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Recently microRNAs (miRNAs) have been recognized as powerful regulators of many
genes and pathways involved in the pathogenesis of inflammatory diseases including
Systemic Lupus Erythematosus (SLE). SLE is an autoimmune disease characterized by
production of various autoantibodies, inflammatory immune cells, and dysregulation of
epigenetic changes. Several candidate miRNAs regulating inflammation and
autoimmunity in SLE are described. In this study, we found significant increases in the
expression of miR21, miR25, and miR186 in peripheral blood mononuclear cells (PBMCs)
of SLE patients compared to healthy controls. However, miR146a was significantly
decreased in SLE patients compared to healthy controls and was negatively correlated
with plasma estradiol levels and with SLE disease activity scores (SLEDAI). We also found
that protein levels of IL-12 and IL-21 were significantly increased in SLE patients as
compared to healthy controls. Further, our data shows that protein levels of IL-12 were
positively correlated with miR21 expression and protein levels of IL-21 positively
correlated with miR25 and miR186 expression in SLE patients. In addition, we found
that levels of miR21, miR25, and miR186 positively correlated with SLEDAI and miR146a
was negatively correlated in SLE patients. Thus, our data shows a dynamic interplay
between disease pathogenesis and miRNA expression. This study has translational
potential and may identify novel therapeutic targets in patients with SLE.

Keywords: microRNAs, estradiol, systemic lupus erythematosus, cytokines/chemokines, inflammation
INTRODUCTION

Systemic lupus erythematosus (SLE) is an autoimmune disease associated with pathogenic
autoantibodies. Genetic predisposition and epigenetic changes/regulation play a significant role in
diseasepathogenesis in addition to ahost of other factors (e.g., gender, hormonal, environmental). Failure
to maintain immune tolerance and epigenetic homeostasis may lead to aberrant and/or dysregulated
org April 2022 | Volume 13 | Article 8481491
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gene expression that can result in loss of immune tolerance,
inflammation and development of systemic autoimmunity.

Recent studies have provided further evidence that
microRNAs contribute to inflammation in lupus pathogenesis
(1–5). MicroRNAs (miRNAs) are small single-stranded (18-25
nucleotides), non-protein-coding RNA molecules that modulate
gene expression at the post-transcriptional level. Indeed,
recently, miRNAs have emerged as powerful regulators of
many genes and pathways involved in the pathogenesis
of inflammatory diseases (6–12). The precise role and targets
of miRNAs, including their influence on disease pathogenesis,
are poorly understood. Dysregulated expression of miRNAs has
been reported in SLE patients (10, 13–16). Under-expression of
certain miRNAs has been shown to be negatively correlated with
SLE disease activity (SLEDAI) and IFN scores (14, 17, 18).

In this study, specificmiRNAswere chosen based on literature,
their expression pattern, and probable role in lupus pathogenesis.
Since miRNAs are involved in many biological functions
including inflammation and abnormal expression of some
miRNAs is associated with SLE, we examined whether miR21,
miR25, miR146a, andmiR186 expression profiles in SLE patients’
PBMCs are different from those in healthy controls. The aimof the
manuscript is to determine specificmiRNAs role and relationship
with estradiol, pro-inflammatory cytokines, and disease activity in
SLE patients. Recent evidence also suggests that estrogens may
contribute to gender bias in SLE by modulating selected miRNAs
expression (19–21). Thus, miRNAs play important roles in the
pathogenesis of SLE, and estrogens may regulate these miRNAs
and their functions. However, an intricate balance/interaction
between miRNAs and disease pathogenesis and SLE disease
activity are beginning to be explored and not yet completely
clear. Moreover, how pro-inflammatory cytokines and miRNAs
are interconnected is not fully understood. In this translational
study, we provide novel insights regarding candidatemiRNAs and
their interaction and mechanistic correlation with sex hormones
(17b-estradiol), pro-inflammatory cytokines, and SLEDAI in SLE
patients, and compare the data with healthy controls. Our data
shows a dynamic interplay between SLE disease pathogenesis and
miRNA expression and pro-inflammatory cytokines.
Frontiers in Immunology | www.frontiersin.org 2
MATERIALS AND METHODS

Subjects
We enrolled 20 subjects who were 23 years or older (23-66 years of
age) and fulfilled the American College of Rheumatology revised
criteria for the classification of SLE (22, 23) and 8 healthy donors
with no history of autoimmune disease. Subjects’ characteristics,
including age, sex, clinical parameters, medications and SLEDAI
score, are shown in Table 1. Patients’ inclusion and exclusion
criteria were described earlier (24, 25). In brief, only patients with
stable disease activity [SLEDAI <6 and not >6 for the past 2 visits
using immunosuppressive drugs, such as glucocorticoids and
mycophenolate (1-2 g/day), at stable doses for the past two
months, and daily prednisone doses not to exceed 10-15 mg/day]
were recruited for the study. SLE disease activity index (SLEDAI)
was recorded as described (26). The study was approved by the
Institutional Review Board of the University of California Los
Angeles.Written informedconsentwasobtained fromeachsubject
who participated in the study.

Cell Isolation and Preparation
Peripheral blood mononuclear cells (PBMCs) were isolated on a
density gradient (Histopaque-1077, Sigma-Aldrich, St. Louis,
MO, USA) from blood samples of SLE patients and healthy
volunteers as described earlier (24, 25, 27).

Measurement of Estradiol and Cytokines
17b-estradiol and cytokines were analyzed from the plasma of SLE
patients as described earlier (24, 25). For estradiol and cytokines
measurement, we obtained control and SLE plasma samples from
the UCLA Rheumatology Biobank. Human IL-12 and IL-21 were
measured using an ELISA kit fromBioLegend (SanDiego, CA, USA).
Estradiol levels were measured in plasma by commercial ELISA
(CalbiotechInc., SpringValley,CA)aspermanufacturer’s instructions.

RNA Isolation, miRNA Expression, and
Real-Time PCR Analyses
RNA was isolated from PBMCs with TRIzol (Invitrogen Inc.,
Carlsbad, CA). Candidate miRNAs were analyzed using real-time
TABLE 1 | Healthy Controls and SLE Patient Demographics, Clinical Parameters, Medications and Disease Characteristics Including SLEDAI Score.

Subjects Mean
Age
(SD)

Gender (%) Ethnicity (%) ESR
(SD)

CRP
(SD)

ANA Anti-
dsDNA
Ab (SD)

SLEDAI
(SD)

Medications

SLE 38
(13.54)

Female (75%)
Male (25%)

Asian (10%)
Hispanic (25%)
White (65%)

25.77
(26.1)

10.60
(8.62)

11/20
+ve

429.28
(188.33)

6.26
(4.96)

Prednisone, hydroxychloroquine,
methotrexate, plaquenil, cellcept,
protonix, calcium, Vitamin C, Imuran,
folic acid, Vitamin D, Topomax, Colace,
Atenolol, Ranitidine (mycophenolate
mofetil), fish oil, furosemide

Healthy
Controls

30
(6.13)

Female (50%)
Male (50%)

Asian (25%)
Hispanic (25%)
White (50%)

ND ND ND ND ND No medications
Apr
Data are presented as medians, means (SD) or number (%) as indicated. Age range was between 23-66 years, ESR (Erythrocyte sedimentation rate) range was 1-93. CRP (C-reactive
protein) range was in between 0.5-16.4. ANA (Anti-nuclear antibody) was positive in 11 patients out of 20 patients, 4 had < 1:40 ANA. Anti-dsDNA Ab (Anti-double strand DNA Ab) range
was between 202-656. SLEDAI (SLE disease activity index) range was between 1-16. ND (Not done). Medications listed are for all patients combined. Healthy controls had no medications
at the time of blood draw.
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PCR performed as described earlier (28–32). For miRNA analyses,
total RNA was first converted to cDNA using SuperScript™ III
First-Strand Synthesis System (Invitrogen) using oligo-dT primer.
PCR was then performed with converted cDNA as per
manufacturer’s protocol using TaqMan technology on an ABI
Prism 7900 HT Sequence Detection System (Applied Biosystems,
Foster City, CA, USA). For quantitation, a standard curve was
constructed for each primer and probe set. All of the samples were
run in either duplicate or triplicate. miR21, miR25, miR146a,
miR186, and RNU48 (small nucleolar control RNA) primers and
probes were obtained from Applied Biosystems (Foster City, CA,
USA). Values were normalized to RNU48.

Statistical Analyses
Data was analyzed using Prism 4.0 (GraphPad Software, San
Diego, CA). Comparisons between two groups were performed
using unpaired one- or two-tailed Student’s t test. A Shapiro-
Wilk normality test was performed to confirm normality of the
data, and if the data did not pass the Shapiro-Wilk test, a two-
tailed Mann-Whitney test was applied for data analyses. Linear
regression analysis (Spearman/Pearson) was performed to
correlate miRNAs, SLEDAI, 17b-estradiol levels, IL-12p40
expression levels, and IL-17 or IL-21 protein levels. Results are
expressed as mean ± SEM. p<0.05 was considered significant.
RESULTS

Pro-Inflammatory miRNAs, miR21, miR-25,
and miR-186 Were Significantly Increased
in Lupus Patients’ PBMCs Compared to
Healthy Controls; Anti-Inflammatory
miR146a Was Significantly Decreased in
SLE Patients Compared to Healthy Controls
Since miRNAs are involved in many biological functions including
inflammation and abnormal expression of some miRNAs is
Frontiers in Immunology | www.frontiersin.org 3
associated with SLE, we examined whether miR21, miR25,
miR146a, and miR186 expression profiles in SLE patients’ PBMCs
are different from those in healthy controls. Peripheral blood
mononuclear cells (PBMC; 1-2 x106 cells) from SLE patients and
healthy controls were collected, cells were lysed, RNA isolated, and
real-time PCR performed with specific human primers and probes
(Applied Biosystems, Foster City, CA, USA). We found that SLE
patients have significantly higher levels (3-6-folds) of miR21, miR25
andmiR186 compared to healthy controls (Figures 1A–C). We also
found that miR146a levels were significantly decreased in SLE
patients compared to healthy controls (Figure 1D). These data
suggest that SLE patients have a significantly higher pro-
inflammatory miRNA signature and reduced anti-inflammatory
miRNAs compared to healthy controls.

Expression of Pro-Inflammatory miRNAs
Were Positively Correlated With SLE
Disease Activity Index (SLEDAI) of
SLE Patients; Anti-Inflammatory miR146a
Is Negatively Correlated With SLEDAI
Score in SLE Patients
To better understand the relationship between miRNAs, disease
pathogenesis, and SLEDAI score in SLE patients, we measured
SLEDAI and analyzed the candidate miRNAs in those SLE
patients. We found that expression levels of pro-inflammatory
miRNAs (miR21, miR25, miR186) were positively correlated
with SLEDAI score (Figures 2A–C). In this study, we also found
that miR146a levels were negatively correlated with SLEDAI
(Figure 2D). These data clearly suggest that candidate miRNAs
play a significant role in SLE pathogenesis.

Pro-Inflammatory Cytokine (IL-12 and
IL-21) Levels Were Significantly Increased
in SLE Patients
Since previous clinical studies demonstrated the role of IL-12 and
IL-21 in inflammation, we investigated to see whether IL-12 and
A C DB

FIGURE 1 | Pro-inflammatory miRNAs (miR21, miR25 and miR186) were significantly increased in lupus patients’ PBMCs compared to healthy controls. Anti-
inflammatory miR146a was significantly decreased in SLE patients compared to healthy controls. Peripheral blood mononuclear cells (PBMC) (1-2 x106 cells) were
isolated from healthy controls (n=4-13) and SLE patients (n=8-20) and RNA was isolated. 100 ng of RNA was used for cDNA synthesis and for real-time PCR
analysis with specific primer and probes of (A) miR21, (B) miR25, (C) miR186, and (D) miR146a. Primers and probes were obtained from Applied Biosystems. PCR
reactions were performed on an ABI Prism 7900 HT Sequence Detection System (Applied Biosystems, Foster City, CA, USA) using TaqMan technology. All samples
were run in duplicates. All values were normalized to those of RNU48 levels. Mann-Whitney two-tailed t-test was applied. *p < 0.05, **p < 0.001.
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IL-21 protein levels were increased in SLE patients as compared to
healthy controls in our cohort. Plasma level of IL-12 and IL-21 were
measured by ELISA. Indeed, our data demonstrate significantly
increased protein level of IL-12 and IL-21 in SLE patients
(Figures 3A, B). These data clearly suggest that IL-12 and IL-21
protein levels were significantly increased in SLE patients, and these
cytokines play important role in lupus pathogenesis.

Pro-Inflammatory Cytokine Levels Were
Positively Correlated With miR21, miR25,
and miR186 in SLE Patients
Recently, we reported that SLE patients have significantly increased
pro-inflammatory cytokines and chemokines (25). In addition, both
clinical and genetic studies have indicated roles for IL-17 (33, 34),
IL-12/23 (35, 36) and IL-21 (37–40) in SLE pathogenesis. We were
therefore interested to see whether pro-inflammatory cytokine
protein levels of IL-12 and IL-21 correlate with candidate pro-
inflammatory or anti-inflammatory miRNAs expression levels.
Interestingly, we found significant positive correlations between
miR21 and IL-12p40 protein levels; and with protein levels of IL-21
Frontiers in Immunology | www.frontiersin.org 4
with miR25 and miR186 (Figures 4A–C). In contrast, we found a
negative correlation between miR146a and IL-21 protein levels
(Figure 4D). These data clearly indicate that pro-inflammatory
cytokines and pro-inflammatory miRNAs were positively correlated
and anti-inflammatory miR146a was negatively correlated in SLE
patients. Thus these miRNAs play an important role in the
pathogenesis of SLE. These findings are also important for
prognostic and diagnostic analysis in SLE pathology. In addition,
we further analyzed correlations between miR21 and IL-21, miR186
and IL-12, and miR25 and IL-12, and only found positive
correlation with miR25 and IL-12 (Supplementary Figure 1).
However, we did not address the molecular mechanisms in this
study. Future detailed study will be required to pin-point the exact
mechanisms of miR25 and IL-12 interactions.

Pro-Inflammatory miRNA Expression
Levels Positively Correlated With Levels
of Estradiol in SLE Patients
Since recent evidence suggests that estrogensmay contribute to gender
bias in SLE by modulating selected miRNAs expression (20, 21),
A B

C D

FIGURE 2 | Expression levels of pro-inflammatory miRNAs were positively correlated with SLE disease activity index (SLEDAI score) of SLE patients. Anti-
inflammatory miR146a levels were negatively correlated with SLEDAI score in SLE patients. Correlation of (A) miR21 (Spearman), (B) miR25 (Spearman), (C) miR186
(Pearson), and (D) miR146a (Pearson) levels and SLEDAI score in SLE patients. SLEDAI score was calculated as described previously (26). miR21 (n=12), miR25
(n=18) expression levels were determined in SLE patients with real-time PCR. miR186 (n=10), and miR146a (n=17) expression levels were correlated (Pearson) with
SLEDAI score in those SLE patients. Linear regression analyses were performed between miRNAs and SLEDAI score in SLE patients.
April 2022 | Volume 13 | Article 848149
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A B

C D

FIGURE 4 | Pro-inflammatory cytokine levels were positively correlated with miR21, miR25, and miR186 in SLE patients. miR146a levels were negatively correlated
with pro-inflammatory cytokine IL-21. (A) Correlation (Pearson) between plasma IL-12p40 protein levels and miR21 levels. Plasma IL-12p40 protein levels were
measured in SLE patients (n=12) by ELISA and miR21 expression levels were determined in those patients with real-time RT-PCR. miR21 expression levels were
normalized to those of RNU48 control RNA. (B) Correlation (Spearman) between miR25 and IL-21 levels. Plasma IL-21 protein levels were measured in SLE patients
(n=17) and miR25 expression levels were determined with real-time RT-PCR. miR25 expression levels were normalized to those of RNU48 control RNA. (C) Correlation
(Pearson) between miR186 expression levels and IL-21 protein levels in SLE patients (n=15). (D) Negative correlation (Pearson) between miR146a expression levels and
IL-21 protein levels. (n=15). Linear regression analyses were performed between miRNAs and IL-12 or IL-21 in SLE patients. Expression levels were normalized to
RNU48 RNA levels.
A B

FIGURE 3 | Pro-inflammatory cytokine (IL-12 and IL-21) levels were significantly increased in SLE patients. Plasma level of IL-12p40 (A) and IL-21 (B) were
measured by ELISA in both healthy controls (n=16-20) and SLE patients (n=16-21). All samples were run in duplicates. A standard curve was created for each
cytokine. A Shapiro-Wilk normality test was performed to confirm normality of the data, and if the data did not pass the Shapiro-Wilk test, a two-tailed Mann-Whitney
test was applied for data analyses. **p < 0.001, ***p < 0.0001. Modified with ref # (25), Singh, RP, Hahn, BH and Bischoff, DS. Interferon Genes Are Influenced by
17b-Estradiol in SLE, Front Immunol. 2021; 12: 725325. doi: 10.3389/fimmu.2021.725325: Copyright: 2021 Frontiers Media SA.
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we measured the levels of 17b-estradiol and miRNAs in SLE
patients. Our data indicate that expression levels of miR21,
miR25, and miR186 (Figures 5A–C) were positively correlated
with plasma 17b-estradiol levels in SLE patients. However,
miR146a (Figure 5D) expression was negatively correlated
with 17b-estradiol. Earlier, we reported that 17b-estradiol
levels were significantly increased in SLE patients compared to
healthy controls (24). Thus, our data suggests that the levels of
estradiol and expression of thesemiRNAs are interrelated in SLE
patients, and their deep interaction may play an important role
in SLE pathobiology. Future investigations will be required to
address these in greater detail.
DISCUSSION

The present study was designed to identify, validate candidate
microRNAs, and to decipher their relationship with pro-
inflammatory cytokines and 17b-estradiol levels that play an
important role in SLE pathology. Recent studies indicate
Frontiers in Immunology | www.frontiersin.org 6
miRNAs have a role in SLE pathogenesis (1, 5, 41). In this
study, the specific miRNAs tested were chosen based on their
expression and probable role in lupus pathogenesis. Both T cell
and B cell-related miRNAs were described recently. B cell-related
circulating miRNAs with a potential role in differential diagnosis
and disease activity in lupus nephritis were described in SLE (42);
in addition, miRNA-mediated control of B cell responses was also
shown recently (42, 43). Several miRNAs involved in regulation of
B cells, which play an important role in lupus pathogenesis, and
other B cell hyperactivation and functions have been described
(44–50). Similarly, T cell-related miRNAs have been described
that function in inflammation and SLE (15, 51–57). We provide
evidence herein that miR21, miR25, miR186 expression levels
were significantly increased in SLE patients’ PBMCs compared to
healthy controls. In addition, we showed that the miR146a (anti-
inflammatory miRNA) expression level was significantly
decreased in SLE patients (Figure 1). We also demonstrated a
significant positive correlation between candidate miR21, miR25,
miR186 and SLEDAI score in SLE patients (Figure 2). In addition,
we showed that miR146a expression levels were negatively
A B

C D

FIGURE 5 | Pro-inflammatory miRNAs (miR21, miR25, miR186) levels positively correlated with levels of 17b-estradiol; and anti-inflammatory miR146a negatively
correlated with 17b-estradiol in SLE patients. Plasma levels of 17b-estradiol were measured in SLE patients (n=10-15) by ELISA and miR21, miR25, miR186, and
miR146a levels analyzed by real-time PCR. (A) miR21 (Pearson analysis), (B) miR25 (Pearson), and (C) miR186 (Spearman) expression levels were positively
correlated with plasma estradiol level in SLE patients; (D) miR146a expression levels which were negatively correlated (Pearson). Linear regression analyses were
performed between miRNAs and 17b-estradiol in SLE patients. Expression values were normalized to those of RNU48 control RNA.
April 2022 | Volume 13 | Article 848149
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correlated with SLEDAI score (Figure 2). Our data agrees with
other investigators that found that miR146a expression levels were
significantly decreased in lupus nephritis patients compared to
healthy controls (18, 58). Recently it was described that miR146a
targets TRAF6 (TNF Receptor-Associated Factor 6) (18). This
study postulated that miR146a reduction and TRAF6 upregulation
increased the progress of ESRD (end stage renal disease). Earlier it
was shown that miR146a suppressed NFkB activation and
subsequent cytokine production by targeting signaling adaptor
proteins, e.g., TNF receptor-associated family (TRAF)-6 and IL-1
receptor-associated kinase (IRAK)-1 (59). It was further suggested
that miR146a can inhibit type 1 interferon by targeting TLR7
(Toll-like receptor-7), STAT1 (Signal transducer and activator of
transcription 1), and RIG-1(Retinoic acid-inducible gene I)
pathways (14, 60). In agreement with our study, the study found
a reverse correlation between type 1 interferon and SLE disease
activity (14). In addition, recent meta-analyses showed that
miR146a expression is associated with SLE risk and there were
further differences in the expression of miR146a in Asian versus
Caucasian populations (61, 62). These differences in the
expression level could be due to sample size, medications and
active versus inactive disease status in SLE patients.

Further, we showed that protein level of IL-12 and IL-21 are
positively correlated with miR21, miR25, miR186 expression
levels. Our data for miR21 agreed with other investigators who
have found similar increased expression level in SLE patients (13,
58, 63–69). Previously it was shown that miR21 contributes to
DNA hypo-methylation in lupus CD4+ T cells by targeting DNA
methyltransferase 1 (13). Another study provided evidence that
miR21 positively regulates FoxP3 expression and negatively
regulates T regulatory cell (Treg) development (70). Previously,
we and others have demonstrated deficiency of FoxP3 expression
and Tregs in SLE patients (24, 71). Further it was shown that
silencing of miR21 in vivo ameliorates autoimmune
splenomegaly in lupus mice (49). Thus, miR21 plays an
important role in SLE disease pathogenesis.

In the current study, we investigated the expression levels of
miR21, miR25, and miR186 in SLE patients and the impact on pro-
inflammatory cytokines and SLE disease activity. Herein, we
showed that pro-inflammatory cytokine protein levels (IL-12p40
and IL-21) were positively correlated with miR21, miR25, and
miR186 expression levels (Figure 4) and thus play an important
role in SLE pathogenesis. Enhanced immune responses of PBMCs
with 17b-estradiol (E2) treatment and further gene array analyses
demonstrated toll-like receptor 8 (TLR8) as an E2-responsive
candidate gene (72). TLR8 expression levels are up-regulated in
vivo in SLE and in PBMCs stimulated in vitro with TLR8 agonists.
Further, it was demonstrated that estrogen-regulated STAT1
activation promotes TLR8 expression to facilitate signaling via
miR21 in SLE (73). It was also shown that treatment with
liposomal encapsulated miR21 significantly stimulated IL-12, IL-
13, and TLR8 expression and this stimulation was suppressed with
MyD88 (Myeloid differentiation primary response 88) inhibition,
which suggests a direct association with the TLR8-mediated
signaling pathways. Further it was shown that a miR21
antagonist, chloroquine, significantly reduced TLR8 expression
Frontiers in Immunology | www.frontiersin.org 7
more than by blocking miR21 alone. Collectively, these data
suggest that chloroquine may be binding to other miRNAs to
prevent TLR8 induction within endosomal compartments and that
multiple miRNAs are involved in TLR8 activation. Additionally, a
potential role for estrogen in transcriptionally modulating many
miRNAs, including miR21 has been described (74).

The potential role of miR25 and miR186 in SLE has not been
explored as extensively as that of miR21. We demonstrated in
this study that miR25 is upregulated in SLE patients compared to
healthy controls. Similar to our study, others have used next
generation sequencing and found an increased expression of
miR25 in SLE patients compared to healthy controls (75).
Further, it was shown that miR25 inhibits AMPD2 (adenosine
monophosphate deaminase 2) in peripheral blood mononuclear
cells of SLE patients (75). Over-expression of miR25 down-
regulated the protein expression of AMPD2. Additionally,
recent computational analysis identified the TNF-related
apoptosis-inducing ligand (TRAIL) Death Receptor-4 (DR4) as
a potential novel target of miR25 (76).

We also demonstrated increased expression of miR186 in SLE
patients, in agreement with others (77, 78). miR186 is predicted to
target major lupus susceptibility genes and is strongly associated
with the predisposition to SLE disease (57, 78). In addition, it was
shown that miR186 targets ROCK-1 (Rho-associated protein
kinase 1) and IGF1 (Insulin-like growth factor 1) in tumor cells
(79–81). Although, we were not able to study candidate miRNAs’
targets and geneontology (GO) analyses in relation to the estradiol/
hormone system (which will be investigated in greater detail in a
future manuscript), we have listed candidate miRNA targets and
their functions in SLE (seeTable 2) based on current literature, and
further demonstrated that four of these miRNAs are significant in
inflammation and disease pathogenesis in SLE. We also
demonstrated in this study that pro-inflammatory miRNA
(miR21, miR25, and miR186) expression levels positively
correlated with the plasma levels of 17b-estradiol in SLE patients
(Figure 5). Previously, we showed that 17b-estradiol levels were
significantly increased in SLE patients compared to healthy
controls (24). Further, we showed that anti-inflammatory
miR146a expression levels were negatively correlated with 17b-
estradiol levels. Thus, 17b-estradiol plays a dynamic role based on
candidate miRNAs’ expression levels from pro-inflammatory to
anti-inflammatorypathways andviceversa.Thus, ourdata suggests
that increased levels of pro-inflammatory miRNA together with
17b-estradiol may contribute to the female predisposition to SLE
partly due to effects on SLE-susceptible genes and on pro-
inflammatory pathway activation. In the present study, we also
showed that 17b-estradiol, miRNAs, and pro-inflammatory
cytokines are interrelated, and their deep interaction causes and
influences SLE pathogenesis (Figures 2, 4, 5).

Earlierwe showed the effect of 17b-estradiol treatmentonPBMCs
from healthy individuals and found that 17b-estradiol significantly
increased production of IL-12 (25). The role of IL-12 and the IL-23/
Th17axis has been recently demonstrated in lupus (82).Higher levels
of the IL-12p40subunit andcirculating frequenciesofTh17cellswere
found to be correlated with SLE disease activity index (SLEDAI)
including lupus nephritis (83, 84). In addition, genetic
April 2022 | Volume 13 | Article 848149
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polymorphisms within the IL-12/IL12R pathways have been
associated with SLE pathogenesis (85, 86). It was shown previously
that severalmiRNAs are influenced by the estrogen levels and female
sex hormone affected several lupus specific miRNA (21, 87–90).
Thus, pro-inflammatory cytokines and 17b-estradiol and miRNAs
are influenced by each other. The molecular interaction between
miRNAs, pro-inflammatory pathways, and 17b-estradiol in SLE
remains to be fully elucidated. Moreover, the molecular
mechanisms by which 17b-estradiol interacts with candidate
miRNAs, and pro-inflammatory cytokines in SLE are not
completely clear. Future studies to delineate the detailed molecular
mechanisms are required to address this interaction including target
genes and inflammatory pathways.
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miR21 RASGRP1 Activated T cell and increased proliferation, Reduced the Fas receptor- expressing
B cells, Negatively regulates Treg development, regulates FoxP3 expression

(13, 49, 70)
PDCD4
FoxP3

miR25 AMPD2 Adenosine monophosphate deaminase 2 (AMPD2) (75, 76)
TRAIL-DR4 TNF-related apoptosis inducing ligand (TRAIL) death receptor-4

miR146a STAT1 Negative regulator of type 1 IFN pathway (14, 60)
IRF5
IRAK1
TRAF6
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IGF1 (Insulin-like growth factor 1)
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