OPN axis has been proven to

modulate the inflammatory microenvironment in OA synovial

macrophage, subsequently affecting chondrocyte apoptosis and

ECM degradation (42).
lncRNA HOTAIR

HOX transcript antisense RNA (HOTAIR) resides within

the intergenic region in HOXC cluster on chromosome 12, and

acts as a crucial modulator of chromatin re-modeling and

transcriptional silencing (189). As an epigenetic agent,

HOTAIR can interact with various factors, leading to genomic

stability, proliferation, survival, invasion, migration, metastasis,

and drug resistance (190). In OA cartilage, HORAIR was

upregulated than that of normal samples (164). HOTAIR was

reported as a promising promoter for ADAMTS-5 expression

and ECM degradation in human OA articular chondrocytes

(47). HOTAIR silencing reduced cartilage tissue damage in OA

mice, and promoted the expression of collagen II and aggrecan

in cartilage tissue, while inhibited the expression of MMP-13

and ADAMTS-5 by targeting miR-20b/PTEN axis in mouse
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primary chondrocytes (191). Interestingly, cumulative evidence

shows that Wnt/b-catenin pathway might play a certain role in

the pathogenesis of cartilage damage, and lncRNA HOTAIR

could directly bind to miR17-5p and indirectly regulate FUT2/b-
catenin axis in connection with OA progression, such as ECM

degradation and cell apoptosis (48). Wnt inhibitory factor 1

(WIF-1), a key inhibitor of the Wnt/b-catenin pathway, could be

directly modulated by HOTAIR and interfered with the

activation of downstream pathway and relative genes

expression on cartilage degradation in human chondrosarcoma

cell line SW1353 (49). Overexpression of HOTAIR in human

CHON-001 chondrocyte cell line could aggravate LPS-induced

cell apoptosis and inflammatory cytokines influx, including IL-

1b, IL-6, IL-8 and TNF-a. While blocking HOTAIR could

suppress cleavage of caspase-3 and p62 proteins and elevated

secretion of IL-6 and TNF-a via suppression of miR222-3p (43).

Meanwhile, HOTAIR inhibited chondrocytes proliferation via

sponging with other miRNAs, including miR130a-3p (44),

miR1277-5p (45), miR107 (46), and miR221 (192). Therefore,

all HOTAIR-related factors form a comprehensive regulatory

network, suggesting the central role of HOTAIR in the

physiology of chondrocytes during OA (130).

Collectively, the identification of disease-specific lncRNAs

for OA pathophysiology, including H19, GAS5, MALAT1, XIST,
Frontiers in Immunology 13
HOTAIR and future identified lncRNAs, emphasized the general

consistency of lncRNAs functions in various tissues, which

might be further developed as lncRNAs-targeted therapies for

OA treatment in the future.
Targeting lncRNAs: A novel
treatment strategy for OA?

Based on current evidence, it is worthwhile to explore if

targeting lncRNAs could be a novel strategy for preventing and/

or treating OA. Till now, according to clinical trials registries

(clincialtrials.gov), there is only one registered clinical trial

studying the role of lncRNAs as biomarkers for OA articular

microenvironment. Without relevant clinical studies can be

included for discussion, we attempted to propose strategies

developed for lncRNA delivery and targeting with reference to

published animal studies (Figure 2).

Extracellular vesicles hold some promise to be a vehicle for

selective delivery of target genes into tissues of interest (193). In

animal study, intra-articular injection of exosomes with

overexpressed lncRNA H19 is found to promote cartilage

repair and restore OA joint homeostasis (194). Liu and

colleagues highlighted the possible mechanism for OA therapy
B

A

FIGURE 2

Potential delivery strategies for lncRNA H19 is proposed in OA treatment. (A) Nanotechnology and lncRNA-loaded exosomes could overcome
the low efficiency of in vivo transgene lncRNA transfection, which would be applicable for widespread clinical application of gene therapy
targeting lncRNAs. (B) Various transgene technologies may benefit lncRNA overexpression or downregulations in vivo studies, which opened a
new door in studying the delivery of genetic material for OA treatment.
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by cellular delivery of exosomal lncRNA KLF3-AS1, which could

facilitate cartilage repair by promoting chondrocyte proliferation

and migration and inhibiting apoptosis (195). Zhang and

colleagues also reported that targeting lncRNA NEAT1

through artificial exosomes could be one of the options to

elevate chondrocyte proliferation for OA treatment (196). Pan

and colleagues confirmed the effect of MALAT1 on

chondrocytes, which exhibited a slight cartilage damage and a

smooth surface after intra-articular injection of LAMAT1

extracellular vesicles in OA animal model (179). In addition,

the use of nanoparticles as an effective delivery vehicle for

targeting lncRNAs provides a new therapeutic strategy owing

to improved stability, biocompatibility, and high-dose

therapeutic payloads (197). Recent advancement in lipid

nanoparticles, polymeric nanocarrier and metal-based delivery

system provides novel approaches for delivering of nucleic acids

and lncRNAs-based therapeutic agents (198–200). At the time of

writing, although nanoparticle delivery strategies for targeting

lncRNAs in OA field has not been reported, therapeutic carriers,

exosomes and nanomaterials pose enormous potential as

vehicles loading gene-editing systems for OA treatment.

Considering upregulation of lncRNAs in OA pathogenesis

appears to be the most common aberrant change, it is reasonable

to propose approaches which can inhibit their expression or

activity. Short interfering RNAs (siRNAs) is currently one of the

in vivo feasible methods that has been shown to alleviate joint

inflammation and decrease the expression of pro-inflammatory

mediators by targeting lncRNA PVT1 in OA mice (201). Other

in vivo approaches to regulate lncRNAs expression, such as

locked nucleic acids (LNA) and ASOs have been shown to be

effective to inhibit cancer progression (202, 203), which is

pending for testing in OA animal models. Gene-editing

enzymatic systems, such as zinc finger nucleases (ZFNs) and

clustered regularly interspaced short palindromic repeats

(CRISPR), are known far superior to RNAi technique for

lncRNAs knockdown (204). Recently, some small molecule

inhibitors are identified to systematically target lncRNA

expression by masking the binding sites or disrupting the

RNA structure (205).
Conclusions and future direction

Increasing evidence indicates that lncRNAs are playing

certain important roles associated with the pathological

changes of OA joints through diverse actions on various joint

components, which is exemplified by lncRNAs H19, GAS5,

MALAT1, XIST and HOTAIR in this review.

The roles of lncRNAs have been mainly investigated with

OA cartilage tissues and chondrocytes, and found to participate
Frontiers in Immunology 14
in the regulation of cartilage metabolism and chondrocyte

function as a miRNA sponge regulating target genes

expression. However, this kind of action and post-

transcriptional regulation on target genes/proteins might not

represent the whole picture of lncRNAs function in the context

of OA. In addition, it should be admitted that the diverse

methods employed in previous studies for lncRNA expression

and functional analyses, such as the source of the testing cells,

experimental procedures and even stimulation approaches,

might lead to inconsistent findings.

In addition, the following questions remain elusive (1): the

cause of lncRNAs dysregulation in the onset, development and

progression of OA is still unclear. Whether the inflammation,

hypoxia (26) or mechanical stress (206) are the major upstream

factors leading to the aberrant expression of lncRNAs (2).

Numerous miRNAs or proteins are reported to be downstream

targets of lncRNAs, but their roles in line with lncRNAs

dysfunction in OA pathogenesis remains largely unclear (3). In

view of the diverse biological functions of lncRNAs, it is uncertain

whether the effect of lncRNAs on the development and

progression of OA is tissue- and/or cell-specific.

In view of the association with OA phenotypes, the clinical

value of lncRNAs as biomarkers for disease severity and

prognostication also draws much attention. However, it should

be admitted that this kind of preliminary findings need to be

validated further. It will be desired to (1) develop a standardized

lncRNAs testing system, including sample preparation,

extraction, selection of appropriate endogenous controls (2);

other statistical approaches such as predictive value, likelihood

ratio, odd ratio and so on subjecting to the purpose of the

biomarkers under investigation (3); conduct a multi-center

study with a larger sample size to eliminate discrepancy such

as ethnicity and sampling bias (4); perform a longitudinal study

to validate lncRNAs as biomarkers for OA.

It appears that the modulation of the expression and activity

of IncRNAs might be a novel strategy for OA management.

Despite therapeutic nuclei acids hav been reported in OA

treatment, several technical concerns including mechanism of

action and an effective and specific delivery approach are not fully

understood nor developed for OA application. Furthermore, the

clinical application of lncRNAs-based therapy requires more

stringent and robust investigation particularly safety issues

including immunogenicity, cytotoxicity and long-term safety

profile (207). In addition, the specificity of targeting lncRNAs is

very important, and further studies are needed to avoid off-target

side effects. Last but not least, a suitable target lncRNAs would

lead to a more effective approach for OA treatment, and the focus

of disease-specific lncRNAs described herein might draw some

attention collaterally as the fields of gene-delivery and editing

therapy develop.
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