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Abstract
Transcriptional and epigenetic regulation of both dopaminergic neurons and their accompanying glial cells is of great interest in
the search for therapies for neurodegenerative disorders such as Parkinson’s disease (PD). In this review, we collate transcrip-
tional and epigenetic changes identified in adultDrosophila melanogaster dopaminergic neurons in response to either prolonged
social deprivation or social enrichment, and compare them with changes identified in mammalian dopaminergic neurons during
normal development, stress, injury, and neurodegeneration. Surprisingly, a small set of activity-regulated genes (ARG) encoding
transcription factors, and a specific pattern of epigenetic marks on gene promoters, are conserved in dopaminergic neurons over
the long evolutionary period between mammals and insects. In addition to their classical function as immediate early genes to
mark acute neuronal activity, these ARG transcription factors are repurposed in both insects and mammals to respond to chronic
perturbations such as social enrichment, social stress, nerve injury, and neurodegeneration. We suggest that these ARG tran-
scription factors and epigenetic marks may represent important targets for future therapeutic intervention strategies in various
neurodegenerative disorders including PD.
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Introduction

Neurons and glia can enter into, stay in, and exit from epige-
netically regulated semi-stable states. Cell fate choice during
normal neuronal development is a one-way journey through
pro-neural states to a stable, differentiated mature neuron.
However, after injury, several states may be maintained for
long periods, possibly followed by a reversal to a normal
mature neural state [1]. Not all neural state changes are related
to disease, injury, or development; for example, changes in
environmental conditions and exposure to stressors may cause

groups of neurons to becomemore or less active for prolonged
periods. A well-studied example of this is the effect of prenatal
and early life stress, which produces epigenetic modifications
in neural genes resulting in persistent behavioral changes
[2–4].

We studied epigenetic and transcriptional changes in dopa-
minergic neurons (DANs) in the fruit fly Drosophila
melanogaster, where prolonged social isolation and social en-
richment cause restructuring of the epigenetic landscape [5].
DANs are involved in neuronal differentiation [6] and the
response to stress in mammals [7, 8] but their influence in
these conditions is less studied in insects. Such long-lasting
but ultimately reversible state changes in Drosophila usually
involve various neuropeptides [9, 10] and neurotransmitters
including dopamine [5, 11, 12]. Prolonged social isolation in
Drosophila can drastically affect behavior as in mammals; for
instance, socially isolated Drosophila show a reduction in
sleep [13, 14] and an increase in aggression [15, 16], both
modulated by DAN signaling.

We found that in Drosophila, changes in social experience
produce global changes in the epigenetic landscape of the
DAN network. We also found that Drosophila activity-
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regulated genes (ARGs) [17] are upregulated in DANs for
several days following social enrichment [5]. ARGs are genes
whose transcription is regulated by neural activity or other
stimuli [17] and a subset of these is also known as immediate
early genes (IEGs) in vertebrates [18, 19], whose activation in
neurons after learning has been utilized to identify brain re-
gions involved in learning, stress, and neuronal plasticity [17,
20–22]. We focus on four ARGs significantly upregulated in
fly DANS by social experience [5] whose homologs in mam-
mals are CREB, EGR, NR4A1, and KLF11 (Table 1). Unlike
classical IEG expression, which increases rapidly after stimu-
lation and decreases in hours, the sustained increase in these
four ARGs is reminiscent of the multi-day increase in c-Jun
found after both sciatic nerve sectioning [45] and axotomy of
the dopaminergic nigrostriatal pathway [46]. In addition, c-
Jun is essential in Schwann cells for them to respond appro-
priately to injury [47]. In this review, we compare and contrast
state changes in mature adult neurons resulting from injury
with those resulting from other stimuli, with a particular focus
on whether ARGs upregulated in mature neurons may use
known epigenetic pathways.

Here we compare both the epigenetic changes that we
found in flies and the role of ARG transcription factors
(ARG-TFs) in inducing/blocking behavioral changes, to the
roles of ARG and epigenetic changes found in mammalian
nerves after injury or during regeneration. First, we discuss
the four ARGs that we found to be functionally involved in
encoding effects of social experiences in DANs and compare
them to their homologous genes in mammals. Second, we
briefly review the role of epigenetics in neural transcriptional
state regulation. Third, we propose a model to suggest how

subsets of neuronal genes may be shifted into new
transcriptional/epigenetic states by the role of ARGs in trans-
ducing what has been called the “genomic action potential” or
gAP [41]. Finally, we speculate how these broadly expressed
ARGs can achieve cell-type-specific regulatory effects by
interacting with pre-existing transcriptional platforms.

Four ARG-TFs and Their Homologs

Four ARG-TFs—CrebA,Hr38, Cabut, and stripe—show sig-
nificantly increased transcription in DANs in socially enriched
(group housed) flies while others did not [5]. To determine
whether these ARGs were functionally involved in the re-
sponse to social conditions, we reduced the expression of
these ARGs by expressing an RNAi construct in subsets of
DANs using a tyrosine hydroxylase (TH) promoter-specific
driver line—TH-GAL4 [48]. This reduced the extent of sleep
modulation by social experience [5], suggesting that the
ARGs are required in DANs to transduce social inputs into
behavioral output. Mammalian homologs of these ARGs
serve important functions during neuronal development, inju-
ry, and regeneration (Table 1) [47].

CrebA/CREB3L1/OASIS

The regeneration literature is rich in examples of the interplay
between ARGs, histone modifications, and neural states, as
reviewed by [23], where the authors summarize the roles of
histone acetyltransferases (HATs) and histone deacetylases
(HDACs) in regeneration and their interplay with

Table 1 Activity-regulated genes
(ARGs) in Drosophila and their
homologs in mammals. The table
summarizes fly ARG transcrip-
tion factors and their human IEG
homologs. These ARGs were up-
regulated upon social enrichment
in Drosophila DANs, and their
targeted knockdown significantly
reduced the extent of sleep mod-
ulation by social experience [5].
Representative studies in mam-
mals highlight the role of indi-
vidual ARGs during neural de-
velopment, stress, and neurode-
generation and regeneration. For
details, please see associated main
text

Drosophila
ARGs

Mammalian
ARGs

Key neuronal functions References

CrebA CREB3L1/OASIS Downregulated in the brains of socially isolated flies and
mice; involved in neuronal regeneration; astrocyte
formation; secretory pathway regulation in the ER with
roles in PD; upregulated upon prolonged L-DOPA
treatment in PD; nuclear localization of HDAC4 reduces
CREB signaling and promotes DAN loss.

[23–32]

Hr38 Nurr1/NR4A2 Production of DANs from iPSCs; maintenance of adult
DANs; reduced Nurr1 expression in PD;
neurotransmitter switching of glutamatergic VTA
neurons; upregulation upon L-DOPA administration in
PD models.

[33–37]

Cabut KLF11-10 Increased upon social defeat in the prefrontal cortex;
regulation of DRD2 dopamine receptor transcription;
interaction with epigenetic repressive complexes such as
SIN3A, HP1, and with WD40 containing proteins.

[38–40]

Stripe EGR1-4 Schwann cell myelination; interaction with c-Jun; upregu-
lation in birds upon conspecific song; LSD1 interaction
and upregulation in high-anxiety phenotypes; mainte-
nance of adult DANs; upregulation upon L-DOPA ad-
ministration in the PD model.

[37,
41–44]
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cAMP/PKA/CREB signaling. cAMP/CREB signaling regu-
lates neuronal survival and differentiation [49, 50] and confers
neuroprotection upon stress [51–53]. Interestingly, CREB1
was shown to be downregulated in the nucleus accumbens
shell of socially isolated rats and regulate anxiety-like behav-
iors [24]. Similar to its role in social isolation and sleep in
rodents [24, 54], the CREB family transcription factor
CrebA is downregulated in DANs of socially isolated flies
[5]. Furthermore, the targeted reduction of CrebA in DANs
produced the strongest reduction in sleep phenotype modula-
tion by social enrichment in our study.

CrebA has the closest similarity to CREB3L1/OASIS and
CREB3L2/BBF2H7. OASIS (old astrocyte specifically in-
duced substance) was first identified by its overexpression in
cultured astrocytes in response to age and in the cerebral cor-
tex in response to injury [25]. It was shown that the distribu-
tion of OASIS-positive cells in the cryo-injured cortex was
similar to that of glial fibrillary acidic protein (GFAP)-positive
cells [25]. OASIS is upregulated in reactive astrocytes after
neuronal degeneration induced by kainic acid [26]. OASIS
expression increases in reactive astrocytes after spinal cord
injury, inhibiting neural regrowth, while knockdown pro-
motes regrowth [27, 28]. Developmental effects in Oasis-
null mice include larger numbers of neural precursor cells
(NPCs) and fewer GFAP-expressing astrocytes [26]. OASIS
and other CREB3 group TFs in mammals upregulate secreto-
ry pathway genes, often in response to endoplasmic reticulum
(ER) stress [29, 30, 55]. It was proposed that astrocyte-
secreted proteins might be part of the response to injury or
stress in secretory cells mediated by OASIS [26]. Although
the above studies focus on astrocytes in mammals; in
Drosophila, CrebA regulates dendrite development via genes
in the secretory pathway [56]. Secretory gene products are
required for the remodeling and extension of dendritic pro-
cesses during development and following dendritic injury.

DANs are neurosecretory cells and in dopaminergic cell
lines, dopamine exposure induced ER stress which
phenocopied the unfolded protein response implicated in
Parkinson’s disease (PD) [57]. Induction of ATF ER stress
response transcription factors (TFs) is involved in PD patho-
physiology, and a role for ATF6 in mitigating PD progression
was observed [58]. A recent report documented strong upreg-
ulation of ATF3 in midbrain DANs following 6-OHDA insult
[42]. We describe the interplay between epigenetic regulation,
ATF transcription factors, ER stress, and its connection to PD
in subsequent sections.

Hr38/Nurr1/NR4A2

A second strong behavioral response was found upon down-
regulation of the fly ARG-TF Hr38, a homolog of the human
Nurr1/NR4A2 ARG, whose continued transcription is required
for maintenance of adult mammalian dopaminergic neurons

(DANs) [33]. Moreover, increasing Nurr1 expression helps
generate DANs from iPSCs [34], while the expression of a
nuclear-targeted Nurr1 fragment in dopaminergic SH-SY5Y
cells increased tyrosine hydroxylase expression and protected
cells from the DAN-specific neurotoxin 6-hydroxydopamine
[35]. Nurr1 expression is reduced in some cases of PD, and
the authors speculate that protein expression of fragments of
Nurr1 may alleviate PD neurodegeneration [35]. Furthermore,
HDAC inhibitors increase dopamine aminotransferase (DAT)
expression in DANs via acetylation of Nurr1 promoters and
increased Nurr1 transcription [59]. Although both HAT and
HDAC inhibitors and activators have been studied in PD, their
roles are not completely understood [60].

Neonatal stressors can affect Nurr1 expression in non-
dopaminergic neurons. Neonatal exposure to nicotine increases
Nurr1 levels in some glutamatergic VTA neurons without trig-
gering TH expression; however, re-exposure to nicotine in
adulthood increases Nurr1 expression further in these “poised”
neurons, leading to a switch towards DAN phenotype [36]
(Fig. 1). The subject of neurotransmitter switching, which in
several cases involves dopamine and is triggered by environ-
mental inputs, was recently reviewed [61].

Cabut/KLF10-11

The ARGCabut/KLF10-11 was upregulated in DANs of social-
ly enriched flies, and its knockdown in DANs reduced sleep
phenotype modulation by social experience [5]. In mammals,
KLF11/TIEG2 and MAO (monoamine oxidase) signaling is in-
creased in the prefrontal cortex by chronic social defeat and is
associated with depression and KLF11 regulates the MAO re-
sponse [38, 62]. KLF11/TIEG2 regulates multiple pathways via
different domains that cause different epigenetic effects on chro-
matin through binding with the SIN3A complex, the HP1 com-
plex, andWD40-containing proteins [39]. InDrosophilaDANs,
we found upregulation of Brms1—a member of the histone
deacetylase Sin3A repressor complex, upon social enrichment;
its targeted knockdown in DANs produced sleep phenotypes
similar to that of Cabut/KLF10-11 knockdown [5].

KLF11 increases DRD2 dopamine receptor expression
through the HAT p300 but also limits the increase through
the HP1/PRC1 complex [40]. Since DRD2 auto-receptor ex-
pression in fly DANs rescued degeneration caused by the PD
selective neurotoxin MPP(+) [63], the role of KLF11/TIEG2
and epigenetic factors in PD requires further attention.

sr/EGR1/EGR2

The fourth ARG-TF we studied is called stripe (sr) in flies and
has homology to EGR2 and EGR1 in humans. In rat Schwann
cells, EGR2 upregulates myelination in some contexts and inter-
acts with c-Jun [43]. EGR1, previously known as ZENK in birds
[64], is well studied as an ARG involved with both short- and

4502 Mol Neurobiol  (2020) 57:4500–4510



long-term responses to conspecific song in the brains of zebra
finches [41, 64]. It was shown that in the hippocampus of mice,
EGR1 directly interacts with lysine-specific demethylase 1
(LSD1), allowing a permissive chromatin state, and upon stress,
this leads to increased Egr1 expression and a high-anxiety phe-
notype [44]. Similarly, the reduction of Egr1 levels by LSD1
knockout, which promotes repressive chromatin state, leads to
a low-anxiety phenotype [44].

Consistent ARG Response to Activation of Mammalian
and Fly DANs

Above we reviewed the roles of ARGs individually. However,
the question remains, whether the homologs of these ARGs in
mammals respond as a group in a similar way to neural stimula-
tion. A published study using cultured ratmidbrain dopaminergic
(mDA) neurons compared the transcriptional state of neurons
before and after depolarization [65], analogous to the

experiments performed by stimulating dopaminergic neurons in
flies which identified ARGs in fly DANs [17]. Given the simi-
larities between the rat and the fly studies, we used the GEO
profiles tool on the array data (GEO accession GDS2774) from
the rat mDA study [65] to see which ARG-TFs had expression
correlated to that of EGR2 in rat mDA neurons. Classic ARGs
such as Fos, Jun, Srf, and Arc covaried with Egr2, as did ATF2,
ATF3, andATF4 (see the section onCrebA/Oasis above), Klf10,
Egr1, and Nr4a1, Nr4a2/Nurr1, and Nr4a3. Thus, activity in
cultured rat mDA neurons produces a similar set of ARG chang-
es to those observed in fruit fly DANs.

ARGs, Epigenetic Regulation, and Parkinson’s
Disorders

Epigenetics has emerged as one of the fundamental mecha-
nisms regulating nervous system development and function.

HHuman ARGs

CREB3L1/OASIS
Nurr1/NR4A2

EGR1-4
KLF11-10

Nicotine exposure

Social-isolation vs. -enrichment

Parkinson's disease
(Substantia Nigra)

Acute neural injury/
chronic neural degeneration

Drosophila ARGs

CrebA
Hr38
Stripe
Cabut

Neurotransmitter
switching

Nurr1

a

c

Open chromatin

b

TF

Promoter

PR
C2

HAT

Target genes

ARG-TFs
ARG-TFs Other

Proteins

Pol II

PRC2 HP1 HP1HP1

Closed chromatin

ARG-TFs

Fig. 1 Interplay between epigenetic mechanisms and ARGs. a
Drosophila ARGs and their homologs in humans. ARGs are
upregulated due to both acute perturbations such as neural injury and
chronic perturbation such as social isolation vs. social enrichment;
Parkinson’s disease (PD); nicotine exposure; neuronal regeneration; and
during neurotransmitter switching. b ARG-TFs are under epigenetic reg-
ulation. The top panel shows a bivalently marked nucleosome (Ac, acet-
ylation mark; Me, methylation mark), downstream to this nucleosome

TFs can interact with Pol II to continue transcription of the target gene,
in this case transcribing anARG-TF. These ARG-TFs can in turn regulate
the expression of their downstream targets. c Repressive marks mediated
by PRC1 and PRC2 can condense the chromatin and restrict access of
ARG-TFs to downstream targets. Binding of PRC1 produces H3K9me3
marks, leading to HP1 recruitment and eventually gene repression

4503Mol Neurobiol  (2020) 57:4500–4510



Epigenetic mechanisms play a central role in regulating the
neuronal response to stress, injury, and regeneration (Fig. 1).
Epigenetic disruption can cause neurological disorders such as
Parkinson’s, Huntington’s, schizophrenia, autism, and addic-
tion, many of which target the DAN network [60, 66–69]. A
recent study searching for genes differentially expressed in
Parkinson’s, Alzheimer’s, frontotemporal dementia, and
amyotrophic lateral sclerosis found three major hub genes,
including EGFR, CDC42, and CREBBP. CREBBP is a his-
tone acetylase that partners with CREB to increase histone
acetylation and gene expression at CREB-binding sites [70].
Another intersectional study of genes differentially expressed
in Parkinson’s and Huntington’s diseases implicated targets of
CREB signaling [71]. The authors noted that shared pathways
“suggest that biological processes related to neuronal plastic-
ity are active in both of these diseases and may even indicate
that neuroprotective or neuro-regenerative processes are a
component of the neurodegenerative response”which we find
interesting in light of our results on transcriptional and epige-
netic plasticity in the DAN network in response to social iso-
lation stress. Together, it suggests that prolonged environmen-
tal stress, similar to neurodegenerative disorders, might pro-
mote a metastable epigenetic state in neurons using common
transcriptional and epigenetic mechanisms.

In neural degeneration and regeneration, the roles of epige-
netic mechanisms are under intense investigation. Studies uti-
lizing histone acetylases (HATs), histone deacetylases
(HDAC), and their inhibitors (HDACi) suggest a diverse
and context-specific role of histone acetylation; e.g.,
HDAC1 but not HDAC3 was shown to play a prominent role
in initiating axon regeneration after injury [72]. In late-stage
Parkinson’s, cells in the substantia nigra pars compacta (SNc)
show overall increases in histone H3 acetylation, but this was
demonstrated to be due to a mix of H3 hypo-acetylation in
DANs and H3 hyper-acetylation in activated microglia [73]. A
recent study showed that HDAC2 mRNA and protein levels
were higher in SNc microglia from PD than in controls [74].
Human telencephalic/mesencephalic microglial lines in-
creased HDAC2 expression upon bacterial liposaccharide
treatment, suggesting that the deacetylation of genes in mi-
croglia is part of a response to inflammation in PD [74].
Treatment with an inhibitor of the histone deacetylase
SIRT2 (AGK2) resulted in neuroprotection of DANs in a
PD model [73]. Nuclear localization of histone deacetylase
HDAC4 in DANs reduced CREB signaling and increased
DAN loss. CREB repression was also seen in a
phosphorylation-deficient mutant of HDAC4, which causes
it to translocate to the nucleus, activating cell death in PC12
rat cells expressing A53T-synuclein mutation [31]. It must be
noted that different HDACs may take on opposing roles.
These data suggest that targeting of specific HDACi’s to
SNc microglia may be a more selective mode of therapy with
fewer side effects. It is important to note that various FDA-

approved HDACi drugs for cancer treatment have gained
prominence in the field of neuropsychiatry due to their known
effects in animal models, including suberoylanilide
hydroxamic acid (SAHA, aka Vorinostat) and romidepsin
(aka Istodax) [60, 75].

The well-studied α-synuclein (SNCA) protein and its ag-
gregates play an important role in several neurodegenerative
disorders, including PD illustrating the complexity of epige-
netic regulation in this disease [76]. α-Synuclein has been
associated with several kinds of epigenetic marks in SNc
DANs, including reduced DNA methylation in intron 1 of
the SNCA gene [77, 78], and reduced histone H3 acetylation
[73, 79, 80]. Furthermore, histone acetylase p300 increases α-
synuclein aggregation, which might in turn reduce histone
acetylation [81]. A single-nucleotide polymorphism in an en-
hancer of SNCA reduces the binding of the repressive complex
EMX2/NKX6-1 [82]. EMX2/NKX6-1 recruits HDAC1, so
limiting EMX2/NKX6 binding increases histone acetylation
and thus may increase SNCA expression. In this context,
HDAC inhibitors may worsen PD symptoms, as shown for
the class 1 (HDAC 1 and 2) HDACi valproic acid (VPA),
which can induce Parkinsonism in the elderly [83]. This coun-
terexample to the therapeutic use of HDACi’s in PD empha-
sizes the point mentioned above that targeting of specific
HDACi’s and agonists to specific tissue types may be needed
to achieve the full potential of epigenetic therapy in PD.

Histone side chains are also marked by methylation, which
is longer lasting than acetylation. H3K4me3 is considered a
mark for gene activation, whereas H3K9me3 and H3K27me3
are considered marks for gene repression. The latter are usu-
ally created by members of the polycomb repressive com-
plexes (PRC), with PRC1 yielding H3K9me3 and PRC2 pro-
ducing H3K27me3 marks. PRC modification of chromatin is
one of the main mechanisms of transcriptional repression,
both during development and normal function, described in
a comprehensive set of reviews [84]. Modifiers of histone
methyl marks change ARG transcriptional states and are in-
volved in tuning the response of the nervous system to psy-
chosocial stress [41, 44]. H3K27me3 PRC2 marks are often
associated with promoters of genes activated after neural in-
jury, and reduction of polycomb marks activates a subset of
genes in the injury program [85]. During development, so-
called bivalent promoters have a mix of activating
H3K4me3 and repressive PRC marks, but it has been sug-
gested that even in mature neurons bivalent promoters persist
and that mis-marked bivalents may contribute to Huntington’s
disease [86]. We find this suggestion intriguing since we
found that shifts in the balance between these three histone
methyl marks were prominent in fly DANs due to social dep-
rivation vs. social enrichment. Gene ontology (GO) functional
analysis using DAVID bioinformatics analysis tool [87] sug-
gested that social enrichment increased levels of PRC2 marks
in DAN functional gene groups such as ion channels and
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neuropeptide signaling at the expense of PRC1 and H3K4me3
marks, while genes involved in pathways of neural regulation
such asMAPK andWNT signaling etc. had contrasting PRC2
mark declines and PRC1 mark increases [5]. As methyl and
acetyl marks on the same histone lysine residue have compet-
ing roles, our observation that social enrichment invokes a
broad program of PRC1 and PRC2 methyl mark shifts that
are specific to certain functional gene types may have rele-
vance to the more extreme changes in SNc DAN’s found in
PD and other neurodegenerative disorders (Fig. 1).

Indeed, knockdown of PRC2 histone methyltransferase
genes in striatal medium spiny neurons (MSNs) caused a pro-
gressive neural degeneration syndrome by allowing the de-
repression of cell death and non-MSN genes [88]. Notably,
among PRC2 target genes in MSNs, over 40% had
H3K4me3/H3K27me3 patterns typical of genes with bivalent
promoters [88]. Prolonged treatment with L-DOPA in PD
patients is known to cause dyskinesia, a movement disorder
[89]. A study of MSNs targets in the striatum of dopamine
signaling found that prolonged administration of L-DOPA
caused phosphorylation of a serine adjacent to H3K27me3,
displacement of PRC2 from such sites, and de-repression of
PRC2 target genes [37]. Among these genes were NR2A4 and
EGR2, two of the ARGs that we found responded strongly in
DANs to social stimulation in Drosophila (Table 1). Another
study that used cell type-specific mRNA expression profiling
upon L-DOPA treatment also found induction of the ARGs
NR2A4 (Nurr1) and CREB in striatal spiny projection neu-
rons [32]. Södersten et al. suggest that NR2A4 and EGR2may
be bivalently regulated by PRC2 marks in adult neurons,
which if true would suggest an interplay between transcrip-
tional upregulation of ARGs and epigenetic changes in PD
[37].

Following up on these results, a recent study measured
histone marks and gene expression in midbrain DANs with
or without exposure to neurotoxic 6-OHDA or methamphet-
amine [42]. Bivalently marked H3K4me3/H3K27me3 genes
were significantly enriched among genes upregulated by neu-
rotoxic stress, suggesting that bivalency in promoters of genes
in adult neurons is predominantly a sign of normal-state re-
pression. One such gene was ATF3, a member of the ER
stress-responsive ATF group, while another was FOXA1,
which is involved, like Nurr1/NR4A2, in the maintenance of
adult DANs [90]. During DAN development, Foxa1 is a co-
activator of Nurr1/NR2A4, and together, these two studies
suggest that three TFs essential for adult DAN maintenance
(EGR2, NR2A4, and Foxa1) and one involved in ER stress
response (ATF3) are bivalently marked with H3K4me3/
H3K27me3 in spite of measurable and continued expression
in adult DANs [37, 42]. As a statistical check of this sugges-
tion, we used the gene ontology (GO) tool GOrilla [91], to see
what gene groups are overrepresented among genes with bi-
valent promoter H3K4me3/H3K27me3 marks identified by

[42]. Significant GO groups included associative learning,
neuropeptide signaling, ion channel activity, and transcrip-
tional regulation—each of which was also significantly
enriched in our fly DAN gene cluster with the strongest
H3K4me3 and H3K27me3 changes in response to social en-
richment ((Fig. 3, cluster 8) of [5]). These results frommouse,
rat, and fruit fly DANs strongly suggest that activity and/or
stress in mature dopaminergic neurons have shared transcrip-
tional responses mediated by ARG-TFs and that some genes
involved in these processes have unusual bivalent promoter
epigenetic marks. We suggest that as therapeutic investiga-
tions of HDAC, HAT, and histone methylase/demethylase
compounds continues, careful attention should be paid to the
effect of such treatments on PRC2-associated bivalent
promoters.

In our study, many neural signaling genes showed a de-
crease in H3K27me3 and an increase in mRNA expression in
socially deprived fly DANs, compared with those in socially
enriched groups. In flies, social isolation produces other be-
havioral changes associated with stress, such as increased ag-
gressiveness, locomotion, and decreased sleep [5]. Taken to-
gether, results from organisms as different as flies, mice, and
humans suggest that DANs and some of their target neurons
and supporting glia have epigenetic and transcriptional pro-
grams responsive to minor (social) or major (neurotoxic)
stresses. These programs differ by cell type but share some
similarities in the common roles of ARGs, epigenetic marks,
and in some cases bivalent promoters even in the adult, fully
differentiated state.

Achieving Cell Type Specificity from Broad Expression
of ARGs

Given that ARGs are broadly expressed in the nervous system
in response to stimulus [17, 92], it will be important to under-
stand how they can induce cell type-specific gene expression
programs in order to achieve effective therapeutic interven-
tions in neurodegenerative disorders. Similar to the ARGs,
their interacting epigenetic factors, mentioned throughout this
review, are also broadly expressed. Several studies have iden-
tified coordinated response by ARGs in the nervous system
inducing a global response from the genome and epigenome,
reviewed in [41, 93].

It is likely that broadly expressed ARG-TFs interact with
platforms of TF and histone modifiers distinct across various
cell types, leading to the induction of distinct subsets of target
genes. This is reminiscent of how broadly expressed master
regulators of animal development such as Hox TFs can spec-
ify pattern of individual body segments by interacting with
pre-existing transcriptional and epigenetic platforms laid
down by pioneer factors including polycomb and trithorax
group proteins [94–96]. We therefore propose that ARG-TFs
utilize a mechanism similar to those employed by broadly
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expressed Hox genes to achieve cell-type specificity by
interacting with pre-existing pioneer factors including epige-
netic machinery and transcriptional regulators (Fig. 2). These
interactions can aid ARG-TFs in transducing a global cell-
type-specific response, named a “genomic action potential,”
or gAP [41].

Therefore, ARGs and epigenetic histone modifications are
associated with both normal development and function in
DANs and other neurons, and with switches in cell types such
as neurotransmitter switching [61]. Our findings show that
socially induced DAN state changes are accompanied by per-
vasive epigenetic changes, which may be related to the bal-
ance between stimulatory and repressive PRC marks. Such
balanced epigenetic regulation in adult neurons is very similar
to the bivalent promoters involved in neurodevelopment and
found in adult neurons at promoters of ARGs [41]. If signif-
icant subsets of repair pathway genes are regulated by ARGs
plus epigenetic switching, further study of these mechanisms
may contribute to improved regeneration therapy for
Parkinson’s disease and other neurodegenerative disorders.

Future Directions

How neuronal stimulation can lead to coordinated responses
in gene expression and how specificity is achieved in these

responses across various neural circuits is a long-standing
question. We hypothesize that broadly expressed ARGs might
interact with pre-existing cell-type-specific pioneering factors
to impart specificity. It would therefore be important to iden-
tify these TFs across various cell types and how they interact
with ARGs and regulate downstream targets. Central roles of
these ARGs in several neuropsychiatric disorders, as
discussed throughout this review, make them attractive candi-
dates for therapeutic intervention. Recent technological ad-
vancements in single-cell transcriptional profiling to identify
changes in ARGs and transcriptional states [97], coupled with
single-cell ChIP-seq technologies [98, 99] will advance mech-
anistic understanding of how the neuronal epigenome re-
sponds to environmental stimuli via ARGs and affects behav-
ior. Such efforts need to be aided by mechanistic understand-
ing gained from future studies as well as recent advances in
epigenetic engineering [100–103]. These approaches restrict
epigenetic changes to specific loci on the genome without
affecting chromatin state globally, which can be particularly
useful in developing targeted therapies involving epigenetic
alterations for neurodegenerative disorders.
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