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ABSTRACT

An important question in biology is how differ-
ent promoter-architectures contribute to the diver-
sity in regulation of transcription initiation. A step
forward has been the production of genome-wide
maps of transcription start sites (TSSs) using high-
throughput sequencing. However, the subsequent
step of characterizing promoters and their func-
tions is still largely done on the basis of previ-
ously established promoter-elements like the TATA-
box in eukaryotes or the -10 box in bacteria. Un-
fortunately, a majority of promoters and their activ-
ities cannot be explained by these few elements.
Traditional motif discovery methods that identify
novel elements also fail here, because TSS neigh-
borhoods are often highly heterogeneous contain-
ing no overrepresented motif. We present a new,
organism-independent method that explicitly mod-
els this heterogeneity while unraveling different
promoter-architectures. For example, in five bacte-
ria, we detect the presence of a pyrimidine preced-
ing the TSS under very specific circumstances. In tu-
berculosis, we show for the first time that the spac-
ing between the bacterial 10-motif and TSS is uti-
lized by the pathogen for dynamic gene-regulation.
In eukaryotes, we identify several new elements that
are important for development. Identified promoter-
architectures show differential patterns of evolution,
chromatin structure and TSS spread, suggesting dis-
tinct regulatory functions. This work highlights the
importance of characterizing heterogeneity within
high-throughput genomic data rather than analyzing
average patterns of nucleotide composition.

INTRODUCTION

The last decade has seen remarkable advances in high-
throughput sequencing technologies, making them both
fast and cost-effective. As a consequence, apart from simply
sequencing (or re-sequencing) genomes, these technologies

have been successfully applied to probe various biochemical
activities of the genome at a single nucleotide resolution.
One such activity is transcription initiation by the RNA
polymerase. In a given cell-type of interest, methods like cap
analysis of gene expression (CAGE) (1), oligo-capping (2),
cap-trapping (3) and Rapid Amplification of cDNA Ends
(5′-RACE) (4) coupled with high-throughput sequencing
identify transcription start sites (TSSs) associated with the
transcriptome. These methods differ in the manner in which
they distinguish a true site of initiation from a 5′ end gener-
ated by RNA cleavage or degradation (5), but they typically
produce robust genome-wide maps of TSSs (6).

Genome-wide maps of TSSs, by themselves, provide a
wealth of information such as cell-type specific usage and
spatial distribution of TSSs for every transcribed gene (7).
Further downstream analyses typically focus on the ge-
nomic information at the TSSs to understand the mecha-
nism of transcription initiation. In eukaryotes, TSS neigh-
borhoods are assessed for GC-richness and prevalence of
known promoter elements such as the TATA-box, INR ele-
ment, etc. (8–10). The presence or absence of these features
is then tested for association with the expression level and
the spatial distribution of TSSs. For example, promoters
with TATA-boxes have been shown to have more narrow
peaks, with transcription initiation more likely to happen
specifically at one position. Similarly, promoters in CpG is-
lands are believed to have a more broad expression pattern
characteristic of housekeeping genes (11). However, this
analysis is highly restrictive because of two reasons. First,
only “known” features are tested. A previously uncharac-
terized element can never get identified with this approach.
Second, it is not reasonable to assume that features func-
tion separately, independent of other features. For example,
Feature A may behave in a coordinate fashion with Feature
B, but not with Feature C. Identification of such “modules”
has been attempted before (12,13), but their success, again,
depends on which features were considered while building
modules in the first place.

To get around this issue, de novo motif discovery is con-
ducted using methods like MEME (14) or Chipmunk (15).
This technique has been successful in identifying novel core
promoter elements in the fly (13). However, in this ap-
proach, motifs that are present only in a small fraction of
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sequences are likely to be missed. This is primarily because
these de novo motif discovery programs have been devel-
oped to tackle a different problem. The original goal in
these programs was to find motifs that are statistically over-
represented in the entire input set, and therefore are more
suited for finding common patterns in coregulated promot-
ers or chromatin immunoprecipitation data. However, pro-
moters can have diverse mechanisms of regulation and all
promoters are not likely to be controlled by the same set of
factors. This heterogeneity can result in no motif being sta-
tistically overrepresented in the whole set of promoters. It is
important to note that the aforementioned high-throughput
experiments do not probe any specific component of the
regulatory system, but target the 5′ ends of all transcripts.
The neighborhood around an identified TSS can be differ-
ent from that of another TSS. Furthermore, most of these
methods do not make explicit use of the TSS location during
the learning and a motif is considered significant as long as
it appears somewhere in the input sequence. However, when
identifying promoter elements which determine location of
transcription initiation, this information is not only highly
pertinent, but is increasingly more available with the high
resolution of the high-throughput experiments.

We present a novel approach for identifying heteroge-
neous promoter-architectures from high-throughput TSS
data. This method is not specific to any experimental proto-
col: it only uses the identified TSS location and the genomic
sequence around it. It makes no assumptions about the
number of architectures, the number of promoters with a
certain architecture or the prevalence of any motif. Instead,
we treat this as an unsupervised machine learning problem,
where promoter sequences are clustered into groups having
similar architectures, while simultaneously identifying po-
sitions along promoters that define each architecture. Since
it does not use any prior information regarding motifs or
promoter elements, it is inherently organism-independent.
We demonstrate its utility in identifying novel promoter-
architectures in three different species of bacteria: M. tuber-
culosis, E. coli and K. pneumoniae, as well as in two eukary-
otes: fly and human. By combining information from other
biological sources we show that these architectures are likely
to have distinct regulatory roles.

MATERIALS AND METHODS

Model description

We consider the problem of partitioning n DNA sequences
X1, . . . , Xn, each of length l, into k different architectures
a1, a2, . . . , ak. X j

i represents the jth nucleotide in the ith se-
quence Xi where 1 ≤ j ≤ l. We assume that each architecture
au, where 1 ≤ u ≤ k, has a few key important positions de-
noted by the set Iau ⊂ {1, 2, . . . , l}.

We learn a probabilistic model M and its parameters �
for finding the optimal partition. The structure of the model
M is characterized with:

(1) the number of architectures k and
(2) the number of important positions in each architecture

au, i.e. |Iau |.

Once the structure is fixed, the parameters of the model
can be defined as follows:

(1) yi represents the architecture to which sequence Xi be-
longs and is modeled using a categorical distribution �
over {1, 2, . . . , k}.

(2) Each position is modeled using a categorical dis-
tribution over the four nucleotides. For architecture
au, we have |Iau | categorical distributions specific to
that architecture, which are parameterized by φa j

u
=

[φa j
u
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u
(C), φa j
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probability of finding the nucleotide A at position j in
architecture au and similarly for C, G and T. All other
positions within architecture au are parameterized by a
background categorical distribution φ

j
0 where j �∈ Iau .

Note that this background distribution is independent
of au and therefore is applicable to all architectures for
which j is not an important position.

We can compute the likelihood of the sequence Xi as a
simple product of categorical probabilities:
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and the likelihood of the full data as:

P(X | M,�) =
n∏

i=1

P(Xi | M,�). (2)

Model learning

Assuming that the structure of the model is fixed, the goal
is to compute the value of � that optimizes the posterior
distribution:

P(� | X, M) ∝ P(X | M,�) × P(� | M). (3)

We use the conjugate Dirichlet prior over all categorical dis-
tributions, i.e., � and φ1...l

0...k. The prior is symmetric with all
pseudocounts set to 1.

We use collapsed Gibbs sampling (16) to draw samples
iteratively from the posterior distribution in Equation (3).
In every iteration, we hold out a sequence Xi and conduct
two sampling steps: (1) sample the architecture identity yi
and (2) sample the important positions characterizing the
recently sampled architecture. Both steps are carried out by
analytically integrating out � and φ1...l

0...k. After each iteration,
the highest scoring set of parameters is retained. The whole
process is conducted several times and the over-all highest
scoring model is reported.

Model selection

Since we do not know a priori the structure of the model,
we determine it by varying the total number of architec-
tures k and the number of important positions for each ar-
chitecture. As both increase, the total likelihood in Equa-
tion (2) will theoretically increase, potentially resulting in
overfitting. To avoid this, we select the model that achieves



12390 Nucleic Acids Research, 2014, Vol. 42, No. 20

the highest likelihood in an unseen test set: we conduct a
standard 5-fold cross-validation process, where the model
is learned on four-fifths of the data and the likelihood is
computed on the held out one-fifth set. This process is re-
peated five times so that each sequence is tested once and
used for training four times. The model with the highest
cross-validation likelihood is selected as the final model.

Models used as classifiers

For classifying a genomic sequence s as better represented
by model M1 with parameters �1 or model M2 with param-
eters �2, we compute the log odds score as:

log odds score(s) = log
P(s | M1,�1)
P(s | M2,�2)

, (4)

where both likelihoods are computed using Equation (1). A
higher score implies a better fit with M1, while a low score
implies a better fit with M2.

Simulated datasets

Three sets were simulated. Each had a 1000 sequences with
a length of 100 bases. The first set had five different archi-
tectures, three of which were governed by 10 important po-
sitions and two of which were governed five important po-
sitions. The positions for each architecture were randomly
sampled from the 100 possible positions, independent of the
other architectures. The parameters for the categorical dis-
tributions at the important positions were sampled from a
Dirichlet distribution with all �s set to 0.1. This ensured
distributions that preferred one nucleotide over the other
three. All other positions for each architecture had uniform
probabilities of {A,C,G,T}.

The second set had only one architecture, where all posi-
tions had a uniform distribution of nucleotides. This is sim-
ilar to not having any motif. The third set also had only one
architecture, but the distribution over nucleotides was non-
uniform: the parameters for the categorical distribution for
each position were sampled from a Dirichlet distribution,
the �s for which were first sampled uniformly from 0.001 to
1. This implied different, low-entropy distributions at dif-
ferent positions, but no variation across sequences.

Biological datasets

Bacteria. Mtb TSS data in exponential growth and star-
vation condition were taken from Cortes et al. (17). The
sequences corresponding to −45 bp upstream and +5 bp
downstream from the TSS were extracted from reference
H37Rv sequence. The data for E. coli and K. pneumoniae
was taken from Kim et al. (18) where a total of 3746 and
3143 TSSs two bacteria are reported, respectively. Of these,
we identified a total of 2654 and 2339 as primary TSSs: this
included those TSSs that were associated to some gene by
the authors. In case of more than one TSS for a gene, the
TSS with maximum tags was chosen.

Fly. We used two fly datasets. The first was from Ni et al.
(8), which was reported using PEAT. They have categorized
all TSS clusters within non-coding regions as NP, BP and

WP based on the span of the cluster. The second dataset
was from modENCODE where Hoskins et al. (9) report an
integrated map of TSSs after combining data from high-
throughput CAGE, RACE and EST data, which we refer to
as the C-R-E dataset, to distinguish from the PEAT dataset.
They report a probabilistic distribution of TSSs across each
neighborhood. From this distribution, they compute an
entropy-based shape index to characterize the TSS spread.
In both datasets, the −45 to +45 region around the reported
modal position was extracted using the dm3 build (19). One
sequence each in the NP and WP set had unsequenced Ns;
these were removed from the analysis.

Human. The latest processed FANTOM5 data (10) was
used for the human genome. For each identified TSS clus-
ter, this included the number of tags in the 100 bp neighbor-
hood of the modal position and the entropy computed from
tags across 517 cell-types. The entropy lies in the range of 0
(most cell-type specific) to log2517 (broad expression). The
number of tags in the 100 bp neighborhood were used to
compute the interquantile range (IQR) for each promoter.
We used the 15 745 TSS clusters that had at least 100 tags
as has been done before (20). For every reported TSS clus-
ter, the −45 to +45 region from the modal position was ex-
tracted using the hg19 build; this resulted in non-repetitive
91 bp regions for 12 475 promoters.

Settings for JAPL and downstream analysis. JAPL was ap-
plied to learn all models with k varied from 1 (single archi-
tecture) to 13. In the case of bacteria the number of impor-
tant positions were taken from the set {10, 20, 51}. In the
case of the eukaryotes, since we had longer sequences, the
number of positions were taken from the set {10, 20, 50,
91}.

PhastCons (19) scores across 15 insects relative to
Drosophila and across 46 vertebrates relative to human were
used for the conservation analysis. H2A.Z nucleosome po-
sitioning data from drosophila embryos was taken from
Mavrich et al. (21). They report 146 bp nucleosome loca-
tions along with the number of reads associated with each
nucleosome. The position corresponding to the middle of
the nucleosome was assigned a score equal to the number
of reads, while the 73 bases on each side were given a lin-
early interpolated score between 0 and the number of reads.
In the case of human, we used the nucleosome signal for two
ENCODE tier-one cell-types GM12878 and K562 directly
(22).

For fly and human TSSs associated with RefSeq
genes, we used DAVID (23) to identify enriched GO-
terms: GOTERM BP FAT for biological processes,
GOTERM CC FAT for cellular components and
GOTERM MF FAT for molecular functions. To ac-
count for multiple hypothesis testing the Bonferroni
corrected P-values are reported. The full data is available
in Supplementary Tables S1 and S2. For Mtb, the TB
Database (24) was used for enrichment analysis. When
comparing significance of features specifically associated
with different architectures like TSS peak height, number
of tags, entropy, GC content etc., which are measured using
real numbers, the non-parametric Wilcoxon rank sum test
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is used. All downstream analysis was done in R, while
JAPL is written in C.

RESULTS

JAPL: joint architecture and position learning

We define the problem of identifying hidden promoter-
architectures as one of finding an optimal partitioning of
promoter sequences, where each partition is characterized
by a different distribution over the alphabet {A,C,G,T}. We
assume that each promoter sequence possesses one of k dis-
tinct architectures. Each architecture has a set of impor-
tant positions with probability distributions distinguishing
it from other architectures. For example, an architecture
may be characterized by a 6 bp TATA-box at −25 posi-
tion and a specific 10 bp downstream element at +12 po-
sition. Only these 16 positions are considered important in
the model, others are “unimportant” for characterizing that
architecture. Each unimportant position follows a back-
ground probability distribution, which is common across all
architectures for which the same position is also unimpor-
tant. We do not assume any prior knowledge about the iden-
tity or distribution of any of the important/unimportant
positions. If the structure of the model is fixed, i.e. k is
known and the number important positions per architec-
ture is known, identifying the architectures amounts to pa-
rameter estimation: (1) the important positions for each ar-
chitecture along with their distribution parameters and (2)
the background distribution for all positions. We use Gibbs
sampling for this purpose. Since we do not know a priori the
value of k or the number of important positions, we learn a
set of models by varying both quantities and determine the
optimal model through cross-validation.

As an example, we simulated a set of 1000 sequences
with five different architectures (Figure 1a) containing vary-
ing numbers of artificial promoters. Each architecture is
governed by 5 or 10 important positions, randomly sam-
pled during the simulation. All unimportant positions were
sampled from a uniform distribution over {A,C,G,T}, while
all important positions were sampled from a categorical
distribution, different from uniform (Materials and Meth-
ods). The sequences were randomly ordered after which the
largest architecture, containing 60% of the sequences, dom-
inates (Figure 1b). We believe this emulates the scenario in
real situations where a majority of promoter sequences can
weakly be explained by one or two rules. The goal here is to
identify all the smaller architectures as well.

JAPL is run with different values of k (drawn from {3,
4, 5, 6, 8, 10}) and combinations of number of positions p
(drawn from {5, 10, 100}) resulting in many different mod-
els (step 1 in Figure 1c). After learning all models, the mod-
els are assessed for their fit using 5-fold cross-validation and
the model achieving the highest average log likelihood is se-
lected as the final model (step 2 in Figure 1c, Materials and
Methods).

The Rand index is commonly used for comparing two
groupings of elements. The adjusted Rand index (ARI) is
the corrected-for-chance, more robust measure of the same
(25). A perfect grouping––one that matches with the sim-
ulated partition––achieves an ARI of 1 while a random
grouping gets an ARI of 0. We note that the cross-validation

likelihood value correlates with the ARI (Figure 1d). The
highest likelihood is achieved for the true underlying value
of k = 5, where the ARI is also close to 1. When all posi-
tions are considered important, which is inherently the case
in methods like k-means or hierarchical clustering, the mod-
els achieve neither high ARIs nor high likelihoods. This sug-
gests that when the underlying important features are only
few, using all features for identifying heterogeneity can re-
sult in incorrect partitions.

To test the robustness of JAPL, we explored two likely
scenarios. First, we assess the effect of not having learned
and tested a model with the true underlying structure. We
have shown that position selection is important, but testing
all possible models is not feasible. We only test a few rea-
sonable combinations of p. The original simulated set had
architectures with 5 or 10 important positions. But we re-
stricted the method to learn models with 20 important fea-
tures. The ARI is still close to 1 for k = 5. As we increase the
number of useful positions further to 30, 40 and 50, both the
likelihood and the ARI decrease, as expected (Supplemen-
tary Figure S1a). Second, we tested whether the method was
able to correctly detect the situation when there is a single
underlying architecture with no heterogeneity. We simulated
two datasets for this. The first one had all sequences drawn
from a uniform distribution over {A,C,G,T}, emulating the
scenario when there is no motif in the set, while in the sec-
ond set, each position had a different distribution, but with
no variation across sequences (Materials and Methods). We
applied JAPL to both datasets with different values of k and
p, but for each, the best likelihood was achieved at k = 1, in-
dicating that the method can decode the correct number of
hidden architectures (Supplementary Figure S1b).

Based on these observations, in the rest of the sections,
when we apply JAPL to real data, we report the model
selected according to the best cross-validation likelihood.
Note that it is computationally infeasible to search through
the space of all possible structures of models. Supplemen-
tary Figure S1a suggests that the accuracy of the learned
model is more sensitive to the number of architectures k
than to the precise number of important positions. We
therefore limit the number of models to be learned by ex-
ploring all reasonable values of k, but with p drawn from
approximately {all, half, . . . , 10} of the total positions.

Bacteria

Cortes et al. (17) recently published a genome-wide map of
TSSs in Mycobacterium tuberculosis (Mtb) under exponen-
tial growth as well as in a starvation model of growth ar-
rest using dRNA-seq (26). They identify a total of 4164 and
4133 TSSs in the two conditions, respectively. Of these, 1778
TSSs in exponential growth and 1707 TSSs under starvation
have been classified as “primary”: these are TSSs that can
be assigned to an annotated gene. In addition to the posi-
tions of the TSSs, they also quantify the expression level of
each TSS.

In their analysis, Cortes et al. use MEME and identify
two dominant classes of primary promoters based on the
presence (73%) or absence (23%) of the −10 motif TANNNT.
Since the extended -10 motif has been shown to occur in
some mycobacteria (27), they further split the first class
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Figure 1. Illustration of JAPL applied to a simulated dataset. (a) A total of 1000 sequences of length 100 were simulated from five different architectures
A–E, details of which are described in the table. (b) The sequences are reordered randomly. (c) JAPL is run on the permuted set. The number of architectures
k is varied across {3, 4, 5, 6, 8, 10}, while the number of important positions are varied across {5, 10, 100} (step 1). Final model is selected based on the
highest cross-validation accuracy (boxed likelihood value in step 2). A few representative learned models are displayed. When k is smaller than 5 (first
model) only the two biggest architectures are correctly identified. When k is larger (second model), the architectures are again not identified properly.
When k = 5 and the number of important positions in each architecture is close to truth, all architectures are identified (third model). Overestimating the
number of important features can cause spurious signals to be picked up (fourth model). (d) Average ARI over all cross-validation folds is plotted versus
the corresponding average likelihood score. For the true value of k (red), the best likelihood corresponds to an ARI close to 1. The circled points show
models that consider all 100 positions to be important. These models are unable to distinguish between signal and noise, achieving both, low ARI values
and low likelihoods.

based on variations within three bases preceding the mo-
tif. Next, by computing frequencies across all promoters
they concluded that the +1 position has a bias for A or G
(together constituting over 80% of the nucleotides) and the
+2 position has a bias for T (almost 50%). These frequen-
cies and the −10 motif can be observed in the sequences by
eye (Figure 2a) as well as in a logo format (28) (Figure 2c,
dotted box). We now show that these nucleotide frequen-
cies are not a general feature of Mtb promoters, but are a
consequence of not viewing them as a mixture of diverse
promoter-architectures, each with a different distribution of
nucleotides and possibly different regulatory function.

Mtb promoter-architectures have distinct transcriptional ac-
tivities. Promoter sequences corresponding to 45 bp up-
stream and 5 bp downstream of all 1778 promoters were

given as input to JAPL. Not surprisingly, JAPL identifies
TANNNT as a key feature of the promoters, but it detects a
total of nine distinct architectures (Figure 2b and c). The
primary distinguishing factor is the position of the motif,
which can appear at positions −11 (architecture A), −12
(architecture B, identified as three separate architectures
that we name B1, B2 and B3), −13 (architecture C, also sep-
arated into C1 and C2) or −14 (architecture D) relative to
the TSS. We refer to the distance of the first T of this motif
from the TSS as �.

Cortes et al. show a modest correlation between the pres-
ence of the TANNNTmotif and the expression level of the TSS
(Supplementary Figure S2, reproduced from Cortes et al.).
However, from the architectures identified automatically by
JAPL, we note that it is not the presence of the motif, but
the spacing between the motif and the TSS that better ex-
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Figure 2. JAPL applied to Mtb. (a) −45 bases upstream and 5 bases down-
stream of all identified TSSs are aligned and ordered according to their
position on the genome. Some signal can be identified visually within the
15 bp region near the TSS. (b) JAPL identifies nine different architectures,
labeled A–F, ordered according to the spacing � between the TANNNT motif
and the TSS. The number of sequences in each architecture is shown on the
left. (c) Logos and (d) fraction of leaderless transcripts are illustrated for
each architecture; the bottom dotted picture is computed from all promot-
ers. Note the presence of a pyrimidine at the −1 location in C1, C2 and D,
where � > 12. (e) JAPL identifies seven architectures in Mtb after starva-
tion. (f) Logos and (g) fraction of leaderless transcripts are illustrated for
each Mtb starvation architecture; the dotted picture is computed from all
promoters. (h) Both models have predictive power in identifying TSSs that
are not part of the training data. This is illustrated by using ROC curves
(blue for exponential and red for starvation conditions) and the area un-
der the curves (AUC). Simple, single architecture models perform worse
than the models learned by JAPL. (i) Although the two models are similar,
some TSSs are expressed in only one of the two conditions. The density
of the log odds scores computed from nine and seven architecture models
shows that TSSs expressed only during starvation have a low score (red),
TSSs expressed only during exponential growth have a high score (blue)
and TSSs expressed in both conditions have scores in between. Boxplots
of the expression level of TSSs in each architecture show the importance
of � in (j) exponential growth as well as (k) after starvation. (l) Boxplots
show the fold change in TSS expression after starvation when � decreases
(green), remains the same (orange), or increases (red) for genes with archi-
tectures characterized by a �. The number on top of each boxplot denotes
the number of TSSs in that category.

plains the expression level of the TSS. The TSS expression
is significantly higher in architecture A and monotonically
decreases as � increases (Figure 2j).

Although TANNNT is present at position −12 in architec-
tures B1, B2 and B3, they are different in composition: B1
contains an additional weak −35 motif, which was missed
in the original MEME analysis. This is not surprising since
this architecture contains a total of 162 sequences, less than
10% of the full set. However, its presence is significantly
associated with higher TSS expression when compared to
TSSs in B2 and B3 (P-value <6 × 10−4; Supplementary Fig-
ure S3), suggesting that the −35 motif may not be vital, but
is functional.

Architectures B3 and C1 contain a prominent purine
(A/G) at the +1 position followed by TG. A primary result
from the Cortes et al. CAGE experiments is that a large frac-
tion of Mtb transcripts are leaderless. Since the start codon
in Mtb is typically ATG or GTG, these two architectures ex-
plain the nucleotide frequencies observed in the original pa-
per at the +1 and +2 locations. Not surprisingly, the fraction
of leaderless transcripts is the highest in these two archi-
tectures (Figure 2d). Interestingly, the other seven architec-
tures display a close to background level of preference of T
at position +2 (27%). The preference of A/G at position +1
in the other architectures also is lower, albeit slightly (77%
compared to 84% in B3 and C1). This shows the importance
of characterizing the heterogeneity of the promoters explic-
itly: the overall nucleotide preferences as identified from the
full set can be misleading and better explained by decoding
the promoter-architectures.

Architectures E and F do not appear to contain TANNNT.
But E contains a motif TGNNANNNT, also identified by Cortes
et al. in their analysis; but these results suggest that there is
primarily one preferred location for this motif. F does not
contain any obvious motif, but has a prominent C at the
TSS, preceded by a weak A/G region.

We note another intriguing pattern that has not been
identified before. Architectures C and D, which have a
higher value of �, 13 and 14 respectively, have a strong pref-
erence for a pyrimidine (56% C and 35% T) at the position
just preceding the TSS. This is not the case in other archi-
tectures (37% C and 25% T).

Mtb promoter-architecture can change under starvation.
We next focused on the 1707 primary TSSs identified in
Mtb under starvation conditions. Applying JAPL to this set
results in seven architectures (Figure 2e–g), largely similar
to those identified in exponential growth, with a few minor
differences. Architectures C1 and C2 in exponential growth
appear as one C architecture here: JAPL does not separate
the leaderless transcripts, while architecture D is missing en-
tirely. This could be a result of a smaller number of promot-
ers reported under starvation as well as a different distri-
bution of architectures across the two environmental con-
ditions. The only other discernible difference is in the archi-
tecture that does not have an informative motif at the −10
position. Unlike F in exponential growth, this architecture
F’ does not contain a prominent C at the TSS. We believe
that F’ may in fact be a mixture of more distinct architec-
tures, but are not identified by JAPL due to a small sample
size.
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The relationship between the position of the −10 motif
and expression pattern of the TSS is nevertheless retained:
the TSS expression in architecture A is more than that in
B, which in turn is higher than that in C (Figure 2k, Sup-
plementary Figure S4). We asked whether a change of po-
sition is also correlated with the change in TSS expression
under starvation. Of the 1778 genes expressed in exponen-
tial growth conditions, 1512 were also expressed under star-
vation. Of these genes that were expressed in both condi-
tions, 1314 exponential growth TSSs belonged to an archi-
tecture characterized by a �: A, B, C, or D. Upon starva-
tion, the TSS of 133 of these genes changed by one, two, or
three bases such that they could be categorized as having
transitioned into an architecture with a different �. For ex-
ample, if a TSS of a gene originally in B moved by 1 (or
2) bp downstream under upon starvation, the promoter-
architecture is categorized as having changed to C (or D).
For each category of transition as well as for TSSs which re-
tained their architecture, the log fold change in TSS expres-
sion is plotted in Figure 2l. For genes where the TSS does
not change, the TSS expression also does not change signifi-
cantly (the fold change is close to zero; orange box plots). In
contrast, in cases where the architecture changes to one with
a larger �, the TSS expression goes down (red box plots),
while in cases where the architecture changes to one with a
smaller �, the TSS expression goes up (green box plots). A
gene enrichment analysis (24) identifies only the GO-term
‘growth’ to be significantly enriched (P-value ≤ 0.005) in the
133 promoters that underwent a change in architecture. In
contrast, no term is enriched in promoters that maintained
their promoter-architecture. This suggests that the control
of gene-expression may be facilitated by transcribing the
gene from a TSS that is either more or less optimal, with
a major role played by the spacing between the −10 motif
and the TSS.

JAPL can be used to predict TSS expression at a new genomic
location. We explored whether the two models learned by
JAPL had any predictive power in identifying the function-
ality of a previously unseen genomic position as a poten-
tial TSS. Since JAPL is a likelihood based model, any new
DNA sequence can be scored using the trained model. We
did a genome-wide prediction of TSSs, by computing the
likelihood score over each 51 bp window in Mtb using the
exponential growth model with nine architectures. Of the
4164 original predictions made by Cortes et al., we removed
the 1778 primary TSSs which were used to train the model,
to get an unbiased test set of 2386 TSSs. We constructed
the standard receiver-operating characteristic (ROC) curve
and assessed the predictive power of the model by the area
under the ROC curve. For comparison, we also made pre-
dictions using a single-architecture model, essentially con-
sidering overall distributions at each position from the full
1778 set. The nine architecture model clearly outperforms
this simple model (Figure 2h, blue curves). Similarly, in the
starvation condition, our test-set consisted of 2426 unseen
TSSs. Here too the seven architecture model outperforms a
single architecture model (Figure 2h, red curves), illustrat-
ing the utility of the models in identifying novel TSSs.

We next explored the extent of the difference between
the two trained models themselves. After combining all the

Figure 3. Promoter-architectures in two other bacteria. (a) Eight architec-
tures are identified in E. coli, only one of which does not contain the −10
motif. (b) Nine architectures are identified in K. pneumoniae; three have no
clear −10 motif. Note the presence of a pyrimidine at the −1 position in all
architectures where the −10 box is more than 12 bp upstream of the TSS
in both bacteria.

identified TSSs across the two conditions and removing pri-
mary TSSs which were used for training, we found that
985 TSSs were detected only in exponential growth, 1027
TSSs only during starvation and 1340 TSSs were detected in
both conditions. The two trained models were used to com-
pute the log odds score for each TSS, where a higher score
suggests expression in exponential growth while a lower
score suggests expression during starvation. The log odds
scores are significantly different across the three groups
(Figure 2i; P-value < 10−12): TSSs expressed only in ex-
ponential growth have a higher score than TSSs expressed
in both conditions, which in turn have a higher score than
TSSs expressed only during starvation. This is surprising
since well over two-thirds of the TSSs are common across
the two training sets and the promoter-architectures within
the two models are also similar to the eye (Figure 2b and
e). This suggests that although the architectures themselves
do not vary much, the change in the overall distribution of
the architectures has power to discriminate between the two
conditions.

Promoter-architectures in E. coli and K. pneumoniae. The
relationship between the −10 motif spacing and the expres-
sion of the TSS in Mtb is striking and new. To investigate
whether this is an Mtb-specific phenomenon, we looked at
other bacteria for which genome-wide TSS data are avail-
able, namely E. coli and K. pneumoniae (18). Both species
were profiled in mid-exponential phase through modified 5′-
RACE followed by sequencing. We used a pipeline similar
to Cortes et al. to identify 2654 primary TSSs in E. coli and
2339 in K. pneumoniae from their dataset.

Eight architectures are detected in E. coli (Figure 3a).
Seven of them have variations of the −10 motif TANNNT and
as in the case of Mtb, it occurs at positions −11 (A), −12
(B1/B2/B3), −13 (C1/C2), or −14 (D) relative to the TSS.
The −35 motif is more prevalent in E. coli, as expected (29).
However, there appears to be a compensatory effect in the
information content of the −35 and −10 motifs: architec-
tures B1 and C1 have a strong −35 motif, but the overall
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information content of the −10 motif is low. In contrast,
at places where the −35 motif is absent (B2 and C2), the
−10 motif is stronger. A similar effect is present in cases
with the extended −10 motif TGNTANNNT. The presence of
the G in the extension compensates for a weaker −10 motif.
Both these observations have been noted before in bioinfor-
matic studies targeted towards understanding dependencies
within −35, −10 and extended −10 motifs (30). Here we ar-
rive at these conclusions without using any prior knowledge
about bacterial binding sites.

Architecture E contains neither of the two motifs and has
different nucleotide frequencies at the TSS. The fraction of
sequences containing a C at the TSS in all other architec-
tures is low (between 0.02 and 0.1), but in the case of E, it
goes up to 0.4. The initiator nucleotide changes from A/G to
A/C. This could imply that in the absence of a −10 and −35
motif, E. coli uses a different mechanism for transcription
initiation.

In the case of K. pneumoniae, JAPL identifies nine opti-
mal clusters, six of which contain the −10 motif at positions
−11 to −14 (Figure 3b). Interestingly, architectures B and C
get split into two each, not based on the presence or absence
of the −35 motif (a weak −35 motif appears throughout),
but because of the overall background frequencies. In the
case of Mtb and E. coli, the optimal models had only a few
important positions in each architecture. In contrast, in K.
pneumoniae all nine architectures have different nucleotide
frequencies at each position. B2 and C2 have GC-rich pro-
moters (over 50% GC) while B1 and C1 contain more AT-rich
promoters (39% GC). Three architectures contain no −10 or
−35 motif: these are primarily different at the initiation re-
gion and could again imply diverse regulatory mechanisms.

Notably, in both these bacteria, the presence of a pyrimi-
dine is conspicuous at the −1 position in all architectures
where the −10 motif starts at −13 or −14. This is simi-
lar to our results in Mtb. Also similar to Mtb, all archi-
tectures with the −10 motif have a TSS expression signif-
icantly higher than those without the motif in both, E. coli
and K. pneumoniae (P-value < 10−16, Supplementary Fig-
ure S5). However, there is no obvious relationship with the
TSS expression and the position of the −10 motif. This sug-
gests that although the pyrimidine at the −1 position seems
species invariant, the �-TSS expression association is Mtb-
specific.

Fly

Genome-wide experimental identification of TSSs in the fly
has been conducted by various groups (8,9,31). We first
focused on the high-resolution data reported by (8) using
paired-end analysis of TSSs (PEAT) in Drosophila embryos.
This dataset contains 4339 TSS clusters, classified as narrow
peaks, broad peaks and weak peaks based on the mapped
read distributions. A narrow peak (NP) is defined as one
where the TSS cluster spanned less than 25 nucleotides
and the mode of the cluster had more than half the reads
mapped to the cluster. A broad peak (BP) is one where
the mode still contained over half the mapped reads, but
spanned more than 25 nucleotides. All other promoters are
classified as weak peaks (WPs). In their analysis, Ni et al.
aligned all TSS clusters according to the respective modes

and evaluated the enrichment of eight known Drosophila
promoter motifs––Motif1, DRE, TATA, INR, DPE, Mo-
tif6, Motif7 and MTE––at various locations along the pro-
moters in the three PEAT sets separately. They found dif-
ferent motifs to be enriched in each set. Furthermore, they
showed that the NP set has a stronger preference for a TCA
at the −2 position than the BP set, which in turn, had a
stronger preference for the 3-mer than the WP set (Fig-
ure 4d, dotted boxes). In this section we show that these
preferences are not generic to all sequences in the sets, but
in fact, each set contains several more intricate patterns, ap-
parent by decoding the hidden architectures.

Distinct architectures in PEAT TSSs. We applied JAPL to
the NP set containing 1415 TSSs, the BP set containing 781
promoters and the WP set containing 2141 promoters sep-
arately. In the NP set, the optimal model contains 11 archi-
tectures (Figure 4a). Architectures NP1–NP5 contain the
TATA-box, but these are at varying distances from the TSS
and more intriguingly are accompanied by different motifs
at the TSS (Figure 4d). The INR motif, typically found at
the TSS, and in NP4 and NP5, has a consensus of TCAGT (8),
but the motifs in NP1, NP2 and NP3 are different. At TSSs
in NP1, information content is lower and the consensus is
more spread out, while NP2 and NP3 have a CATCAGT and a
CACAGT at the TSS, respectively. These motifs look like vari-
ants of INR where the first T at −2 is not significant and
one (in NP3), two (in NP2) or three (in NP1) nucleotides
are inserted between C and AGT of the INR. These variants
have not been identified before. A GO-term analysis with
DAVID (23) revealed functional terms associated with cu-
ticle formation to be significantly enriched in NP2 (P-value
< 1.2 × 10−19; Supplementary Table S1).

Architectures NP6 to NP8 contain no obvious TATA-
box, but contain stronger downstream signals. NP6 con-
tains a match to DPE, but NP7 and NP8 contain novel sig-
nals. NP9 contains a TCT motif in place of INR. This mo-
tif has been known to be present at the TSS of ribosomal
protein genes in many eukaryotes including Drosophila (32).
Indeed, GO-term analysis reveals several ribosome related
terms to be enriched in this architecture (P-value < 3 ×
10−90). NP10 has the smallest number of sequences, which
contain a weak variant of the INR motif at the TSS. NP11
does not contain any informative positions.

For the other two sets, BP and WP, JAPL identifies five ar-
chitectures each. BP1 and WP1, both contain a weak match
to INR along with a T-rich region 35-40 bases downstream
of the TSS. GO-term analysis reveals that several lumen-
related genes are enriched in both these sets, suggesting that
these architectures may be specific to lumen development.
BP5 and WP2 are also similar to each other: they contain
the fly promoter element Motif1 (8) at the TSS along with a
weak upstream match to Motif6 (8). Both these motifs have
been shown to co-occur in previous promoter analyses (13),
but here we show that the distance between the two motifs
is maintained and the architecture is specific to TSSs with
broader distributions.

BP3 is characterized by the TCT motif and like NP2, this
group too is enriched for ribosome related genes. At this
point we are unable to explain why some of these architec-
tures are enriched for genes with specific functions (Supple-
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Figure 4. Architectures in three fly promoter classes from PEAT data. (a) A total of 11 architectures are detected in the NP set, five in the BP set and
another five in the WP set. (b) Conservation at each position corresponding to sequences in each architecture is plotted. (c) The corresponding H2A.Z
nucleosome signal in the 2000 bp window around the TSS in each architecture is shown. (d) The logos (left scale) and the average conservation score (pink,
right scale) for each architecture are plotted. The dotted boxes show the average profiles for both quantities for the full NP, BP and WP sets, respectively.
While the central three positions −2, −1 and +1 have similar nucleotide distributions across the sets, the component architectures have strikingly different
distributions.
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Figure 5. Predictive power of PEAT models. (a) Models from the cross-
validation training sets were used to compute log odds scores on respective
test sets and ROC curves were used to evaluate three classifiers: NP versus
WP (red), NP versus BP (black) and BP versus WP (blue). NP and WP sets
are the most separable based on JAPL models. (b) All positions within a
C-R-E promoter are tested for being a TSS and the highest likelihood is
returned for each of the three PEAT models. The promoters are ordered
according to increasing SI on the X-axis and each point corresponds to
the average log likelihood score of a bin of 50 promoters according to NP
(red), BP (grey) and WP (blue). NP log likelihoods are positively correlated
with the SI, while WP log likelihoods are negatively correlated with the SI
(P-value < 10−16 for both). The BP log likelihoods have a weak negative
correlation with the SI (P-value < 10−4). (c) A histogram of the relative
offset of a prediction of the TSS in the Peaked C-R-E promoters by the
PEAT NP model with respect to the reported mode of the distribution
is shown. (d) The C-R-E TSS probability distribution and the NP model
predictions are plotted for the three Peaked promoters used by Hoskins
et al. for illustration purposes in their paper. (e) The C-R-E TSS probabil-
ity distributions over all promoters not in the PEAT dataset are ordered
according to their SI on the left. The NP model log likelihoods of TSSs
over the corresponding regions are shown on the right. The position of the
demarcator SI of −1 for Peaked promoters is shown in bold.

mentary Table S1). For example, WP5 contains a unique
motif at the TSS, not resembling the INR, and this archi-
tecture is prevalent among genes that are important for mi-
tochondria.

To measure the predictive power of the models to iden-
tify novel TSSs in the same class, we used the log odds
scores to distinguish between NP and WP classes, NP and
BP classes, and BP and WP classes (Figure 5a: red, black
and blue curves, respectively). The testing was done using
5-fold cross-validation ensuring that no promoter that was
used for training was also used for validation of the same
model. The ROC curves show that NP and WP promoters
are more different from each other (AUC = 0.93) than are
NP and BP (AUC = 0.79) or BP and WP (AUC = 0.71).
This is also apparent from the similarities in some of the
architectures across the three models.

Architectures have distinctive conservation and chromatin
features. We used the phastCons scores (19) computed for
the fly genome using 14 related insects to study evolution-
ary profiles of the architectures (Figure 4b). The score at
each position lies between 0 (least conserved) and 1 (most
conserved). In most architectures we note that high infor-

mation content relates to higher conservation (Figure 4d).
This relationship fails in the case of BP5 and WP2. Intrigu-
ingly, sequence conservation at Motif1 at the TSS and at
the upstream Motif6 is distinctly lower than analogous po-
sitions in other architectures. This architecture appears to
be Drosophila-specific.

The dotted boxes in Figure 4d show the average infor-
mation content and the conservation across each set, with-
out separating the architectures. Three regions in the NP
set are conserved: −35 to −20, −5 to 10 and 25 to 35. But
when the architectures are decoded, a compensatory effect
between the upstream and the downstream components be-
comes apparent, both, in terms of information content and
sequence conservation.

Rach et al. (20) showed that nucleosomes, specifically
the H2A.Z variant, displayed varying patterns across the
three sets. We therefore analyzed embryonic H2A.Z nucle-
osome occupancy data from (21) in the 2000 bp window
around each promoter. Broadly consistent with results of
Rach et al., the WP set has more well-positioned H2A.Z
nucleosomes downstream of the TSS than the BP set, which
in turn has more well-positioned H2A.Z nucleosomes than
the NP set (Figure 4c). However, this is not true for all
architectures within the three sets. NP10 and the TCT-
containing NP9 possess well-positioned nucleosomes, while
BP4 clearly lacks them. Promoters with the TCT motif have
been shown earlier to display these characteristics (20).

Looking at the similarities across promoters within the
NP & BP and BP & WP sets, we asked whether applying
JAPL to the combined set can be better at separating the
three sets. JAPL identifies 12 architectures fly1 to fly12 in
the full set of 4337 promoters (Supplementary Figure S6).
All promoter elements that were identified in the separate
sets, such as the Motif 1, variations of INR, T-rich regions,
etc. are detected in the full set as well. Architectures fly1
to fly7 are dominated by NP promoters, while fly8 to fly12
mostly contain WP promoters. Not surprisingly, architec-
tures that are similar across the sets in Figure 4a, get identi-
fied as one here. These results, combined with the sequence
conservation and nucleosome occupancy, suggest existence
of two distinct sets rather than three. Interestingly, over a
fifth of the promoters contributing to the four TATA-box-
containing architectures (fly1 to fly4) are from the WP set.
This shows that having a TATA-box does not always imply
a narrow peak, at least as defined by Ni et al. However, nei-
ther did the TATA-box come up as overrepresented in the
WP set in their analysis (8), nor is any TATA-box containing
architecture detected by JAPL in WP (Figure 4). This is be-
cause these TATA-box containing promoters make up less
than a tenth of the complete WP set and sequences in each
of the four architectures separately make up even less than
that. Taken together, this further supports our rationale of
explicitly identifying architectures based on sequence fea-
tures instead of doing average analyses across all promoters,
or those divided into classes based on a single regulatory
feature.

TSS distribution can be predicted accurately at unseen ge-
nomic locations. As part of the modENCODE project, fly
TSSs have also been mapped separately using CAGE and
5′ RLM-RACE (9). The authors have further produced an
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integrated map of TSS distribution from these two methods
combined with RIKEN embryo EST data (31). This map,
which we will henceforth refer to as the C-R-E data, con-
tains 12 454 promoters across 8037 genes. Over each C-R-E
promoter, Hoskins et al. (9) computed a probabilistic distri-
bution of each nucleotide being a TSS, based on which they
defined a shape index (SI) per promoter. A higher SI im-
plies focused transcription, with most of the transcription
occurring from one or two positions, while a lower SI im-
plies dispersed transcription with a broad TSS distribution.
Hoskins et al. used a cut off of −1 to demarcate the bound-
ary between “Peaked” (2382) and “Broad” (6603) promot-
ers. The remaining 3469 promoters were not classified as ei-
ther, due to low tag count or class-instability.

We used the three models learned from the PEAT dataset
on the C-R-E Peaked and Broad promoters. In order to as-
sess the models’ sensitivity in locating new promoters, we
removed the 3204 regions that intersected with any pro-
moter in the PEAT set. This left us with 1886 Peaked and
3895 Broad C-R-E promoters. We used the NP, BP and
WP models separately on all these regions by evaluating
the likelihood of every position within the region for be-
ing a TSS. The highest log likelihood value over a promoter
was assumed to be its score. The three scores––NP, BP and
WP––correlate differently with the shape index (Figure 5b).
The WP definition of the PEAT data is more similar to the
the Broad peaks definition in the C-R-E set, while the NP is
more similar to the Peaked promoters. This is interesting for
two reasons. First, this set contains no promoter on which
any of the NP/BP/WP models were trained. These results
are therefore on an entirely unseen dataset, illustrating the
predictive power of the models. Second, the definition of a
peaked promoter in the PEAT set differs from the shape in-
dex associated with the C-R-E set.

For all C-R-E promoters with SI >−1, we computed the
difference in the predicted TSS based on the NP model and
the mode of the C-R-E probability distribution (Figure 5c).
For over 60% of the promoters this difference is within
two nucleotides. Interestingly, the Hoskins et al. report that
TSSs predicted by the three methods in the data––CAGE,
RLM-RACE and EST––are also within 2 nucleotides of
one another. Figure 5d shows the C-R-E probability dis-
tribution over a 200 bp neighborhood of three Peaked pro-
moters used for illustration purposes by Hoskins et al. The
log likelihoods from the NP model across the regions are
unambiguously the highest at the C-R-E TSS. This trend
persists in high SI promoters and diminishes as the SI re-
duces (Figure 5e).

Human

The FANTOM5 database (33) contains CAGE tags from
517 human samples. After pooling these tags, Frith et al.
(10) identified 17 039 promoters which can be attributed to
a RefSeq gene (34) within 50 nucleotides. From tag distri-
butions along a 100 bp window the authors computed the
interquantile range (IQR), which is a measure of the TSS
spread. From the tags arising from individual cell-types,
they computed the entropy, which is a measure of cell-type
specificity for each promoter. From the sequence of the pro-
moters, they computed CpG islands and the TATA-boxes in

each promoter as well. They concluded that many of these
features are correlated. We used −45 bp upstream and +45
bp downstream of all identified TSSs with at least 100 tags.
Upon removing regions having repetitive elements (19), we
were left with 12 475 TSSs associated with some RefSeq
gene. JAPL was applied to the full set.

Human promoters have far more overall heterogeneity.
JAPL identified eight architectures, while selecting all 91
positions as relevant (Supplementary Figure S7). Architec-
tures A and B have a TATA-box, C has a pyrimidine-rich
region at the TSS, while all other architectures D–H have
variants of pyrimidine followed by a purine at the TSS.
Now, JAPL, when identifying important positions, exploits
that notion that the frequency distribution of each non-
important position is invariable across all architectures for
which the same position is also non-important. However,
the eight architectures have very different frequency distri-
butions over all, evident from the fact that all positions are
selected as important. We therefore investigated the possi-
bility of each of these architectures being further composed
of multiple distinct architectures, with a few key differing in-
formative positions. So JAPL was applied separately to each
of the eight architectures. For four of them (D, E, F and H),
the selection method did not detect more than one architec-
ture, implying lack of heterogeneity within them. But the
remaining four architectures, A, B, C and G, were further
separated into four, five, five and two architectures, respec-
tively (Figure 6a, Supplementary Figure S8).

Identified architectures are associated with distinct functional
features. Architectures A1–A4 have similar CpG content
(Figure 6a and b) and are characterized by a TATA-box
∼30 bases upstream of the TSS. In all four architectures,
the TATA-box location is conserved across vertebrates (Fig-
ure 6a, pink curves). The differences across the architectures
are subtle, but significant. The TATA-box in A2 is shifted by
one base upstream relative to A1. A3 and A4 have a weak
TATA-box and variations near the TSS. The −3, −2 and −1
positions in A3 have a preference for a pyrimidine: 99.6%,
84% and 94%, respectively, which reduces dramatically in
A4 to 0%, 44.9% and 81.2%, respectively. While this may
be the only difference between the promoters in terms of
sequence, the TSS spread across these promoters is also dif-
ferent. The IQR values, where a low value implies more fo-
cused transcription, are significantly different (P-value < 5
× 10−4): the string of pyrimidines may play a role in ensur-
ing a smaller spread of transcription (Figure 6c). Overall,
though, all four A architectures have a lower TSS spread
with respect to other architectures.

Architectures B1–B5 also have an AT-rich region 30 bp
upstream of the TSS, which resemble weak TATA-boxes or
TATA-boxes at variable distances from the TSS. B1 is in-
teresting due to its highly informative and conserved down-
stream region. Over 60% of the genes in this set are in fact
small nucleolar RNAs, of which the ATGATG is a strong
structural component (35). B2 contains a 15 bp stretch of
pyrimidines just upstream of the TSS. A TATA-box fol-
lowed by a region of pyrimidines with a dominating T, like in
B2, has been identified and shown to play a regulatory role
in a few genes in yeast (36,37). But as per our knowledge,
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Figure 6. Twenty promoter-architectures in the human genome and their
characteristics. JAPL was run on the eight original architectures detected
by JAPL (Supplementary Figure S7). (a) Architecture A was further split
into four architectures based on the position of the TATA-box and se-
quence variations at the TSS. Architecture B was split into five architec-
tures based primarily on variations near the TSS. Architecture C was also
split into five architectures, based on the TCT motif at the TSS and down-
stream nucleotide variations. Architectures D, E, F and H were not split
further. Architecture G was split into two architectures based on depen-
dencies within nucleotides at the −1 and +1 position. The median conser-
vation score for each architecture is plotted on top of the logos in pink. The
two quantities on each logo indicate the number (n) of TSSs contributing
to the architecture and the percentage of TSS neighborhoods falling in an
annotated CpG island. (b–d) Boxplots of four different features normally
associated with regulatory functions of promoters are displayed for each
architecture: overall CpG dinucleotide content, IQR (high IQR → large
spread), total tags mapping to the TSS neighborhoods across experiments
and entropy (high entropy → low cell-type specificity).

this feature has not been detected in the human genome at
this scale. (38) showed that TATA-binding proteins can bind
poly-T tracts and that a small fraction of human core pro-
moters contain a TATA-box followed by a T-rich region up-
stream of the TSS.

Architectures B3 and B5 have the same variations at the
TSS as those in A3 and A4. The three nucleotide stretch of
pyrimidines just upstream of the TSS in conjunction with
the TATA-box is prevalent in A3 and B5. The preference
for a pyrimidine, purine at −1, +1 at human TSSs is known
(39). However, from the preferences at these locations in
B3–B5, we note that a TG or CA is more prevalent: when-
ever a C appears at −1, A appears 85% of the time at +1 and
whenever a G appears at +1, it is preceded by a T almost 70%
of the time.

The strength of the TATA-box is not the only difference
between architectures B2–B5 and A1–A4. First, TSS neigh-
borhoods in B2–B5 have far fewer total tags than any other
architectures (Figure 6d). Second, these architectures have a
higher TSS spread (Figure 6c). This may be attributed to a
weaker TATA-binding signal. Third, they have more cell-
type specific expression patterns (Figure 6e). Finally and
most strikingly, these sequences are significantly depleted
in CpG dinucleotides (Figure 6a) and in C and G in general.
This implies that the TATA-box alone should not be consid-
ered when exploring functionalities of the promoter, instead
its existence needs to be treated in conjunction with other
features. Results of architectures A and B together suggest
that a strong TATA-box within a CpG-rich promoter func-
tions differently in terms of spread and cell-type specificity
than a weak TATA-box within an AT-rich promoter.

Architectures C1–C5 have more CpG dinucleotides than
A and B, and lack the TATA-box. C1 has only 17 promoters,
with high information content: they all belong to the zinc
finger family of proteins. 13 of these proteins occur on chro-
mosome 19 and are possibly a result of gene-duplication
(40).

Architecture C2 contains the TCT motif and as in the
case of Drosophila, a GO-term analysis reveals enrichment
of ribosome related functions (P-value < 10−40). It also con-
tains genes with the most number of tags (Figure 6d), pos-
sibly since these genes are required in large numbers. Archi-
tectures C3, C4 and C5 contain a variant of the TCT motif
with the C at the +1 position replaced by a C/G. But more
strikingly, the downstream sequence characteristics in these
architectures are different. C3 and C5 contain a G/T at po-
sition +13, while C4 contains a C/A. This is not a spurious
characterization, since the +19 region also differs across the
three architectures. In C3, there is a preference for a CTG,
which is known to be part of the DCE motif in eukaryotes
(41). We are not aware of the function of the downstream
motif in C5.

Architecture D contains fewer CpG dinucleotides and a
weak stretch of purines between the +23 to +30 region. Ar-
chitectures E, F and G1 vary in CpG content, but contain
a strong A at the TSS, preceded by a slightly weaker C. Ar-
chitectures G2 and H, on the other hand, contain a G at
the TSS, preceded by a much weaker C. This difference in
the probability of C at the −1 position could result from the
CpG methylation present at −1 and the subsequent muta-
tion of a C to a T. If the C on the positive strand methylates
and mutates, this will result in a G at +1 preceded by a T. In
contrast, if the C on the negative strand gets mutated to a
T, this will result in an A at the TSS. The strong C preceding
a A at TSS and a weak C preceding the G at TSS provides
support to this conjecture. Finally, although architectures
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G and H have similar CpG frequencies (Figure 6b), they
differ in C and G proportions: G is more C-rich (42% C, 31%
G) while H is more G-rich (29% C, 42% G). Although they
have fairly similar IQR values, number of tags and entropy
values, genes in H are enriched for being part of the lumen
(P-value < 10−8), suggesting that G-rich promoter elements
may be important for that function. The GO-term analysis
for all architectures are available in Supplementary Table
S2.

As in the case of fly promoters, we analyzed the nucle-
osome structure around human promoters. We used the
nucleosome signal data from ENCODE for the GM12878
cells (22). Generally consistent with results from (20), the
promoter-architectures associated with a large TSS spread:
C, F, G1, G2 and H have well-positioned nucleosomes
downstream of the TSS (Supplementary Figure S8). How-
ever, architectures D and E, which have similar IQR values
(Figure 6c), do not display the strong downstream nucle-
osome organization. The lower CpG-content in these ar-
chitectures may play a role in this apparent lack of chro-
matin structure. Furthermore, the expression patterns of the
promoters within these two architectures show somewhat
higher cell-type-specificity (Figure 6e), suggesting the pres-
ence of architectures with multiple distinguishing features:
no TATA-box, low CpG-content, fewer well-positioned
downstream nucleosomes, low expression breadth across
cell-types, but TSS spread that is similar to other TATA-less
promoters.

Interestingly, although both A and B have a TATA-box
upstream of the TSS, the nucleosome positioning as with
the other characteristics discussed earlier is different across
the two sets. Architecture A has a nucleosome free region
just upstream of the TSS, which is lacking in architecture B.

The TSS data were pooled from several different cell-
types, so no nucleosome data from a single cell-type are
technically appropriate here. But assuming that human
DNA encodes high levels of nucleosome occupancy (42),
we use these data as an approximate indicator to chromatin
structure at most promoters. Moreover, the overall results
do not change when we use another cell-type (Supplemen-
tary Figure S9).

DISCUSSION

We have introduced a new organism-independent method
for identifying promoter-architectures. This method learns
important promoter elements automatically from the data
without getting biased to what is known in the literature.
We detected novel architectures in all organisms on which
JAPL was applied. For example, although bacterial pro-
moters have been studied for decades, the relationship be-
tween the pyrimidine at the −1 position and the position
of the −10 motif has not been noted before. It is possible
that the presence of the pyrimidine ensures that transcrip-
tion does not occur from the −1 or −2 position, since most
bacteria favor a purine (A/G) at the TSS (27). This would ex-
plain why the pyrimidine occurs significantly only in those
architectures where the spacing between the −10 motif and
the TSS is larger than the canonical distance (43), i.e. first T
in the TANNNT is at position −12 with respect to the TSS. The
same correlation is apparent in TSS data from pathogens

Salmonella (44) and Helicobacter (26) (not discussed in de-
tail, but shown in Supplementary Figure S10) and we there-
fore suspect that this is a widespread bacterial phenomenon.
Interestingly, only in Mtb, the spacing between the −10
motif and the TSS is correlated with the expression of the
downstream gene. The larger the spacing, the lower is the
transcriptional activity. Since transcription in Mtb can be-
gin from any nucleotide (27), we hypothesize that when sub-
jected to environmental stress, this spacing may be key to-
wards modulating gene expression.

In Drosophila, the method identified several new variants
of the INR element, which are correlated with the position
of the upstream TATA-box. We found a new element that
may be associated with cuticle development. We showed
that although chromatin characteristics correlate with the
TSS spread, some architectures such as those containing
the TCT-motif can dilute the overall correlation and need
to be studied separately. Similarly, although promoters with
a narrow peak have higher sequence conservation, the up-
stream and downstream conservation is compensatory in
nature. Only after unraveling the individual architectures
can these properties of promoters be understood. In human,
we find 20 different promoter-architectures accounting for
over 12 000 genes. From the full set of TSSs the method
was able to identify small clusters of zinc finger proteins and
small nucleolar RNAs automatically. We also show the im-
portance of using all the data without any prior partitioning
based on features like the TSS spread. Since the measures
for the TSS spread can change based on the person defining
it: from the use a Gaussian distribution (8) to the interquan-
tile range (10) to the entropy of the TSS distribution (9), we
suggest identifying architectures based on sequence features
first, and then focus on understanding how those architec-
tures might affect regulation. Our analysis shows that hu-
man promoters have a lot more heterogeneity in terms of
sequence, cell-type specificity, TSS spread and chromatin
structure. It is not sufficient to divide them solely on the
basis of the TATA-box, CpG islands, expression breadth
or TSS distribution to understand their regulatory mecha-
nisms. While many of these characteristics are correlated, as
evident from this and earlier analysis (10), the correlations
are far more complex, with no single characteristic sufficient
to dictate the behavior of the transcription initiation.

Most importantly, we present a new way of analyzing
TSS data. Methods developed so far can be categorized into
three groups. The first kind assess enrichment of known
promoter elements such as TATA-box, INR, DPE, GC-
richness etc. in the TSS neighborhood (45,46) and estimate
various classes of promoters (47,48). Their results depend
directly on elements considered and are therefore organism-
specific. The second kind use a two-step approach: apply de
novo motif discovery first and then build a model on top
of enriched motifs or words (13,49). Their efficacy depends
on the accuracy of both steps. Since the first step identifies
motifs that are overrepresented across the whole set, motifs
that are present specifically only in a few promoters cannot
be detected. For example, we were unable to find any study
that identifies the TCT motif pertaining to ribosomal genes
from large-scale studies, without prior knowledge, since it
is present in a small set of TSSs. The third kind use se-
quence characteristics of the promoter set and a control set
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to learn features specific to the former. The primary aim
of these methods is to distinguish between promoters and
non-promoters. A wide range of modeling techniques have
been used for this purpose: position specific Markov mod-
els (50), linear regression (51), decision trees (52), artificial
neural networks (53) and support vector machines (54).

JAPL does not fall into any of these categories. The goal
of this work is not to produce a black-box classifier that
can predict whether a region along a genome has poten-
tial for being a promoter or a TSS. Indeed, we believe
that newer, inexpensive and fast high-throughput experi-
ments do exactly that. Instead, our aim is to understand
the mechanism behind each TSS getting reported in these
experiments. Our approach explicitly unravels each possi-
ble promoter-architecture. Furthermore, it adopts a format
akin to the widely popular position weight matrices (55)
used to represent protein-DNA binding sites. The resulting
architectures therefore directly provide insights into regula-
tory mechanisms behind the expression of each TSS. That
said, we have demonstrated that the likelihood-based nature
of the models make them amenable to be used as classifiers
to distinguish between promoters and non-promoters (Fig-
ure 2h), or promoters in two different cell-types (Figure 2i),
or promoters with two different characteristics like broad
peaks and narrow peaks (Figure 5a). Finally, the generative
model formulation of the promoter-architectures has impli-
cations in synthetic promoter biology. The positions identi-
fied as important can potentially be used to create promot-
ers having regulatory characteristics pertaining to that ar-
chitecture.

JAPL by itself can be considered as an unsupervised
learning/clustering method with feature selection. Machine
learning methods that perform feature selection can be
broadly categorized as filter, wrapper and embedded meth-
ods. Filter methods preprocess the data to identify key fea-
tures before learning the clusters; wrapper methods search
through the space of features and after learning the clusters
on various subsets, select the best set of features; while em-
bedded methods lie in between, with feature selection being
part of the objective function (56). Wrapper methods, the
category in which JAPL belongs, are typically more accu-
rate that the other two, but are slower in speed. We have built
on the model developed by Vaithyanathan and Dom (57) to
cluster documents, where they use a probabilistic represen-
tation of the problem and learn a global subset of useful fea-
tures across all clusters. We relax this condition and instead,
allow each architecture to have its own distinct set of use-
ful positions. Although this increases the complexity of the
model, such a model is more suited to our problem where
certain positions may be important only for a few specific
architectures.

The model can be further improved in three ways. First,
the cross-validation approach towards learning the best
model involves learning several models by varying the num-
ber of architectures k and the number of important posi-
tions. Indeed, the number of combinations grows exponen-
tially with k (Supplementary Figure S11). The current algo-
rithm can deal with models of at most 15 architectures and
few possibilities of important positions. However, for larger
datasets and more complex models, a more efficient opti-
mization technique will be beneficial. Second, JAPL cur-

rently assumes a common background across all architec-
tures for an unimportant position. This works for lower or-
ganisms like bacteria and fly, but not for the human genome:
eight architectures with different distributions at all posi-
tions are identified and then, within four of those, JAPL
identifies further heterogeneity. This is due to the large lo-
cal sequence heterogeneity within mammalian promoters
such as GC-rich promoters, promoters within CpG islands,
AT-rich promoters, and of course, promoters that do not
fit in any of these categories. Relaxing the common back-
ground assumption might help: instead, the background
can be common across a set of architectures, which will be
another parameter to be learned. Third, here we report only
the top scoring model. However, there is usually a small set
of models that score higher than others in the datasets (Sup-
plementary Figure S12). These top-scoring models are typi-
cally similar in nature, but differ slightly in the number of ar-
chitectures: a few architectures get merged or one gets split.
Harvesting information from the ensemble of such high-
scoring models instead of relying on the sole optimal so-
lution has been shown to perform better in de novo motif
discovery (58) and in RNA structure prediction (59). Since
JAPL anyway learns all the models first, this route is worth
exploring.

Until recently it was not possible to unravel heterogeneity
at this level. Now, however, we have a lot more genomic data
than ever before. This is true not only for TSS identification,
but for experiments that probe other biochemical processes
as well, such as protein-DNA interactions, chromatin orga-
nization, RNA levels, splicing events, etc. Regions reported
from any such experiment can be a result of various dif-
ferent biological mechanisms. For example, a splicing event
may be the result of a splicesosome, or due to self splicing.
Similarly, a region may be nucleosome free because it is an
enhancer, or a silencer, or near an actively transcribed gene,
or a poised gene, or even because it was recently replicated.
Indeed, there is inherent mechanistic heterogeneity in such
data and relatively few attempts to characterize it in an un-
biased manner. We have recently shown how a protein can
bind various parts of the genome in strikingly different ways
(directly, indirectly, or as a complex) in the same cell-type
and how this can be detected from a single high-throughput
chromatin immunoprecipitation experiment targeting that
protein (60). Kundaje et al. (61) have shown the existence
of heterogeneity within chromatin patterns around protein-
DNA binding sites. They highlight the need to go beyond
analyzing aggregate or average chromatin signals around
specific genomic features. We believe this is the first gen-
eral method that can identify heterogeneity in terms of nu-
cleotide composition. Since the method is not promoter-
specific, in principle, it can be applied to large-scale data
arising from any specific genomic events reported at high
resolution.
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