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Abstract

Pancreatic cancer is one of the most lethal malignancies. With the promising

prospects conveyed by immunotherapy in cancers, we aimed to construct an

immune‐related gene pairs (IRGPs) signature to predict the prognosis of

pancreatic cancer patients. We downloaded clinical and transcriptional data of

pancreatic cancer patients from The Cancer Genome Atlas data set as the

training group and GSE57495 data set as the verification group. We filtered

immune‐related transcriptional data by IMMPORT. With the assistance of

lasso penalized Cox regression, we constructed our prognostic IRGPs signature

and divided all samples into high‐/low‐risk groups by receiver operating

characteristic curve for further comparisons. The comparisons between high‐
and low‐risk groups including survival rate, multivariate, and univariate Cox

proportional‐hazards analysis, infiltration of immune cells, and Gene Set En-

richment Analysis (GSEA). Gene Ontology (GO), Kyoto Encyclopedia of Genes

and Genomes (KEGG) are facilitated to analyze the proceedings in which our

IRGPs signature may involve in. The results revealed that 18 IRGPs were

defined as our prognostic signature. The prognostic value of this IRGPs sig-

nature was verified from the GSE57495 data set. We further demonstrated the

independent prognostic value of this IRGPs signature. The contents of six

immune cells between high‐/low‐risk groups were different, which was asso-

ciated with the progression of diverse cancers. Results from GO, KEGG, and

GSEA revealed that this IRGPs signature was involved in extracellular space,

immune response, cancer pathways, cation channel, and gated channel

activities. Evidently, this IRGPs signature will provide remarkable value for the

therapy of pancreatic cancer patients.
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1 | INTRODUCTION

Pancreatic cancer (PC) is considered to be one of the
most lethal malignant tumors, and its global incidence
is expected to rise to approximately 420,000 cases by
2020, unfortunately, the 5‐year survival rate for PC
patients is less than 10%.1,2 Currently, an increasing
number of people are confronting obesity and diabetes
diseases, which are tightly correlated with the devel-
opment of PC.2 The anatomical location of the pancreas
is deep in the abdomen thus leads to the difficulty of
diagnosis at early stages. Unfortunately, surgical treat-
ment for patients with advanced PC is not feasible,
therefore, other treatment procedures including
immunotherapy, chemotherapy, and radiotherapy were
urged to be applied to PC.3

Recently, dysregulation of the immune system has
been reported to correlate with the development of
malignant tumors. Therefore, immunotherapy has
become a crucial strategy for the treatment of various of
cancers.4–6 Previous studies also implied the potential
validity to apply immunotherapy into PC patients. Per-
ipheral blood analysis revealed that the contents of
CD8+ T cells were significantly lower in PC patients
than in healthy controls and higher infiltration of
CD4+/CD8+ T cells corresponds to better survival in PC
patients.7,8 Th1 cells and Th2 cells are originated from
the differentiation of Naive CD4+ T cells, the diversion
from Th1 to Th2 cells associated with poor survival in
PC patients.9 CD226 and CD96 were reported to regulate
the functions of natural killer (NK) cells, the contents of
CD226+ and CD96+ NK cells were lower in PC patients
comparing to healthy groups. Moreover, the reduction
of CD226+ and CD96+ NK cells is correlate with tumor
histological grade and lymph node metastasis, and the
decreased percentages of CD226+ and CD96+ NK cells
could cause tumor immune escape in PC patients.10

Above all, it is considerable to apply immunotherapy
into PC patients.

To date, none has applied immune‐related genes
(IRGs) into the therapy of PC patients. To provide an
original method into the treatment of PC, we
performed bioinformatic methods to construct a
prognostic IRGPs signature. Data of PC patients were
downloaded from The Cancer Genome Atlas (TCGA)
and GEO database (GSE57495) and we further em-
ployed IMMPORT to filter the IRGs of our transcrip-
tional data. Ultimately, we constructed and validated
the prognostic value of our IRG pairs (IRGPs)
signature. Taken together, this study will facilitate the
application of immunotherapy into PC.

2 | METHODS

2.1 | Summary

This is a study based on TCGA data and GEO data to
perform construction of immune‐related prognostic
signature. The TCGA group was deemed as the training
group, and GSE57495 data set was employed for the
verification group. RNA‐seq expression data and clin-
ical data of PC patients of the two data sets were
downloaded. With the combination of Immport data-
base, we kept the immune‐related transcriptional
expression data and further utilize the data with
survival time to dig out prognostic‐relevant IRGPs.
A well‐balanced model that contains 18 IRGPs was
constructed by lasso penalized Cox regression. In the
meanwhile, we divided all samples into high‐/low‐risk
groups by the optimal cut‐off in ROC curve analysis.
This IRGPs model was validation by the overall survi-
val difference in the verification group. We also per-
formed univariate/multivariate Cox proportional‐
hazards analysis in the training group to identify our
model as an independent prognostic factor. We further
compared the infiltration of immune cells between
high‐/low‐risk groups and performed Gene Set
Enrichment Analysis (GSEA) of the two groups. Gene
Ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis were performed on DAVID
database. Expression profile, clinical relevance, and
mutational analysis of the 18 IRGPs in PC was per-
formed on GEPIA2 and cBioportal platform.

2.2 | Sources of PC patients

TCGA (https://portal.gdc.cancer.gov) PC samples, a total
of 177 samples that both contain RNA‐seq expression
data and clinical data were selected for the test group.
GEO (http://www.ncbi.nlm.nih.gov/geo/) PC samples,
GSE57495 (in GPL15048) contained 63 PC samples with
survival time, are selected as the verification group to
verify the validation of our model. All samples are
available in our study.

2.3 | Data preprocessing

When patients appear in the database more than once,
we average their expression profile data. When a target
gene matches multiple probes, we average the probes to
represent the expression level of the gene.
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2.4 | IRGs extraction

Immport (https://immport.niaid.nih.gov) was one of the
largest open repositories of human immunological data.11

We downloaded a list of 2498 IRGs from Immport. Then
we discard the immune‐unrelated genes from our tran-
scriptional data.

2.5 | Construction of the IRGPs
signature

Each IRG was paired with each other and each IRGP
(IRG pair) has a specific score. Detailly, in the pairwise
comparison by R, the output is 1 if the expression of the
first immune gene in a specific sample is more than the
following one and 0 for the reversed order. Subsequently,
we deleted the IRGPs if the score of which were 0 or 1 in
more than 80% of the samples, the remaining IRGPs were
deemed as initial candidate IRGPs. We performed log‐
rank test in our training group to obtain prognostic‐
related IRGPs (p< .0001), moreover, we performed lasso
penalized Cox regression (iteration = 1000) to obtain a
well‐balanced prognostic model by R (glmnet package).
Ultimately, the most stable model which contains 18
IRGPs was deemed as our final IRGPs signature. To
classify patients into high‐/low‐risk groups, we per-
formed time‐dependent receiver operating characteristic
(ROC) curve analysis at 1 year in the training group for
overall survival and obtained optimal cutoff. Patients
with higher risk score than the optimal cutoff will be
counted in high‐risk group, patients with lower risk score
will be counted in low‐risk group.

2.6 | Validation of the IRGPs signature

We employed R (survival package) to obtain the
Kaplan–Meier curve for comparing the overall survival
difference between high‐/low‐risk groups in TCGA and
GSE57495 PC samples. Moreover, to validate our model
to be an independent prognostic factor, we performed
univariate and multivariate Cox proportional‐hazards
analysis for the training group to assess our prognostic
model with other clinical factors.

2.7 | Comparison of the infiltration of
immune cells between high‐/low‐risk
groups

CIBERSORT (http://cibersort.stanford.edu/) has been
widely used for analyzing the cellular composition of a

tissue from its gene expression profile, especially for
analyzing the composition of immune cells in tumors.12

We compared the infiltration of 22 immune cells between
high‐/low‐risk groups in TCGA PC samples. Results of
p< .05 was regarded as statistically significant.

2.8 | GSEA

To compare the differential enrichment of gene sets
between the high‐/low‐risk groups, we employed R
(Bioconductor package fgsea) to perform GSEA and un-
cover potential biological mechanisms that our prog-
nostic model may involve in. GO gene sets
(c5.all.v7.0.symbols.gmt) in GSEA database were down-
loaded for our study. Gene sets with the results of FDR
value < 0.05 were deemed to be statistically valuable.

2.9 | GO and KEGG analysis

DAVID database is used for analyze the functions of geno-
mic statistics and further classify the data.13 We employed
DAVID to perform functional enrichment analysis including
biological process, molecular function, cell component, and
KEGG pathway of the genes in the IRGPs signature.

2.10 | GEPIA2

GEPIA2 (http://gepia2.cancer-pku.cn/) is a multi-
functional molecular analysis platform based on TCGA
data and GETx data which contains 179 PC samples and
171 normal samples altogether.14 It was employed to
comparing the expression profile of each IRGP between
PC and adjacent normal tissues. The results of p value
were generated by Student's t test. Differential expression
of an IRGP in the two sets of tissues was said to occur
only if the results of p< .05 and |Log2FC| > 1. Moreover,
we investigated the relationship between the expression
of each IRGP and the PC stage. It was said an IRGP was
correlated with tumor stage only when both genes in an
IRGP are related to the stage of PC (p< .05).

2.11 | cBioportal

cBioportal (https://www.cbioportal.org/) is an online
database used for exploring, visualizing, and analyzing
different cancer genomics data.15 This tool was employed
to analyze genetic alterations including alteration rate
and detailed categories of genetic alterations of each
IRGP in PC.
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2.12 | Statistical analysis

We employed R (version 3.6.1) to execute all proceedings.
The packages in R were listed in each proceeding
(*p< .05, **p< .01, and ***p< .001).

3 | RESULTS

3.1 | Summary

We constructed an IRGPs signature to predict the prog-
nosis of PC patients. This signature was correlated with
the infiltration of immune cells and cancer‐related
pathways.

3.2 | The construction of IRGPs
signature

We selected TCGA PC samples (n= 177) with tran-
scriptional data and clinical data as our test group and
data from GEO PC samples GSE57495 (n= 63) as the
verification group. The clinical data of these two data
sets are shown in Table 1. 2498 IRGs from IMMPORT
database are downloaded for our data screening, and we
ultimately keep IRGs in our transcriptional data.

Moreover, we paired our IRG with each other, and we
deleted the IRGPs if the score of which were 0 or 1 in
more than 80% of the samples, in that case, 26524 IRGPs
were remained. We performed a log‐rank test in our
training group and further obtaining 33 prognostic
IRGPs (p< .0001). Subsequently, we performed lasso
penalized Cox regression (iteration = 1000) to define an
index of each IRGPs, the risk score of each patient was
calculated by these indexes. We further obtained a well‐
balanced prognostic model, the 18 IRGPs (Table 2), were
selected to construct the signature. To divide all the
samples into high‐/low‐risk groups, we performed time‐
dependent ROC curve analysis at 1 year in the training
group for overall survival and we obtained the optimal
cutoff of 1.057 (Figure 1A). Patients with higher risk
score than 1.057 will be counted in high‐risk group,
patients with lower risk score than 1.057 will be counted
in low‐risk group. The classification of high‐/low‐risk
groups of patients in TCGA data set was shown in
Figure 2A, THE classification of high‐/low‐risk groups
of patients in GSE57495 data set was shown in
Figure 2E. The area under receiver operating char-
acteristic curve (AUC) of 1‐year survival rate was 0.843,
which demonstrated the validity of our prognostic
signature (Figure 1B).

3.3 | Validation of the IRGPs signature

The results both from the test group (p< .001) and ver-
ification group (p= .017) revealed that PC patients in
the high‐risk group have poor overall survival rate
(Figures 2B and 2F). We further performed univariate
and multivariate cox proportional‐hazards analysis for
the test group. Results of univariate Cox proportional‐
hazards analysis revealed that our IRGPs signature
(p< .001, hazard ratio [HR]: 3.582, 95% confidence in-
terval [CI]: 2.699–4.755), age (p= .012, HR: 1.028, 95% CI:
1.006–1.050) and tumor grade (p= 0.037, HR: 1.377, 95%
CI: 1.020–1.859) were correlated with the prognosis of PC
patients (Figure 2C). Results of multivariate Cox
proportional‐hazards analysis demonstrated the in-
dependent prognostic value of our IRGPs signature
(p< .001, HR: 3.640, 95% CI: 2.715–4.879) (Figure 2D).

3.4 | Differences of the infiltration of
immune cells between high‐/low‐risk
groups

Infiltration of immune cells was correlated with cancer
development and prognosis. We employed CI-
BERSORT to compare the differential contents of 22

TABLE 1 Clinical data of The Cancer Genome Atlas (TCGA)
data set and GSE57495 data set

TCGA GSE57495

Age (year)

<60 54 (30.5%) –
≥60 123 (69.5%) –

Gender

Female 79 (44.6%) –
Male 98 (55.4%) –

Survival status

Alive 84 (47.5%) 21 (33.3%)

Dead 93 (52.5%) 42 (66.7%)

Grade

Grade 1 28 (15.8%) –
Grade 2 96 (54.2%) –
Grade 3 51 (28.8%) –
Grade 4 2 (1.1%) –

Stage

Stage I 19 (10.7%) 13 (20.6%)

Stage II 149 (84.2%) 50 (79.4%)

Stage III 4 (2.3%) 0

Stage IV 5 (2.8%) 0
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TABLE 2 IRGPs signature

IRG1 Full name IRG2 Full name Coefficient

CD1C CD1c Molecule MUC5AC Mucin 5AC, oligomeric mucus/gel‐forming −0.036

CD1D CD1d Molecule DKK1 Dickkopf WNT signaling pathway inhibitor 1 −0.209

ICAM1 Intercellular cell adhesion molecule‐1 MET Mesenchymal‐epithelial transition factor −0.023

ERAP2 Endoplasmic reticulum aminopeptidase 2 SSTR1 Somatostatin receptor 1 0.739

CXCL9 Chemokine (C‐X‐C motif) ligand 9 APLNR Apelin receptor 0.365

CXCL11 Chemokine (C‐X‐C motif) ligand 11 CD79A CD79a molecule 0.119

CXCL11 Chemokine (C‐X‐C motif) ligand 11 PIK3R5 Phosphoinositide‐3‐kinase regulatory subunit 5 0.135

CXCL11 Chemokine (C‐X‐C motif) ligand 11 PRKCB Protein kinase C β 0.165

CXCL11 Chemokine (C‐X‐C motif) ligand 11 ZAP70 Zeta chain of T‐cell receptor associated Protein
kinase 70

0.341

PLAU Urokinase‐type plasminogen activator ZYX Zyxin 0.018

IRF3 Interferon regulatory factor 3 MET Mesenchymal‐epithelial transition factor −0.454

IL1A Interleukin 1α CCL23 C‐C motif chemokine ligand 23 0.015

OAS1 2′,5′‐oligoadenylate synthetase 1 AGT Angiotensinogen 0.260

AGER Advanced glycosylation end‐product specific
receptor

IL20RB Interleukin 20 receptor subunit β −0.300

PPARG Peroxisome proliferator activated receptor γ FGR FGR proto‐oncogene, Src family tyrosine kinase 0.442

CHGA Chromogranin A IL22RA1 Interleukin 22 receptor subunit‐α 1 −0.571

EREG Epiregulin RARB Retinoic acid receptor‐β 0.260

GMFB Glia maturation factor β TGFA Transforming growth factor‐α −0.173

FIGURE 1 Construction of the immune‐related gene pairs (IRGPs) signature. (A) Time‐dependent receiver operating
characteristic (ROC) curve analysis (1 year) for IRGPs signature in the training group, the optimal cutoff is 1.057 to classify patients
into high‐/low‐risk groups. (B) Area under receiver operating characteristic curve (AUC) is 0.843
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immune cells between the high‐/low‐risk groups.
Among the 22 immune cells, the contents of six im-
mune cells were different between the two groups
(Figure 3A). The contents of B cells memory (p = .036)

(Figure 3B), Macrophages M0 (p = .035) (Figure 3D),
Macrophages M1 (p = .015) (Figure 3E) and NK cells
activated (p = .036) (Figure 3F) were higher in the
high‐risk group. The contents of B cells naïve (p < .001)

FIGURE 2 Validation of the immune‐related gene pairs (IRGPs) signature. (A) Divide the training‐group patients into
high‐/low‐risk groups. (B) The comparison of overall survival rate between high‐/low‐risk groups in patients from The Cancer Genome
Atlas (TCGA) data set. (C) Univariate Cox proportional‐hazards analysis of the risk factors in the training group. (D) Multivariate
Cox proportional‐hazards analysis of the risk factors in the training group. (E) Divide the validation‐group patients into high‐/low‐risk
groups. (F) The comparison of overall survival rate between high‐/low‐risk groups in patients from GEO (GSE57495) data set
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(Figure 3C) and T cells CD8 (p = .010) (Figure 3G) were
lower in the high‐risk group.

3.5 | GSEA

The intention of GSEA was to infer the potential biological
mechanisms which the patients in the high‐risk group may
involve in. The results of GSEA revealed that CA-
TION_CHANNEL_ACTIVITY (Enrichment score: 0.579,
FDR value= 0.028) (Figure 4A), CATION_CHANNEL_
COMPLEX (Enrichment score: 0.607, FDR value= 0.037)
(Figure 4B), GATED_CHANNEL_ACTIVITY (Enrichment
score: 0.590, FDR value= 0.028) (Figure 4C), POTASSIU-
M_ION_TRANSPORT (Enrichment score: 0.638, FDR
value= 0.028) (Figure 4D), POTASSIUM_CHANNEL_
ACTIVITY (Enrichment score: 0.656, FDR value= 0.028)
(Figure 4E) and VOLTAGE_GATED_CATION_CH-
ANNEL_ACTIVITY (Enrichment score: 0.631, FDR
value= 0.037) (Figure 4F) were significantly altered
between high‐ and low‐risk groups.

3.6 | GO and KEGG

GO analysis revealed that the genes in our IRGPs sig-
nature mainly enriched in extracellular space and
immune response (Figure 4G). KEGG analysis revealed
that these genes mainly involved in cancer pathways
(Figure 4H).

3.7 | Expression profile of each IRGP
and the correlation with clinical
parameters

Results from GEPIA2 revealed that 12 IRGPs were
upregulated in PC, which were CD1C_MUC5AC,
CD1D_DKK1, CXCL9_APLNR, CXCL11_CD79A, ERA
P2_SSTR1, EREG_RARB, GMFB_TGFA, ICAM1_MET,
IRF3_MET, OAS1_AGT, PLAU_ZYX, and PPARG_FGR
(Figure 5). Expression profile of AGT_OAS1, ICAM1_
MET, and CHGA_IL22RA1 was correlated with PC
stage (Figure 6).

FIGURE 3 Correlation between the immune‐related gene pairs (IRGPs) model with infiltration of immune cells. (A) Summarize
the difference of infiltration of immune cells between high‐/low‐risk groups (*p< .05, **p< .01, and ***p< .001). (B) The content of B
cells memory (p= .036) was higher in the high‐risk group. (C) The content of B cells naïve (p< .001) was lower in the high‐risk
group. (D) The content of macrophages M0 (p= .035) was higher in the high‐risk group. (E) The content of macrophages M1
(p= .015) was higher in the high‐risk group. (F) The content of natural killer cells activated (p= .036) was higher in the high‐risk
group. (G) The content of T cells CD8 (p= .010) was lower in the high‐risk group
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3.8 | Analysis of genetic alterations

Results from cBioportal revealed that 112 (67%) of the
168 PC patients have genetic alterations of at least one
gene in the IRGPs signature and the most common
genetic alteration category was messenger RNA
(mRNA) high (Figure 7D). CD1D_DKK1 has the
highest genetic alteration rate (15%), the most com-
mon genetic alteration category was mRNA high,
besides, nine patients have CD1D_DKK1 genetic am-
plification, which is the highest among all IRGPs
(Figure 7A). The mutation rate of IRF3_MET and
ZYX_PLAU were 14% and 12%, respectively, which
were the highest except CD1D_DKK1. The most
common genetic alteration category of these two
IRGPs was mRNA high (Figure 7B,C).

4 | DISCUSSION

PC is one of the most lethal malignancies. Due to its
components of plentiful desmoplastic stroma which
could handicap the infiltration of effector T‐cell and
further facilitate the immunosuppressive microenviron-
ment, and the traits of poor immunogenicity, it was fairly
intricate to accomplish immunotherapy into pancreatic
cancer.16 Despite it was a gigantic challenge, previous
literatures have implied the role of immune system in
PC and supplied the potential feasibility to accomplish
this target.7–9 As yet, the role of IRGs in PC is still un-
clear. In our study, we constructed an IRGPs signature to
correlate with the prognosis of PC patients. Unlike the
traditional prognostic model, the pairwise comparison of
each IRGP and the calculation of the score were

FIGURE 4 Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis
(GSEA) of the immune‐related gene pairs (IRGPs) model. (A–F) GSEA analysis between the high‐/low‐risk groups. The results
revealed six gene sets that the patients in the high‐risk group may involve in (results of FDR< 0.05 were listed). (G) GO analysis
including biological process, molecular function and cell component of the genes in the IRGPs signature. (H) KEGG analysis
predicted the biological pathways which our IRGPs signature may involve in
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FIGURE 5 The mRNA expression of each IRGP in pancreatic cancer. Results revealed that CD1C_MUC5AC, CD1D_DKK1,
CXCL9_APLNR, CXCL11_CD79A, ERAP2_SSTR1, EREG_RARB, GMFB_TGFA, ICAM1_MET, IRF3_MET, OAS1_AGT,
PLAU_ZYX, and PPARG_FGR were overexpressed in pancreatic cancer. *p< .05. IRGP, immune‐related gene pair; mRNA,
messenger RNA
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absolutely based on the genetic expressions in the same
patient thus it is not a necessity in our IRGPs signature to
standardize the genetic expression profiles from different
sequencing platforms. Previous studies have demon-
strated the validity of this method.17,18

In our study, we construct an IRGPs signature to
predict the prognosis of PC patients. The AUC of this
model was 0.843, which demonstrated the validity of our
prognostic signature. This signature contains 18 IRGPs,
dividing all patients into high/low immune risk groups.
Survival rate analysis and univariate/multivariate Cox

proportional‐hazards analysis have not only demon-
strated the prognostic value but also certified our IRGPs
signature as an independent prognostic factor.

The contents of memory B cells, macrophages M0,
macrophages M1 and NK cells activated were higher in
the high‐risk group. The contents of naïve B cells and
CD8 T cells were lower in the high‐risk group. Naïve
B cells and CD8 T cells were demonstrated to be antic-
ancer immune cells. Naïve B cells and CD8 T cells were
gathered in CD31 high tumors, and the higher expression
of CD31 implied more vascular endothelial cells, which

FIGURE 6 Correlation between the expression profile of each IRGP with pancreatic cancer stage. (A–C) Results revealed
that mRNA expressions of AGT_OAS1, ICAM1_MET, and CHGA_IL22RA1 correlated with pancreatic cancer stage.
IRGP, immune‐related gene pair; mRNA, messenger RNA
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was correlated with better prognosis in PC patients.19

Previous studies demonstrated that high density of tumor
infiltrating naïve B cells is correlated with higher survival
rates in hepatocellular carcinoma patients. It was also
confirmed to be an independent prognostic factor in liver
cancer. High density of naïve B cells was also validated to
associate with tiny tumor size and good differentiation.20

Tumor‐associated macrophages in the tumor

microenvironment usually promote cancer cell pro-
liferation, immunosuppression and angiogenesis, thereby
supporting tumor growth and metastasis. Moreover, the
abundance of tumor‐associated macrophages was corre-
lated with poor prognosis of patients.21 Macrophages
contains different subtypes, including M0, M1, and M2.
M0 macrophages is an inactive subtype which were not
capable have inflammatory and tumor‐related functions.

FIGURE 7 Mutation analysis of the IRGPs signature in pancreatic cancer. (A–C) The mutation rate of CD1D_DKK1 (15%),
IRF3_MET (14%), and ZYX_PLAU (12%) was the top three highest in pancreatic cancer. The most common mutational category of
the three IRGPs was mRNA high. Moreover, nine patients have CD1D_DKK1 genetic amplification, which is the highest among all
IRGPs. (D) Results revealed that 112 (67%) of 168 pancreatic cancer samples have genetic alterations of the genes in the IRGPs
signature, the most common mutational category was mRNA high. IRGP, immune‐related gene pair; mRNA, messenger RNA
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M1 macrophages and M2 macrophages were participated
in diverse immune regulations and could derived from
M0 macrophages.22 High contents of M0 macrophages
was demonstrated to correlate with poor prognosis of PC
patients.23 The contents of M0 and M1 macrophages were
higher in colorectal cancer tissues than paired normal
tissues. Moreover, abundance of M1 macrophages was
correlated with poor prognosis of colorectal cancer
patients.24 Coculture of macrophages and PC cells in vi-
tro remarkably enhanced the expression of CD163 and
programmed death‐ligand 1 (PD‐L1), which were two
risk factors and correlated with poor prognosis of PC
patients.25 Memory B cells are produced in the germinal
center response during the T‐cell‐dependent immune
response. Several B‐cell malignancies including chronic
lymphocytic leukemia, hairy cell leukemia and marginal
zone lymphomas were demonstrated to derived from
memory B cells. The activation of memory B cells cor-
related with the progression of these malignancies.26

The results of GSEA revealed our IRGPs signature
mainly involved in ion channel activity and gated chan-
nel activity, especially in potassium and voltage gating
channels. Ion channels have been shown to play an im-
portant role in the occurrence and development of di-
verse cancers. Potassium channels including four
categories, which are voltage gate (Kv), calcium depen-
dent (KCa), two‐hole domain group (K2p) and inward
rectification (Kir).27 KCa3.1 is a K+ channel activated by
Ca2+, which was overexpressed in PC and correlated with
poor prognosis. It was demonstrated to functioned in the
progression of many cancers and is related to the mi-
gration and proliferation of PC cells.28 Kv11.1 was
demonstrated to be overexpressed in PC, overexpression
of Kv11.1 was correlated with poor differentiation and
larger tumor size.29

Results revealed that 12 IRGPs were overexpressed in
PC. Expressions of AGT_OAS1, IACM1_MET, and
CHGA_IL22RA1 were associated with PC stage. Muta-
tional analysis revealed that the genetic alteration rate of
CD1D_DKK1, IRF3_MET, ZYX_PLAU were high in PC
and the most common alteration category were mRNA
high. Above results illustrated the correlation between
our model with PC. Moreover, KEGG analysis revealed
that our IRGPs signature was correlated with cancer
pathways. Previous literatures also demonstrated the
correlation between our IRGPs signature with the de-
velopment of cancers including PC. DKK1 is a secreted
protein that prohibited the β‐catenin‐dependent pathway
in Wnt signaling by binding to Wnt receptors. Dysregu-
lation of DKK1 was reported to correlated with
the prognosis and progression of various cancers
including PC.30–32 DKK1 was overexpressed in PC and

Dkk1‐CKAP4‐PI3K/AKT signaling pathway affected PC
cells proliferation.32 IL22RA1 is a member of the class II
cytokine receptor family. Previous study uncovered
IL22RA1 was overexpressed in PC and the expression
was correlated with poor prognosis. IL22RA1/STAT3
signaling promoted stemness and tumorigenicity in PC.33

ICAM1 has been reported to associated with cancer me-
tastasis, including PC. The activation of IACAM1 is ac-
tivated by interleukin‐35 through the GP130‐STAT1
signaling pathway.34 PLAU is a urokinase plasminogen
activator which could promote the proteolytic cascade. It
has been demonstrated to associated with the invasion
and metastasis of cancers.35,36 Upregulation of PLAU was
correlated with lymph node metastasis and poor prog-
nosis of PC. Low‐expression of PLAU prohibited pro-
liferation and migration of PC cells.37 Moreover, the
expression of CD1D, ERAP2, SSTR1, CXCL9, CXCL11,
IL1A, EREG also certainly influenced the development of
PC.38–46 Hence, these studies demonstrated the correla-
tion between our IRGPs signature with the progression
of PC.

The aim of this study was to apply IRGs into the
treatment of PC. Despite we have demonstrated the validity
of our IRGPs signature and verified the correlation between
our model and immune cells, we also acknowledge the
limitation in our study. We expect further experiments in-
cluding western blot or immunohistochemistry could be
performed in our study.

5 | CONCLUSION

In conclusion, our IRGPs signature could predict the
prognosis of PC patients, and this prognostic signature
will facilitate the application of immunotherapy in PC.
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