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Abstract Machine learning techniques, also known as

artificial intelligence (AI), is about to dramatically change

workflow and diagnostic capabilities in diagnostic radiol-

ogy. The interest in AI in Interventional Radiology is

rapidly gathering pace. With this early interest in AI in

procedural medicine, IR could lead the way to AI research

and clinical applications for all interventional medical

fields. This review will address an overview of machine

learning, radiomics and AI in the field of interventional

radiology, enumerating the possible applications of such

techniques, while also describing techniques to overcome

the challenge of limited data when applying these tech-

niques in interventional radiology. Lastly, this review will

address common errors in research in this field and suggest

pathways for those interested in learning and becoming

involved about AI.
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Introduction

Artificial intelligence (AI) has been prominent in different

fields including diagnostic radiology. AI breakthroughs are

now also empowering the field of interventional radiology

(IR) and recent surge in popularity was initially driven by

the phenomenal success of deep neural networks in pro-

cessing unstructured data such as images and audio through

pattern recognition. The term AI has come to encompass

all forms of machine learning (ML). In this review the term

AI is used synonymously with ML, referring to techniques

that construct predictive models from data, including deep

learning, radiomics and other traditional machine learning

techniques. The importance of the usage of AI is summa-

rized in (Table 1).

A brief history of the field is difficult to summarize

given its fragmented nature; however, the most popular

techniques currently, artificial neural networks, date back

to work by Rosenblatt[1] on the concept of the perceptron

in the 1960s.

Artificial neural networks are inspired by the connec-

tionist design of biological neural networks[2], comprising

of artificial ‘‘neurons’’ which receive input from other

neurons or the environment, performing a nonlinear acti-

vation function[3] on the sum of this input, and passing its

output to other neurons. In short, each layer in an artificial

neural network is a mathematical model loosely mimicking

biological neurons, receiving information from one or more

sources, processing the information and producing a

response. This information is passed to other neurons for

further analysis. To train a neural network, a large dataset

of paired inputs and desired outputs, referred to as labels,

must be collected. The training process then refers to

altering the parameters (typically the weights) for each

neuron such that the network produces the desired outputs
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for each input. Currently, the most popular architecture for

processing images is the convolutional neural network

(CNN) [4], where neurons are organized spatially, taking

inputs from adjacent pixels and processing it into higher-

order representations before passing this information onto

successive layers, eventually producing predictions. These

predictions are compared to the labels, and the gradient of

the parameters of the network, with respect to the error, is

calculated through a process referred to as backpropaga-

tion[5]. Supervised learning is a type of ML that utilizes a

set of input and output labelled training data [6] and can be

used to estimate relationships between input and output

parameters.

AI using artificial neural networks were recently re-

popularized in 2012 by Krizhevsky et al. [7] with the

development of large-scale parallel processing through

graphics processing units combined with the availability of

large datasets. In their revolutionary publication in 2012,

Krizhevsky et al. [7] trained a deep CNN to classify over 1

million images (from the ImageNet contest) into 1000

different classes. Their network was built with 650,000

neurons and 60 million parameters. Though networks have

since become even more complex, the AlexNet model

created by Krizhevsky remains a reference for image

classification. It is important to acknowledge that CNNs are

still at the core of most research in this field at this nascent

stage.

Recent research in medical imaging AI has focused on

3D CNNs such as 3D versions of popular 2D CNNs such as

EfficientNet or Densenet. [8] Alternative techniques such

as 2.5D networks (taking into account axial, coronal and

sagittal planes) have also been developed. [9]. Even more

recently in the wider AI space is the shift to purely atten-

tion-based mechanisms such as vision transformers [10]

even for image-based tasks. These popular architectures are

mentioned in brief as it is beyond the scope of this review

article to describe these in detail. These approaches work

remarkably well when networks are scaled up to millions

or billions of parameters. Where traditional ML algorithms

such as logistic regression tend to overfit with so many

parameters, neural networks remarkably appear to work

better with more parameters, particularly when multiple

layers are stacked deeply. [11] Why this is the case remains

one of the central mysteries of deep learning.

One limitation of neural networks is that most deep

learning algorithms have been restricted to data-rich

domains such as photography or speech recognition, as

training these algorithms requires large datasets. Radiology

is well suited to this, being a data-rich specialty born into

the information age, with explosive growth in AI research

in diagnostic radiology[12]. Interventional radiology when

compared to diagnostic radiology deals with much smaller

datasets and may seem much less appealing to the AI

researcher.

In comparison with other interventional and procedural

fields such as surgery or endoscopy, IR is data-rich. IR is

one of a few specialties where a record is kept of the entire

procedure in a standardized format, is available retro-

spectively and these datasets are mostly unexploited today.

With the recent developments in few shot learning made by

the deep learning community[13], novel techniques may

drastically reduce the dataset size required for clinically

effective algorithms, making it truly the prime time for AI

in interventional radiology.

Applications

Potential applications of AI in IR can be divided into pre-

procedural, peri-procedural and post procedural.

Pre-procedural Setting: Improving Patient Selection

Better patient selection is similar to the concept of preci-

sion medicine. AI decision support systems may help tailor

treatment decisions based on imaging phenotypes, yielding

better clinical results.

Interventional radiologists often rely on multidisci-

plinary boards for oncological treatment strategies. These

board discussions perform multiparametric risk-stratifica-

tion, integrating the patient’s full data before a treatment is

advised.

Several AI applications replicate and outperform these

discussions by predicting the outcome from data available

in each specialty (radiology, histology, molecular biology,

etc.). The ability to incorporate clinical information,

radiomics and genetic information may improve the

objectivity and accuracy of decision-making. Such an

Table 1 The importance of artificial intelligence

Has the ability to incorporate and analyse a large amount of complex data rapidly

Identifies trends and patterns only partly detectable by humans

Independent of human bias in decision-making

Has the potential to aid interventional radiologists in the diagnosis, treatment and follow-up of disease
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approach could potentially play a role in triaging patients

for IR and subsequent therapy by assessing risks and

making predictions about therapeutic outcomes [14]

An example of this application in the field of acute

ischaemic stroke is the use of CT perfusion software in

endovascular clot retrieval to estimate physiological

parameters such as ischaemic core and penumbral volume,

facilitating the selection of patients who are likely to have

an optimal outcome. AI approaches to identifying patients

for clot retrieval are being investigated, for instance based

on CT angiography rather than CT perfusion. [15–17]

Pretreatment patient selection using deep learning is also

being investigated for interventional oncology. Morshid

et al. [18] describe an algorithm to predict response to

transcatheter arterial chemoembolization for hepatocellular

carcinoma (HCC) using pretreatment CT, combined with

the clinical BCLC stage. They demonstrate that an AI

model utilizing image and clinical features can outperform

traditional staging systems in predicting benefit from

TACE. Similarly, Peng et al.[19] developed a deep learning

model that predicts response to TACE with an accuracy of

84%. Kim et al. [20] demonstrated that a combined

radiomics and clinical model of HCC in response to TACE

improved survival estimation when compared to clinical

models alone. Other research in HCC treatment has found

similar results when applied to surgical or thermo-ablative

resection [21].

Multimodal planning may also integrate genetic infor-

mation using AI models. Ziv et al. [22] trained a model to

identify the genes most predictive of response to TACE

and Kuo et al. [23] utilized radiomic analysis to identity

imaging phenotypes associated with doxorubicin drug

response gene expression in HCC.

Peri-procedural: Improving Procedures

AI can improve interventional procedures by accelerating

computationally intensive or manual procedures, such as

the correction of translational motion via pixel shifting in

angiography. Traditional image registration techniques

such as those proposed by Meijering et al. [24] are com-

putationally intensive and have not had widespread uptake.

Deep learning approaches may speed up corrected digital

subtraction angiography, such as methods proposed by Gao

et al. [25] which use generative adversarial networks to

generate subtraction images without the preliminary non-

contrast acquisition, avoiding the issue of translational

motion entirely. This is achieved by acquiring a dataset of

satisfactorily subtracted images paired with the unsub-

tracted images and training a neural network to predict the

subtracted images from the unsubtracted image. This tea-

ches the neural network anatomical and physical assump-

tions about the nature of angiographic contrast. The

resultant neural network is capable of predicting the sub-

tracted images from the unsubtracted angiographic images,

without the use of the preliminary non-contrast acquisition.

Deep learning approaches have also been applied to

identifying guidewire and catheters during angiography

[26]. Such methods may permit more advanced algorithms

such as virtual road mapping of the vasculature without

contrast. Real-time AI registration algorithms could

superimpose high-resolution preoperative imaging with

procedural fluoroscopy, guiding the interventional radiol-

ogist during catheter manipulation.

AI-based ultrasound guidance [27] has been used in

echocardiography to help guide the acquisition of

echocardiograms. Deep learning algorithms estimate

diagnostic quality of the image and suggest manoeuvres to

improve the quality of such images. AI may provide rec-

ommendations on needle trajectory or other facets of

interventional procedures, which may be particularly useful

for novice operators.

The selection and personalization of endovascular

devices is another area for AI. Yang et al. [28] used AI to

segment and quantify stenosis on coronary angiography.

Such algorithms could be used to objectively select the

optimal stent for each lesion. Lee et al. [29] imagine a

future where AI may guide the personalized 3D printing of

cardiovascular stents.

Cho et al.[30] developed AI to predict fractional flow

reserve of coronary lesions on angiography. This opens the

way to extract hemodynamic parameters/physiological

parameters from angiography, and AI may be able to even

estimate flow distribution maps in the future.

AI has been proposed for skin dose estimation by taking

into account angulation of the X-ray tube and tissue den-

sity. Radiation exposure during endoscopy has been

reduced using an AI-equipped fluoroscopy unit with an

ultrafast collimation system that reduced radiation expo-

sure by * 38%. Similar techniques could be used in

interventional radiology. [31]

Respiratory motion compensation in PET/CT imaging

has been implemented via elastic motion correction algo-

rithms where AI determines a blurring kernel between a

single motion corrected image and a single non-motion

corrected target image. This results in a final image with

reduced motion[32]. Similar applications could be applied

in live fluoroscopy.

After Treatment: Improving Follow-Up

Following treatment, AI has a role to play in measuring

response to treatment, prognostication and determining

future management.

Most criteria used in diagnostic radiology for treatment

response were not developed for interventional radiology,
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which may lead to misevaluation during follow-up. AI

research could help better assess these specific treatment

responses. AI can be useful in longitudinal studies during

follow-up of treatments to detect subtle changes between

images identifying disease progress or recurrence earlier.

In oncology, automated volumetric measurements of

tumour sizes or response evaluation criteria in solid tumours

(RECIST) readsmaybe possible through deep learning. [33].

RECIST criteria themselves as a marker of response can be

outperformed by AI. Dohan et al. [34] developed a radiomic

signature that was able to predict overall survival and iden-

tify good responders better than RECIST1.1 criteria in

patients with liver metastases from colorectal cancer treated

with chemotherapy. The samemodels could be applied to IR

treatment in liver metastases, potentially outperforming

routine RECIST and equivalent criteria.

Procedural findings and histological features can also

play a role in the choice of adjuvant therapy as suggested

by Saillard et al.[35] who built a prediction model of sur-

vival after HCC resection based on pretherapeutic and

histological preprocedural features.

Similarly, AI has a role in assessing response to treat-

ment in acute ischaemic stroke. Thrombolysis in cerebral

infarction (TICI) scores are often used to grade results

following endovascular clot retrieval. AI can improve

interobserver reliability and thereby improve the utility of

such scores in prognosticating patients. [36, 37] AI algo-

rithms may help reduce the time required to interpret post-

treatment imaging and improve inter-observer variability.

The ability of AI to extract quantitative metrics holds the

promise of personalizing management plans, particularly in

complex chronic conditions such as cancer.

While genetics and molecular pathology have played a

large role in precision medicine, pre- and post-treatment

imaging may identify additional disease phenotypes as well

as quantify intervention success, which may help fine-tune

management by prognosticating as well as determining the

timing and need for follow-up imaging. [38]

Practical Challenges

The breadth of potential applications of AI in interven-

tional radiology has seen a rise in academic papers pub-

lished on this subject. Such projects face a common set of

challenges..

The major challenge facing AI in interventional radiol-

ogy is the relatively small dataset sizes when compared to

diagnostic radiology, or in fact, to other non-medical

applications of AI entirely. For instance, ImageNet, a

widely used natural imagery database, contains over 14

million images. [39] In contrast, most medical applications

have dataset sizes in the hundreds to thousands of unique

samples. Therefore, standard deep learning models are

difficult to train from scratch.

Perhaps the most simple method to reduce the number of

samples required for a useful model is transfer learning,

where models trained on different datasets might be used as

a starting point, as information that these models might

have learned from other datasets may be translated to this

setting as well. [40]

Other approaches include the use of handcrafted fea-

tures, an approach popular in the ‘‘traditional’’ computer

vision literature in the early 2000s. These approaches, also

known as radiomics when applied to imaging, reduce the

number of required samples as the model does not have to

learn the low-level features itself.

Another approach is to use data augmentation – standard

transformations like affine transforms, adjusting brightness

and contrast are useful, but novel augmentation techniques

like MixUp [41] may help researchers get more out of their

data. Medical imaging is often acquired quite differently

from natural imagery, through techniques such as tomo-

graphic reconstruction. This offers the opportunity for

different types of augmentations to introduce artefacts

which are more typical in this setting, such as physics-

based data augmentation [42]. Although this technique was

found to be unsuccessful in previous work, it may be prove

to be useful in more challenging datasets.

Recent developments in the deep learning field in semi-

supervised learning, such as few-shot and zero-shot learn-

ing techniques [13, 43–46], may also help reduce the

number of labelled samples required, by using unsuper-

vised datasets as additional information.

For categorical data, such as models using clinical

variables like age and sex, oversampling techniques such as

synthetic minority oversampling technique (SMOTE) [47]

may help generate synthetic data points that may improve

an AI model’s performance.

Small dataset sizes also exacerbate common mistakes

made in AI projects. The use of checklists [48] may help

prevent some of these avoidable errors. Common errors

include the failure to split data by patient – i.e. including

studies from a single patient in both the training and test

datasets. This may lead to the model memorizing patient

specific features, leading to over-optimistic results that do

not translate into clinical practice. Other errors include not

fully describing the hyper-parameter optimization process,

or optimizing the hyper-parameters on the testing set,

which again leads to over-estimation of the model’s

performance.

The training and testing datasets must also have defined

inclusion and exclusion criteria to prevent ‘‘Frankenstein’’

datasets[48], where positive and negative cases are drawn

from different sources, potentially leading to data leakage
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as the AI model may recognize features specific to the

dataset source rather than the disease of interest.

To prevent overstating the significance of any result,

especially in small datasets, any measure of performance

such as the accuracy or the area under the receiver oper-

ating characteristic (AUC) should be accompanied with

confidence intervals. When applicable, AI models trained

on images should be compared to a baseline clinical model

using age, sex and other clinical features. If an AI model

uses both imaging and clinical features, a sensitivity

analysis should be performed by systematically modifying

each input to assess its contribution on the final prediction.

[49] In post-treatment and prognostication models, lack of

complete follow-up in all participants is common and

should be accounted for when measuring the accuracy of

such models through censoring. [50]

Another source of unreliability stems from the constant

evolution of clinical practice over time due to the intro-

duction of new treatment approaches, technologies or

changes in patient population [51]. Interventional radiol-

ogy, in particular, is a rapidly evolving specialty with novel

equipment and procedures constantly developing over

time.

The use of AI in augmenting interventional radiologists

is likely to increase as research in pretreatment, intra-

treatment and post-treatment applications translate into

clinical practice. Due to the potential benefits and risks for

patients, stringent prospective evaluation such as controlled

trials should be undertaken where necessary to ensure that

promising applications translate well.

How to Get Started in Ai

Given the promise of AI in interventional radiology many

clinicians may wish to get involved in AI research and

development. Key factors to be able to successfully

translate a project into clinical practice include a clear

understanding of the clinical benefits andadvantages of

using AI, the availability of data measured in independent

samples (typically at a patient level), the use of computing

resources such as graphics processing units or tensor pro-

cessing units and the technical skills to construct an AI

model.

Specific steps around training and coding of AI models

are beyond the scope of this review article; however, it is

becoming easier the advent of open source deep learning

framework libraries such as Pytorch [52] and Tensorflow

[53]. A recommendation for interventional radiologists

who are interested in learning more about AI is to begin

with learning basic software and data carpentry skills in

programming languages such as Python [54] and then

expand knowledge by undertaking courses in frameworks

such as Pytorch and Tensorflow.

Conclusion

The emergence of novel deep learning techniques and

applications in interventional radiology is hugely exciting

and offers multiple opportunities to aid in patient selection

for intervention, improve patient care during interventional

treatment and optimize post-treatment clinical follow-up.

Interventional radiology with its smaller dataset sizes

compared to diagnostic radiology stands to benefit from

novel techniques such as semi-supervised learning, zero

and few shot learning in the deep learning literature. The

application of such techniques in interventional radiology

must be rigorous and generalizable, and common errors

must be avoided in order for successful clinical translation.
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