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Abstract: For more than a decade, many countries have been actively developing robotic assistive
devices to assist in the rehabilitation of individuals with limb disability to regain function in the
extremities. The exoskeleton assistive device in this study has been designed primarily for hemiplegic
stroke patients to aid in the extension of fingers to open up the palm to simulate the effects of
rehabilitation. This exoskeleton was designed as an anterior-support type to achieve palmar extension
and acts as a robotic assistive device for rehabilitation in bilateral upper limb task training. Testing
results show that this wearable exoskeleton assistive device with human factor consideration using
percentile dimensions can provide comfortable wear on patients as well as adequate torque to pull
individual fingers into flexion towards the palm for rehabilitation. We hope this exoskeleton device
can help stroke patients with loss of function in the upper extremities to resume motor activities in
order to maintain activities of daily living.
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1. Introduction

There are two hundred million people all over the world suffering from loss of limb function [1],
and most of these functions could be recovered with rehabilitation. Rehabilitation is mainly the
use of other objects to force the affected limb to resume activity and has been shown in studies to
aid in the paretic limb to recover [2]. Passive and consecutive activities can achieve the effects of
physical therapy, can reduce muscle spasticity [3], and can stimulate activity in the cerebral cortex [4].
For more than a decade, many countries around the world are actively developing assistive devices
using robotic technologies to help patients with loss of limb function due to various causes to
undergo repetitive rehabilitation [5,6]: Jansen et al. designed a particular type of hybrid assistive limb
exoskeleton for patients with spinal cord injury undergoing rehabilitation and underwent clinical
trial with 21 patients; after training of 90 days, all patients showed significant improvement in
their functional and ambulatory mobility without the exoskeleton [7]. Many researchers made lower
extremity exoskeleton for gait rehabilitation [8–11] with various types of actuators such as regenerative
magnetorheological actuator, series elastic actuator, electric motor actuator, etc. Some devices even
enhance lower extremity performance [12–15] to provide better mobility to patients with knee injuries
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or other kinds of loss of function in the lower extremities. For the arms, many types of assistive
exoskeleton device have been described [16–21], and most devices can be combined with other adapted
equipment. However, only a few assistive exoskeleton rehabilitation devices for the hand have been
described, mostly due to the complexity in the structure of the hand and the large range of motion
that the fingers, making design for a hand assistive device very difficult. Bataller et al. [22] presented
a design for a finger exoskeleton device with servomotors made from 3D printing that is low in cost
and can be mass-produced for sports or rehabilitation for individual fingers. Iqbal et al. [23] described
a hand exoskeleton rehabilitation device to facilitate tendon therapy exercises: this device covered only
the proximal interphalangeal joint and utilizes the upward- and downward-movements of the said
joint to bring about flexion and extension movements. Hence, the use of an exoskeleton assistive device
for therapy of the individual with loss of limb function is a method that is both practical and convenient.
Among the many causes of death, cerebrovascular disease places second in the world; colloquially
known as “stroke,” it is the rupture of blood vessel in various parts of the brain and is one of the major
causes of loss of limb function [24]. Stroke is defined by World Health Organization (WHO) as “rapidly
developing clinical signs of focal (or global) disturbance of cerebral function, lasting more than 24 h or
leading to death, with no apparent cause other than of vascular origin”. Common symptoms include
weakness or numbness in one side of the face or of limbs, difficulty in swallowing or speech, vertigo,
severe headache, hemiparesis, and loss of intellectual abilities. With recent advances in medicine,
most stroke patients survive, but there is often damage to the motor neuron after the acute phase of
the disease. It is found that 73–88% stroke survivors suffer the sequela of hemiparesis, accompanied
by long-term loss of function [25,26]. Recovery after stroke depends on the different methods of
rehabilitation as well as other treatments [27]. According to the American Heart Association (AHA),
55–75% of stroke patients suffer from upper limb dysfunction but persistent rehabilitation can usually
recover partial function and only a few could attain complete recovery. The main reason only a few can
recover is because most patients after stroke only rely on the unaffected side to perform normal daily
activities. For example, before stroke occurred, an individual pours water from a pitcher with his right
hand and drinks from the cup using the left. But after stroke occurred, his right arm became paretic
so he switched to performing both the tasks of pouring and drinking with the left hand. As a result,
what started as mere weakness in the right limb, after the transfer of all activities to the unaffected left
limb, may eventually lose its function completely [28]. Past studies found that only 5–20% patients
regain their upper limb functions; by one year after stroke, there are still 33% patients with no function
in the upper limb—this shows the difficulty in upper limb rehabilitation. Normal upper limb function
is a very important key in maintaining independent living; when the upper limb loses its function,
activities of daily living are affected, thereby affecting the capability to live independently. This is also
the reason behind the lack of patients’ participation in activities. Therefore, the recovery of upper limb
function to restore normal activities is a very important issue [29,30].

In addition to exoskeleton assistive devices, recent years have also seen the development of
methods specifically for limb rehabilitation, such as mirror therapy published in 1999 by Altschuler et al.
to train upper limb function in stroke patients [31]: in this method, the paretic hand is kept inside
a mirror-box while the mirror reflects the image of the normal, non-paretic hand, giving the illusion of
it being the paretic hand. The visual effect from the mirrored reflection stimulates the premotor are of
the brain as well as the posterior prefrontal cortex to engage the patient to perform activities in both
hands simultaneously, which will in turn improve the rehabilitation of the paretic hand. This method
has been demonstrated to be effective by many studies [32,33]. Furthermore, bilateral training of the
upper limbs has also been shown to have a significant rehabilitative effect; studies have shown that,
when compared with unilateral training, bilateral training can increase the frequency of training and
that the effect is significantly better than unilateral training [34,35].

Therefore, this study hypothesizes the design of this particular exoskeleton rehabilitation device
to achieve the following:
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� for the healthy (non-paretic) hand to assist the paretic hand to undergo bilateral extension-flexion
training simultaneously;

� for the exoskeleton rehabilitative device to allow also for the rehabilitation of the fingers;
� for the design of the exoskeleton assistive device to accommodate approximately 80–90% users;
� for the device to be light-weight, low-cost, and easy to fit onto the forearm.

2. The Human Hand Structure

The exoskeleton assistive device is to be worn directly over the hand; therefore, it must take into
consideration the range of motion (ROM) and degrees of freedom (DOF) for each and every joint in the
hand. With the exception of the thumb, every finger is made up of 3 joints and 4 bones—the joints of
the fingers are metacarpophalangeal (MCP), proximal interphalangeal (PIP), and distal interphalangeal
(DIP); the bones of the fingers are the metacarpals, proximal phalanx, middle phalanx, and distal
phalanx. The thumb has no middle phalanx and is made up of two joints, metacarpophalangeal (MCP)
and interphalangeal (IP). As shown in Figure 1, every MCP has two DOFs, while every PIP, DIP, and IP
have one DOF, making up a total of 19 DOFs in each hand. The large number of DOFs makes any
assistive device design for the hand quite challenging [36] and is made even more difficult by the
complex structure of the bones of the hand: there is a great anatomical variation in the shape and
dimensions of individual bones [37], the location on the device where the finger joint aligns is hard
to accommodate to everyone’s hand size; for example, for the PIP, because of the variation in finger
bone length, some may fall near the proximal phalanx while others fall near the distal, and the same
scenario also applies to the DIP; while the MCP may not have this problem, because of the variation in
palm width, the thumb is often either compressed or too far out and therefore often excluded from
exoskeleton designs, making it hard to develop an exoskeleton for rehabilitation that can accommodate
a large number of people.
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3. Exoskeleton Structural Design

Current exoskeleton assistive devices on the market are fashioned as full skin coverage on the
dorsal surface of the hand with a retractive design in which the palmar portion of the fingers are
restrained with Velcro fasteners. When making a fist, the exoskeleton usually exerts force from the
dorsal portion of the hand and, when extending the fingers, it uses external tension of the exoskeleton to
pull on the Velcro fasteners to open up the palm, but this design is complicated by the aforementioned
difficulty of varying lengths of finger segments, making it difficult to produce a single device that can
fit all sizes. Furthermore, because of hypertonia (spasticity), the paretic hand of hemiplegic patients
is clasped into a fist at resting state and it is easy for the hand to form a fist but extremely difficult
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to extend the fingers to open up the palm from a closed fist. It should be kept in mind that the
main task in rehabilitation is to assist in allowing the fingers to perform extension and flexion at will.
The exoskeleton assistive device presented in this study is designed mainly for hemiplegic stroke
patients to simulate a rehabilitation therapy session to achieve finger extension. The exoskeleton is
designed to exert force against the palmar surface of the hand to assist the patient in achieving finger
extension. Figure 2 is a schematic diagram of the phalanx and finger joints of the exoskeleton. In this
design, the phalanx part is made up of only the proximal and middle phalanx, and the PIP on the
exoskeleton is where the proximal phalanx approximates the metacarpal bone. The exoskeleton PIP
will align directly with the patient’s proximal phalanx; this ensures that, when the patient is wearing the
device during therapy, the finger joint will align with the PIP. The exoskeleton DIP is where the middle
phalanx approximates the distal phalanx and, for patients with shorter fingers, may end up aligning
with the patient’s distal phalanx (rather than the DIP) but can nevertheless still achieve complete finger
extension. Two sizes—M and L—are set to accommodate users with all glove sizes. The dimensions of
our device were based on the Humanscale Manual [38], which contains over 60,000 bits of ergonomic
and human engineering statistics for the human head, hands, and feet; is divided into ages 0.5–13 years
and adults; and contains length, width, and angle dimensions from the 1st to the 99th percentiles.
Dimensions for the M size of our device is based on the female 90th percentile data, whereas the L
size is based on the male 90th percentile for individual angles, lengths, and finger joint widths of
the five fingers of the hand. The exoskeleton thumb is designed as a detachable segment in order
to accommodate different palm widths; as detailed in Figure 2, the detachable thumb is made with
a movable joint that allows for thumb abduction and adduction and has various attachment sites to
connect to the main body of the exoskeleton to adapt to different palm widths.

Healthcare 2020, 8, x FOR PEER REVIEW 4 of 13 

4 
 

The exoskeleton is designed to exert force against the palmar surface of the hand to assist the patient 
in achieving finger extension. Figure 2 is a schematic diagram of the phalanx and finger joints of the 
exoskeleton. In this design, the phalanx part is made up of only the proximal and middle phalanx, 
and the PIP on the exoskeleton is where the proximal phalanx approximates the metacarpal bone. 
The exoskeleton PIP will align directly with the patient’s proximal phalanx; this ensures that, when 
the patient is wearing the device during therapy, the finger joint will align with the PIP. The 
exoskeleton DIP is where the middle phalanx approximates the distal phalanx and, for patients with 
shorter fingers, may end up aligning with the patient’s distal phalanx (rather than the DIP) but can 
nevertheless still achieve complete finger extension. Two sizes—M and L—are set to accommodate 
users with all glove sizes. The dimensions of our device were based on the Humanscale Manual [38], 
which contains over 60,000 bits of ergonomic and human engineering statistics for the human head, 
hands, and feet; is divided into ages 0.5–13 years and adults; and contains length, width, and angle 
dimensions from the 1st to the 99th percentiles. Dimensions for the M size of our device is based on 
the female 90th percentile data, whereas the L size is based on the male 90th percentile for individual 
angles, lengths, and finger joint widths of the five fingers of the hand. The exoskeleton thumb is 
designed as a detachable segment in order to accommodate different palm widths; as detailed in 
Figure 2, the detachable thumb is made with a movable joint that allows for thumb abduction and 
adduction and has various attachment sites to connect to the main body of the exoskeleton to adapt 
to different palm widths. 

 
Figure 2. Schematic of the exoskeleton. 

The exoskeleton interphalangeal joint is shown in Figure 3. The breadth of the five-finger joints 
was referenced using the largest male ring size. At MCP, the bending angle is set to be 0–70°, and at 
PIP, it is set at 0–90°. Because the mechanical pulling force is exerted only against the palmar surface, 
the patient’s finger flexion is unaffected, thus allowing for greater room for activity during therapy. 
Joints at 0° are equipped with safety baffle plates to ensure that the exoskeleton does not cause 
overextension of the fingers during therapy. The exoskeleton forearm was made with Poly Lactic 
Acid (PLA) material via 3D printing, with a total length of 290.10 mm and width of 121.87 mm, mainly 
to assist in finger movements of the hemiplegic arm. Every finger joint is equipped with a mechanical 
connecting rod, and there are 5 sets of servomotors to drive the connecting rod to control movement 
of every finger. The mechanical drive is on the middle phalanx where it approximates the PIP, but 
the main source of mechanical drive is still located at the PIP and the DIP is linked to the PIP via 
connected rods. Every finger uses one servomotor to achieve extension; when on the highest voltage 
of 7.4v, the drive is up to 37kg/cm. According to field testing, the process of movement is transmitted 
to the exoskeleton PIP and can provide a pulling force as high as 5 kg. Because, in the hemiplegic 

Figure 2. Schematic of the exoskeleton.

The exoskeleton interphalangeal joint is shown in Figure 3. The breadth of the five-finger joints
was referenced using the largest male ring size. At MCP, the bending angle is set to be 0–70◦, and at
PIP, it is set at 0–90◦. Because the mechanical pulling force is exerted only against the palmar surface,
the patient’s finger flexion is unaffected, thus allowing for greater room for activity during therapy.
Joints at 0◦ are equipped with safety baffle plates to ensure that the exoskeleton does not cause
overextension of the fingers during therapy. The exoskeleton forearm was made with Poly Lactic Acid
(PLA) material via 3D printing, with a total length of 290.10 mm and width of 121.87 mm, mainly to
assist in finger movements of the hemiplegic arm. Every finger joint is equipped with a mechanical
connecting rod, and there are 5 sets of servomotors to drive the connecting rod to control movement of
every finger. The mechanical drive is on the middle phalanx where it approximates the PIP, but the
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main source of mechanical drive is still located at the PIP and the DIP is linked to the PIP via connected
rods. Every finger uses one servomotor to achieve extension; when on the highest voltage of 7.4v,
the drive is up to 37kg/cm. According to field testing, the process of movement is transmitted to the
exoskeleton PIP and can provide a pulling force as high as 5 kg. Because, in the hemiplegic patient,
the hand muscles have become rigid (spastic) and there may be varying degrees of hemiplegia as well
as changes in the grip strength, the paretic hand is often clasped into a fist during therapy. Therefore
a microcontroller module is necessary to control the servomotor with a larger torque, of which the
internal control is programmed to 0◦ at the finger joint to serve as a limit control so that the motor
will automatically stop when the angle of 0◦ has been achieved at the finger joint to avoid injury from
overextension of the fingers. Also, there is an external emergency stop button for patients to press
when they encounter any discomfort while using the device during a therapy session, which shuts off

the power to the exoskeleton arm. The entire exoskeleton with the motors and electrical wiring weighs
a total of 800 g.
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Static Analysis

Static analysis was performed using Solidworks on two components of the device: the middle
open-up exoskeleton and the control movement point (please refer back to Figure 3) with the following
configuration:

Material: Acrylonitrile Butadiene Styrene (ABS plastic)
Weight: middle open-up exoskeleton at 2.6 g; control movement point at 1.98 g
Boundary conditions: fixed end in blue (please see Figure 4)
Force exerted at blue: maximum downward force of 5 kgf, designated force of 2 kgf, and safety
index 2.5
Grid: finite element analysis
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Results of stress distribution analysis (Figure 5) with stress concentrator at corner
was 1.081 + 07 N/M2 approximating 1.103 kgf/mm2 for the middle open-up exoskeleton and
3.54123e + 007 N/m2 approximating 3.613 kgf/mm2 for the control movement point, inadequate
to cause structural collapse for either component.Healthcare 2020, 8, x FOR PEER REVIEW 6 of 14 
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Strain analysis (Figure 6) showed maximum deformation to be 0.16 mm for the middle open-up
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4. Electromechanical Integration Design

The exoskeleton assistive device in this study also includes a neoprene rehabilitation assistive
glove to be worn on the non-paretic hand. Each fingertip on the glove is fitted with a set of strain
gauge module (BF350-3AA), which functions mainly to extract the bending angle data during finger
extension-flexion of the non-paretic hand and to relay the signal back to the microcontroller module
(TI-MSP430). Through an algorithm, the bending angle of each finger in the non-paretic hand is sent
via Wi-Fi to the exoskeleton to set the servomotor in motion to transmit the corresponding degree of
electrical power to pull on the connecting rods on the device in order to bring about movements in
the paretic hand to mimic those of the non-paretic hand while simultaneously collecting signals from
the sensors to allow the mimicking movements to occur simultaneously with the non-paretic hand,
achieving the effect of mirror therapy in the upper limbs. Figure 7 illustrates the signal transmission.
Movements of the upper limb is reconstructed using an algorithm through signal filtering sequence
to exclude noise from background and unintentional movements. Feature extraction is used to draw
out the feature of each movement in mirror therapy, and feature reduction is used to scale down the
computational complexity and to augment movement discrimination. For signal filtering, in order
to lower the high-frequency noise error of the signal of the acceleration and the angular velocity,
the calibrated signal needs to go through a low-pass filter (for example, moving average filter,
Butterworth filter, or Chebyshev filter) to filter high-frequency noises.
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4.1. Acceleration and Velocity

If the motor angular velocity remains constant (for example, 2 deg/s) and consistent with the
speed transmitted to the part of the device in contact with a user’s hand, it would take 10 s for the
proximal end of the index finger to achieve full extension from a flexed position, before the velocity
increases steadily (Figure 8a), while the thumb would take 9.5 s (Figure 8b), before the velocity also
increases steadily.
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4.2. Force Sensitive Resistor Sensor

Five sensors were installed to measure force sensitivity of the hands against the exoskeleton device
and found that resistance and force have an inverse and linear relationship with the R2 for the five
sensors ranging between 0.9213 and 0.9588, as shown in Figure 9, where the y-axis is the force sensing
resistance in Ohms and the x-axis is the force in kgf.
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5. Operating Analysis

5.1. Parameter Definitions

The exoskeleton in this study includes only the proximal and middle phalanges; the parameters
of the finger joint are defined as shown in Figure 10. Point O is the point where the lower-support
joint attaches to the core of the exoskeleton, akin to the MCP joint of the hand, and therefore serves as
the origin of the coordinates where the X and Y axes are both zero. Point A is the fixing point for the
connecting rod where the relationship between the MCP and PCP is controlled; point B is the position
of the PIP at rest, while B’ is the shifted PIP position after movement. Similarly, C is the position of
DIP at rest, while C’ is the shifted DIP position after movement. Point C is the terminal end of the
exoskeleton when it moves the connecting rod moves with it and affects the rest of the finger joints. OB
is the proximal phalanx, BC is the middle phalanx, θ1 is the DOF of the MCP as well as change in MCP
angle, whereas θ2 is that of PIP. The relationships between every point, line, and angle are known,
and every phalangeal joint has only one DOF, with a total of 10 DOFs. Therefore the actuation of the
device is movement on a level plane, where finger joint movement is brought about using mechanical
connecting rods; therefore, θ2 changes in accordance with θ1 and the angles and positions of each
finger movement of the patient can be indicated using the actuation tracks of points O, B, and C.
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5.2. Analysis of Movement

The relationship between points O and B is a linear one and between points B and C; OB and BC
are indicated with the distance formulae below:

OB =

√
(XB −XO)

2 + (YB −YO)
2 (1)

BC =

√
(XC −XB)

2 + (YC −YB)
2 (2)

Whereas the position of B′ dictates movement changes of OB, B′ is B multiplied by the rotation
matrix of θ1, of which the formula is denoted by Rot(θ) as follows:

B′ = B(x, y) × Rot(θ1) (3)

The movement pattern by C′ is more complex: as shown in Figure 5, movement of C simultaneously
affects the parameters of θ1, θ2, and point B, and its position is in turn altered when B transforms into
B′. The relationship between points C′ and O is formulated below:

OC′(x, y)= OB′(x, y)+RotO(θ1)×
B′C′(x, y) (4)

Since C′ is the terminal end of the exoskeleton assistive device, its movement affects other
parameters the most and its post-movement position can be used to back-trace positions and angles of
other points.

6. Test Results

Simulated Results

The relationship formulae between the points can be used to obtain the dimensions of the various
parts of the exoskeleton assistive device; and with the aforementioned range of bending angle in
MCP and PIP, the position and angle of individual points during movement could be simulated and
compared to actual measurements.

Figure 11 is the scatterplot based on alternating between the minimum and maximum angles
of θ1 from 0∼70◦. Post-movement points B′ and C′ computed from Equations (3) and (4) using the
positions of B and C and the varying angles of θ1 are compared to those from the outer appearance
based on Solidworks design layout. The positions of B′ and C′ simulated from the formulae as a result
of movement matched completely with the movement arc on the design layout.

Healthcare 2020, 8, x FOR PEER REVIEW 9 of 13 

9 
 

5.2. Analysis of Movement 

The relationship between points O and B is a linear one and between points B and C; OB and BC are indicated with the distance formulae below: OB =  (𝑋 − 𝑋 ) + (𝑌 − 𝑌 )  (1) BC =  (𝑋 − 𝑋 ) + (𝑌 − 𝑌 )  (2) 
Whereas the position of B  dictates movement changes of OB , B  is B multiplied by the 

rotation matrix of θ , of which the formula is denoted by Rot(θ) as follows: B = B(x, y) × Rot(θ ) (3) 

The movement pattern by C  is more complex: as shown in Figure 5, movement of C 
simultaneously affects the parameters of θ  , θ , and point B, and its position is in turn altered when 
B transforms into B . The relationship between points C  and O is formulated below: C (x, y)= B (x, y)+Rot (θ )× C (x, y)  (4) 

Since C  is the terminal end of the exoskeleton assistive device, its movement affects other 
parameters the most and its post-movement position can be used to back-trace positions and angles 
of other points. 

6. Test Results 

6.1. Simulated Results 

The relationship formulae between the points can be used to obtain the dimensions of the 
various parts of the exoskeleton assistive device; and with the aforementioned range of bending angle 
in MCP and PIP, the position and angle of individual points during movement could be simulated 
and compared to actual measurements. 

Figure 11 is the scatterplot based on alternating between the minimum and maximum angles of θ  from 0~70°. Post-movement points B  and C  computed from Equations (3) and (4) using the 
positions of B and C and the varying angles of θ  are compared to those from the outer appearance 
based on Solidworks design layout. The positions of B  and C  simulated from the formulae as a 
result of movement matched completely with the movement arc on the design layout. 
 

 
Figure 11. Schematic of simulated finger joint movement arc. 

Figure 12 demonstrates the actual movement of individual fingers. In this demonstration, the 
assistive glove is worn on the left hand while the exoskeleton device is on the right. The bending 
angle of fingers in the left hand drives varying degrees of bending, and the fingers can move in a 

Figure 11. Schematic of simulated finger joint movement arc.



Healthcare 2020, 8, 18 10 of 14

Figure 12 demonstrates the actual movement of individual fingers. In this demonstration,
the assistive glove is worn on the left hand while the exoskeleton device is on the right. The bending
angle of fingers in the left hand drives varying degrees of bending, and the fingers can move in a precise
manner during simulation. However, while individual fingers are moving, other fingers also bend
slightly—this phenomenon is most apparent in the ring finger and is caused by the connectedness
among tendons in the human hand and is part of a normal finger reaction. It also shows that the
bending angle algorithm can gauge in a precise manner the changes in the hand when bending and
can respond appropriately.
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When comparing the tracks from movements of the hand with formulae-derived position points
of each phalangeal joint, as an example illustrated in Figure 13, it can be seen that the movement
arcs for points B′ and C′ are identical to those from operating the assistive glove. Since the use of
different methods to validate the movement patterns result in the same movement arc, it therefore
confirms the appropriateness and the practicality of the constructs in this study. What should also not
be overlooked is that it provides greater DOFs to the finger joints and its cost is cheaper compared to
other exoskeleton devices on the market. The range of motion in other existing exoskeleton models fall
between 0∼55◦ for MCP and 0∼65◦ for PIP [39]; in contrast, the exoskeleton in this study offers 0∼70◦

for MCP and 0∼90◦ for PIP and is contrary to other designs that exclude the thumb or utilize a fixed
thumb [39,40]. The exoskeleton in this study offers a range of motion up to 35◦ for the thumb—a
greater angle means more room for motion and can provide better rehabilitation results for stroke
patients with upper limb hemiplegia, as detailed in Table 1.
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Table 1. Comparison of exoskeleton rehabilitation devices.

Labels MCP PIP DIP Transverse DOF—Thumb Weight Clinical Testing

The design in this study 70◦ 90◦ N.A. 35◦ 800g No

Susanto et al., 2015 [39] 55◦ 65◦ N.A. N.A. >1kg Yes

Pu et al., 2014 [40] 90◦ 80◦ 100◦ N.A. 700g No

Note: MCP = metacarpophalangeal joint; PIP = proximal interphalangeal joint; DIP = distal interphalangeal joint;
DOF = degree of freedom.

7. Discussion and Conclusions

The design concept of the exoskeleton assistive device in this study stems from multiple medical
studies for the rehabilitation of hemiplegic stroke patients; therefore, it can provide a better therapeutic
effect in the rehabilitation process. The assistive device weighs only around 800 g in its entirety; is
portable; provides a more powerful torque to pull on the fingers; and can accommodate hemiplegic
stroke patients with varying degrees of disease severity, differing palm sizes, differing finger segment
lengths, and differing finger breadth to cater to most patients. As a whole, this device is more than
capable of achieving therapeutic goals in addition to being safe and convenient to use and can easily
be adapted for general use.

Currently, the proofing of all parts for testing purposes brings the cost to within $650 USD,
which is lower than the market price; furthermore, other current exoskeleton rehabilitation devices
are mostly used in rehabilitation institutions, while the device in this study offers hemiplegic stroke
patients the option to undergo rehabilitation in the comfort of his or her own home and anticipates
to improve further on the portability, safety, and cost to allow patients to use the device at home
for self-rehabilitation.

This paper describes the design of an exoskeleton assistive device for the hand based on principles
of mirror therapy with an innovative design, in which finger movements are powered from the palmar
side (hence, the term “lower-support type”) and was made from 3D printing while able to retain
structural integrity as demonstrated by static analysis and force sensitivity analysis. Three-dimensional
printing is low in cost and therefore could easily be made widely accessible; therefore, this device can
offer the most benefit at a reduced cost for upper extremity rehabilitation and hereafter can improve
the function and the quality of life of patients.

Many current studies of exoskeleton rehabilitation devices remain at the testing level in institutions
and cannot capture problems and difficulties encountered in real-life use, but the assistive device in this
study has already worked with several hospitals for on-site testing and is in the process of improving
the structural design using feedback from real-life testing.

Stroke rehabilitation is a rather dull process that is ongoing and repetitive, making it difficult for
patients to go through the entire process with patience. In order to motivate stroke patients to actively
participate in the rehabilitation process, further developments may see the addition of VR (virtual
reality) elements to enrich the rehabilitation experience to speed up patient recovery. Because VR can
incorporate entertaining game themes, can increase the level of attention in stroke patients during
therapy, can reduce the sense of loss from the loss of function due to the disease, and is significantly
more effective compared to conventional therapy [41,42], it is set to be the next direction of this study.

Author Contributions: Conceptualization, Y.-K.O.; methodology, Y.-K.O.; hardware design, C.-C.C.; software
design, H.-C.C.; collected the data, Y.-L.W.; writing—original draft preparation, Y.-K.O.; writing—review and
editing, Y.-K.O. and C.-C.C. All authors have read and agreed to the published version of the manuscript.

Funding: This study was partially funded by the Ministry of Science and Technology of Taiwan (MOST) (grant
number 106-2221-E-218-020-MY3) and by the Allied Advanced Intelligent Biomedical Research Center (A2IBRC)
under the Higher Education Sprout Project of the Ministry of Education.

Acknowledgments: We would like to thank three anonymous reviewers and the editors for their comments.

Conflicts of Interest: The authors declare no conflict of interest.



Healthcare 2020, 8, 18 12 of 14

Abbreviations

DIP distal interphalangeal joint
DOF degree of freedom
IP interphalangeal joint
MCP metacarpophalangeal joint
PIP proximal interphalangeal joint
ROM range of motion
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