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Quorum sensing triggers the stochastic escape of
individual cells from Pseudomonas putida biofilms
Gerardo Cárcamo-Oyarce1,*, Putthapoom Lumjiaktase1,*,w, Rolf Kümmerli2,w & Leo Eberl1

The term ‘quorum sensing’ (QS) is generally used to describe the phenomenon that bacteria

release and perceive signal molecules to coordinate cooperative behaviour in response to

their population size. QS-based communication has therefore been considered a social trait.

Here we show that QS signals (N-acyl-homoserine lactones, AHLs) are stochastically pro-

duced in young biofilms of Pseudomonas putida and act mainly as self-regulatory signals rather

than inducing neighbouring cells. We demonstrate that QS induces the expression of puti-

solvin biosurfactants that are not public goods, thereby triggering asocial motility of induced

cells out of microcolonies. Phenotypic heterogeneity is most prominent in the early stages of

biofilm development, whereas at later stages behaviour patterns across cells become more

synchronized. Our findings broaden our perspective on QS by showing that AHLs can control

the expression of asocial (self-directed) traits, and that heterogeneity in QS can serve as a

mechanism to drive phenotypic heterogeneity in self-directed behaviour.
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T
he term quorum sensing (QS) is used to describe the
phenomenon that bacteria are capable of perceiving and
responding to self-generated signal molecules to coordinate

their behaviour at the group level1. The general consensus is that
bacteria trigger the QS response only when their cell density has
reached a certain threshold (the ‘quorum’), on which the
expression of target genes is either activated or repressed.
Among the various QS signal molecules identified to date,
N-acyl-homoserine lactones (AHLs) have been investigated to the
greatest extent2,3 and have been shown to control the expression
of a large variety of traits, including bioluminescence, virulence,
symbiosis, different forms of motility, biofilm formation,
production of antibiotics and toxins, and conjugation4,5. Many
AHL-controlled traits represent cooperative behaviours that can
generate benefits to other cells in the local community6.
Consequently, it has been suggested that QS has evolved to
restrict the expression of costly cooperative behaviours to
conditions, in which they are most beneficial, which is the case
at high cell density7–12. However, recent studies in Pseudomonas
aeruginosa have demonstrated that QS is more complex, because
it also controls expression of a few cellular enzymes (that is,
private goods)10,13–15. It has been suggested that co-regulation of
public and private goods stabilizes cooperation, because it negates
the selective advantage of cheating mutants, which exploit public
goods without contributing to them13.

Here we studied the role of QS in biofilm formation in P.
putida IsoF, a strain that has been isolated from the rhizosphere
of a tomato plant16,17. In this strain, we have previously identified
an AHL-dependent QS system, which is located on a genomic
island, encoding PpuI, which directs the biosynthesis of the two
AHLs 3-oxo-C10 and 3-oxo-C12 as major products; PpuR, the
AHL receptor; and RsaL a repressor of ppul17. For a closely
related strain (PCL1445), it is has been shown that the ppu system
controls expression of a large non-ribosomal peptide synthethase
(encoded by psoA, psoB and psoC), which directs the biosynthesis
of the two cyclic lipopeptide biosurfactants putisolvin I and II18.
The putisolvins were found to not only inhibit biofilm formation
of P. putida PCL1445 but also to break down existing P.
aeruginosa biofilms19. Previous work has shown that P. putida
IsoF forms a flat and homogenous biofilm, whereas a ppuI mutant
forms a structured biofilm with characteristic microcolonies and
water-filled channel17. Although putisolvin production has not
been demonstrated for P. putida IsoF, it has been hypothesized
that QS-dependent expression of these biosurfactants could also
affect biofilm structural development of this strain18,20.

In this study, we visualize AHL production at the single cell
level to clarify the link between AHL-mediated QS, putisolvin
production and biofilm development in P. putida IsoF. We show
that at early stages of biofilm development, QS induces putisolvin
production, which gives rise to a fraction of motile cells that leave
the microcolony on their own. This asocial motility is possible
because: (a) AHL signal production is stochastically expressed in
only a fraction of the cells in young biofilms; (b) AHL production
in one cell does not induce AHL production in its neighbouring
cells; and (c) putisolvins cannot be used by other cells, and
therefore do not represent public goods that can be shared among
cells. At a later stage of biofilm development, the AHL expression
pattern is more compatible with the expected cross-induction of
cells within microcolonies, which results in a mass movement of
cells and a concomitant collapse of microcolonies, giving rise to
an unstructured biofilm.

Results
QS triggers asocial motility in young biofilms of P. putida. To
investigate the role of AHL-mediated QS in biofilm formation of

P. putida IsoF at the single cell level, we transferred the green
fluorescent protein (GFP)-based AHL sensor plasmid pRP4las
(with stringently controlled copy number: two to three per cell)
into the wild-type strain. To ensure that none of the cells is AHL-
induced before inoculation into the flow-through chamber21, we
grew the strains for at least five generations at a low cell density
(OD600o0.3) in minimal medium supplemented with citrate as
carbon source. Following inoculation into the flow-through
chambers, we monitored the spatial and temporal production of
AHLs during biofilm development under defined conditions22. In
our setup, small microcolonies were formed within 6–8 h; yet, at
this point no fluorescent cells were detectable. When
microcolonies reached a population size of 23.3±18.6 bacteria,
after 11.9±1.3 h, a small fraction of cells turned green
fluorescent, indicating that they had triggered the production of
AHL signal molecules (Fig. 1a). Surprisingly, however, these
induced cells did not seem to stimulate AHL production in
neighbouring cells within the colony as one would expect
according to the generally accepted paradigm that QS is a
regulatory mechanism that co-ordinates behaviour at the group
level. To rule out artefacts potentially associated with the use of a
plasmid-based AHL reporter, we integrated the AHL reporter
cassette into the chromosome of P. putida IsoF. Using this single-
copy AHL biosensor, we quantified the number of induced cells
within and outside of microcolonies. This analysis revealed that
free cells outside colonies were significantly more often induced
than cells within colonies (Fig. 1b, linear mixed model (LMM):
t111¼ 5.68, Po0.0001). Although the frequency of induced cells
significantly increased over time (LMM: t111¼ 11.73, Po0.0001),
it increased similarly among free and colony cells (LMM, no
significant interaction between time and cell status (free versus
colony): t111¼ 1.14, P¼ 0.26), showing that QS induction level
was consistently higher among free cells. This pattern is
compatible with a two-step non-coordinated process starting
with stochastic expression of AHL, followed by induced cells
becoming motile and independently leaving the microcolonies.
Indeed, we observed that induced cells left the colonies and were
either removed by the nutrient flow or re-attached to the glass
surface in the void spaces between the microcolonies (Fig. 1c).

To further elucidate the heterogeneity in QS induction,
we exposed early-stage biofilms to a saturating concentration of
3-oxo-C10-HSL (0.5 mM). We observed that the timing of QS
induction was slightly advanced (1.5 h), but that the heterogeneity
in induction remained (Supplementary Fig. 1). This supports the
idea that there are two distinct subpopulations of QS-responsive
and non-responsive cells, whereby cross-induction between the
two subpopulations is limited, at least in early-stage biofilms.
Our observation is reminiscent of previous findings by Pradhan
and Chatterjee23, who demonstrated the presence of stable
subpopulations of QS-responsive and non-responsive cells in
Pseudomonas syringae and Xanthomonas campestris.

At later stages of biofilm growth (Fig. 1a), we noticed an
increase of fluorescent cell clusters within the microcolonies,
which might be the result of AHL-mediated cross-stimulation.
These clusters continuously increased in size until the large
majority of cells of the microcolonies showed green fluorescence
(Fig. 1a; usually in 430-h-old biofilms). At this point the
microcolonies suddenly collapsed as a consequence of a mass
movement of cells. The resulting biofilm was unstructured and
uniformly covered the glass surface as has been reported
previously for mature IsoF biofilms17.

Putisolvin is required for motility and biofilm collapse. In a
next step, we aimed to better understand the mechanistic link
between QS-heterogeneity and asocial motility in our system. As
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previous work had revealed a strong relationship between the
production of putisolvin biosurfactants and biofilm formation in
P. putida PCL1445 (refs 18,19), we examined whether strain IsoF
also harbours the putisolvin biosynthetic gene cluster, and
whether asocial motility and biofilm collapse is linked to
putisolvin production. By using a PCR approach combined
with sequencing, we found that the entire pso gene cluster is
present in strain IsoF and shows 499% DNA sequence identity
with the pso locus of strain PCL1445. To investigate whether
putisolvins act as a biosurfactant in the IsoF strain, we
constructed the defined psoA knockout mutant PL11, as well as
the conditional mutant PL2, in which the native promoter region
of psoA has been replaced with the rhamnose-inducible PrhaB

promoter (Supplementary Fig. 2). In the absence of rhamnose,

both mutant strains showed no surfactant activity in a simple
drop-collapse assay (Fig. 2a). However, drop-collapsing activity of
strain PL2 but not of PL11 could be restored when the medium
was amended with at least 0.5% rhamnose. The Du Nouy ring
method was used to measure surface tension of spent culture
supernatants along the growth curve. Surface tension was found
to reach a minimum when the cultures had an OD600 of B2.0.
Importantly, surface tension was found to be significantly reduced
on rhamnose-induced putisolvin production (Fig. 2b). Next, we
tested whether putisolvin is essential for swarming motility, as has
been found to be the case for other biosurfactants in other bac-
terial species24. Indeed, when tested on swarming plates
containing citrate as carbon source, the wild-type IsoF
colonized the entire plate within 3 days, whereas no surface
migration was observed for mutants PL2 and PL11 (Fig. 2c).
However, in the case of PL2 swarming could be restored by
amending the medium with 0.5% rhamnose (Fig. 2d), whereby
the migration speed of the swarm colony was found to be
proportional to the rhamnose concentration. These results
demonstrate that putisolvin acts as a biosurfactant in P. putida
IsoF and is essential for swarming.

To test whether putisolvin is involved in biofilm collapse, we
compared biofilm formation of the wild-type IsoF with the
conditional psoA mutant PL2 in flow-through cells using AB
minimal medium supplemented with 1 mM citrate. After 3 days
of growth, the wild-type had formed a flat and unstructured
biofilm with a low volume/area ratio, while the biofilm of mutant
PL2 was dominated by large microcolonies, characterized by a
threefold higher volume/area ratio and with only few cells
colonizing the void space (Fig. 3). Addition of 0.2% rhamnose to
the medium recovered the flat wild-type biofilm structure. These
experiments demonstrate that putisolvins promote the coloniza-
tion of the substratum by facilitating the movement of cells out of
microcolonies.

Putisolvin production is QS regulated. We further investigated
whether AHL-mediated QS controls putisolvin production,
thereby leading to the asocial motility phenotype and biofilm
collapse observed in our single-cell experiments. Indeed, Dubern
et al.18 have demonstrated that production of putisolvins in strain
PCL1445 is regulated by the ppuI-rsaL-ppuR QS system. In
agreement with this study, we found that a ppuI mutant of strain
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Figure 1 | AHL production during biofilm development of P. putida IsoF.

(a) Flow cells were inoculated with a low-density culture of P. putida IsoF

carrying the GFP-based AHL sensor plasmid pRP4las. Green fluorescence,

which is indicative of AHL production, and biofilm formation was followed

by confocal laser scanning microscopy. Although AHL expression was

stochastic at early stages of biofilm formation, the expression pattern

became more homogenous across cells in older biofilms. The large frames

show the top view, whereas the right and lower frames show vertical

sections through the biofilms. Scale bars, 1–13 h, 5 mm; 24–36 h, 20mm.

(b) Focusing on early stages of biofilm formation (between 8 and 14 h post

inoculation), quantitative analysis from eight independent frames revealed

that the proportion of AHL-activated cells was significantly higher among

free cells than among cells within colonies. This pattern remained

consistent over time. Time 0 was defined as 30 min before the first

appearance of induced cells (mean: 10.5±0.8 h post inoculation). (c) Many

of the AHL-induced cells became highly motile and moved out of the

microcolony, as exemplified in pictures from left to right, which were taken

at 30-min intervals. The upper panel shows a close-up of the region

indicated in the lower panel. The red arrow points at a cell that left the

microcolony and the white arrow indicates a cell that moved to the

periphery of the microcolony. Scale bar, 5 mm.
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IsoF, named F117, was unable to swarm and spent culture
supernatants of F117 cultures lacked surfactant activity
(Fig. 4a,b). Both defects could be rescued by the addition of
5 mM 3-oxo-C10-AHL. These results strongly suggest that QS
deficiency in F117 results in the abolishment of putisolvin
production. To obtain more direct evidence for the link between
QS and putisolvin production, we constructed a transcriptional
fusion of the psoA promoter (triggering putisolvin synthesis)
with gfp and transferred the resulting plasmid, pLUM1, into the
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Figure 2 | The production of biosurfactants and swarming motility in P.

putida IsoF are dependent on the pso gene cluster. The wild-type IsoF, the

psoA mutant PL11 and the conditional psoA mutant PL2 were grown in the

absence or presence of rhamnose. (a) In drop-collapse assays, surface

tension of supernatants of overnight cultures were found to be increased in

PL11 compared with IsoF, but could be restored to wild-type level in PL2 on

rhamnose supplementation. (b) Surface tensions of PL2, PL11 and IsoF in

medium containing 1% or no rhamnose were quantified along the growth

curve using the Du Nouy ring method. Results are representative of three

independent experiments. (c) IsoF displays swarming motility in ABC

medium, whereas PL11 and PL2 are impaired in swarming, because they do

not produce putisolvin. (d) Swarming of the conditional psoA mutant PL2

was abolished on glucose plates, but was increasingly restored on plates

supplemented with 0.5%, 1% or 2% rhamnose. Pictures were taken after 3

days of incubation.
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Figure 3 | The role of putisolvin biosurfactants in biofilm structural

development. Flow chambers were inoculated with gfp-tagged derivatives

of the wild-type IsoF and the conditional psoA mutant PL2 in the absence or

the presence of 0.2% rhamnose. (a) Vertical sections through the biofilms

after 3 days show a flat biofilm structure for IsoF and PL2 amended with

rhamnose, whereas PL2 without rhamnose forms biofilms that are

dominated by towering microcolonies. (b) Three-dimensional parameter

analysis of biofilm structures show that microcolonies of IsoF have

significantly lower volume/area ratio than microcolonies of PL2. The

wild-type phenotype could be restored in PL2 when adding rhamnose

(Rh) to the medium. Mean values of three independent experiments

are shown with s.e.m. (one-way analysis of variance; ***Po0.001;

NS, not significant).
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wild-type IsoF, the ppuI mutant F117 (defective for AHL signal
production) and the ppuR mutant GC3 (defective for responding
to AHL signals). Measurements of GFP fluorescence revealed that
psoA expression was strongly decreased in F117 and GC3, but
could be restored to wild-type level for F117, but not for GC3,
when the medium was supplemented with 5 mM 3-oxo-C10-HSL
(Fig. 4c).

The role of flagella for biofilm development of P. putida. To
investigate whether, in addition to putisolvins, flagella may be
required for cell migration out of microcolonies, we constructed a
fliM mutant of P. putida IsoF, designated GC25, which no longer
produces flagella and therefore is unable to swim. The micro-
colonies that strain GC25 formed were much more compact than
the ones of the wild-type strain, suggesting that flagella are
important for the positioning of cells within the aggregates
(Fig. 5). Moreover, putisolvin producers migrated only at a very
low rate out of the microcolonies when compared with the wild-
type. These results show that the dissociation of cells from
microcolonies is dependent on both flagella-driven motility and
the production of putisolvin biosurfactants.

Spatial expression of psoA in biofilms. We followed the tem-
poral and spatial expression of putisolvins within biofilms of
P. putida IsoF using the PpsoA-gfp transcriptional fusion. Similar
to our previous results (Fig. 1), we found that fluorescent cells
were mainly located at the periphery or outside of microcolonies.
In contrast, when the same transcriptional fusion was present in
the putisolvin-defective mutant PL11 or the non-motile mutant
GC25, we observed both a higher proportion of QS-induced cells
and a more homogenous induction across cells, especially in
GC25 (Fig. 5). These findings provide evidence that asocial cell
movement out of the colony restricts cross-induction in the wild-
type strain, while cross-induction becomes increasingly possible
when cells are forced to stay together.

Putisolvins are private and not public goods. A recent study in
P. aeruginosa revealed that biosurfactants can represent public
goods, which allow biosurfactant-defective mutants to swarm
along with biosurfactant-producing wild-type cells25. In contrast,
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Figure 5 | Activity of the psoA promoter during biofilm development.

Early-stage biofilm development of the wild-type IsoF, the psoA mutant PL11

and the non-motile strain GC25 was followed over time. Strains were

transformed with plasmid pLUM3a, carrying a psoA-gfp transcriptional

fusion. The activity of the psoA promoter was visualized by fluorescence

microscopy at 30-min intervals. Owing to impaired motility of the strains,

microcolonies of strains PL11 and GC25 were more compact, and contained

a higher proportion of fluorescent cells than wild-type colonies. Scale bar,

5 mm.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6945 ARTICLE

NATURE COMMUNICATIONS | 6:5945 | DOI: 10.1038/ncomms6945 | www.nature.com/naturecommunications 5

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


our single-cell analyses suggest that biosurfactants in P. putida
IsoF remain associated with the bacterial cell surface, thereby
triggering individual-based and not group-based swarming. To
test this hypothesis, we mixed a putisolvin-deficient or a flagella-
deficient mutant with the wild-type on swarming plates. In
support of our hypothesis, we found that the mutants stayed close
to the inoculation point, forming a small colony, whereas the
wild-type swarmed over the entire plate (Fig. 6), with swarming
behaviour being unaffected by the presence of another strain
(Supplementary Fig. 3). This result held across a wide range of
strain mixing ratios (Supplementary Figs 3 and 4). These findings
demonstrate that putisolvins are private rather than public goods,
which mostly adhere to the producing cells, and can therefore not
be used by other cells for swarming.

Discussion
Our work breaks with the central assumption that QS primarily
represents a regulatory mechanism to coordinate cooperative
behaviours among cells at high population density. Instead, we
show that QS can also do the opposite: trigger uncoordinated self-
directed behaviour at low cell density. Specifically, we found that
in the early stages of biofilm development, AHL production
occurred stochastically in only a fraction of cells. AHL production
in these cells triggered the synthesis of putisolvins, biosurfactants
that remain associated with the producer’s cell surface, thereby
resulting in cells individually moving out of the microcolony. As
this asocial motility removes individuals with the highest AHL
production from the consortium, it exerts a negative feedback on
cells left behind by delaying AHL cross-induction within the
microcolony. It is important to note that we were only able to
discover the lack of cross-induction and asocial motility, because
AHLs were stochastically expressed at low population density. If
all cells had started expressing AHLs at the same time, we would
have erroneously concluded that putisolvin serves as a public
good, coordinately expressed in the consortium to allow
cooperative motility. This highlights that the mere observation
of individual cells doing the same thing at the same time does not
necessarily mean that coordination through communication and
the sharing of pubic goods are involved26.

There are at least three reasons why stochasticity can arise in
our system. First, Kaplan and Greenberg27 showed that AHL-
dependent QS can be an extremely sensitive system, as
demonstrated in Vibrio fischeri, where one to two AHL
molecules per cell are sufficient to trigger autoinduction,
suggesting that at very low AHL concentrations QS is
intrinsically stochastic. Second, although the classic QS model
assumes that AHLs are diffusing into the cell from the
surroundings, such that the population density determines
induction levels, we suggest that at the onset of QS the signal
molecules are not released from the producing bacterium but
directly bind to their cognate cytoplasmic receptors, which, as a
consequence, results in self-induction of the cell’s QS cascade, and
not in cross-induction. This possibility is especially probable in
our study system, as the P. putida IsoF AHLs contain relatively
long fatty acid chains, which often require transporters to be
actively released from the cell28–30. Third, physiological
differences between cells, particularly when grown as a biofilm,
may exist that affect AHL production or the sensitivity of the QS
response. Moreover, cross-induction seems to be additionally
impeded in our system, because induced cells leave the
consortium, which presumably results in reduced local AHL
concentrations.

Although previous work has revealed heterogeneity in QS both
at low and high cell densities, the situation described in this study
is unique, as it is the first example that QS heterogeneity serves as

a mechanism to trigger a self-directed behaviour of individual
cells. At low cell density, heterogeneity in the initiation of QS has
been observed in P. aeruginosa when single cells were confined in
small volumes in a microfluidic device31. In this study, it is not
only shown that QS induction is highly variable but also that low
numbers of cells, even single cells, are able to initiate QS,
supporting the idea of QS self-induction. At high cell density,
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meanwhile, Anetzberger et al.32 showed that the expression of
QS-regulated bioluminescence in Vibrio harveyi is heterogenous.
In a subsequent study, a working model was presented, in which
the combination of the different V. harveyi signal molecules
available (this organism produces three structurally unrelated
signal molecules), rather than cell density per se, determines the
timing of QS-regulated traits in this species33. Likewise, induction
of AHL-controlled bioluminescence in individual V. fischeri cells
was found to differ widely in time scale and in the overall
intensity, suggesting that QS has relatively imprecise control over
the response of an individual cell34. Although heterogeneity in QS
seems frequent, a remaining key question is whether the
heterogeneity is simply an inevitable outcome of the regulatory
mechanism controlling AHL production, or whether it has an
adaptive function. Although speculative at this stage, it seems
plausible that in our case of asocial motility, leaving the
microcolony can be beneficial under nutrient depletion. Even
more so in mixed biofilms, where natural selection could favour
individual-based early dispersal to reach new resources faster
than the competitors35.

Although our data indicate that both AHL and putisolvin
production is self-directed and thereby asocial during the early
stages of biofilm formation, the pattern conceivably changed in
older biofilms. Although AHL-producing cells first leave the
microcolonies by themselves, we hypothesize that over time
AHLs accumulate in the microcolonies, eventually leading to
cross-induction of neighbouring cells. This idea is supported by
the observation that psoA expression is more homogenous and
increases faster in mutants impaired in motility when compared
with expression of psoA in the wild-type background (Fig. 5).
Furthermore, typical AHL cross-induction of cells has been
observed in P. putida IsoF microcolonies grown in a microfluidic
setup, in which motility of cells was restricted by coating the
substratum with polylysin36. Thus, at later stages of biofilm
development, AHL signalling eventually becomes a social trait,
which then results in all cells producing putisolvins. This, in turn,
leads to the hallmark of biofilm structural development in our
setup, which was the sudden collapse of microcolonies at high cell
densities. As nutrients are probably limiting at this point of
biofilm development, even self-directed motility can become a
social trait, because putisolvin-mediated biofilm dispersal will
prevent overcrowding and allow the left behind population to
resume growth. Indeed, the putisolvin-mediated microcolony
collapse is reminiscent to the role of QS-controlled rhamnolipid
production in detachment of cells from mature P. aeruginosa
biofilms, which was suggested to release the stress arising from
nutrient limitation at high population density37.

Our experiment showing that putisolvin-deficient mutants are
unable to swarm with the wild-type strain demonstrates that
putisolvins do not represent public goods (Fig. 6). In support of
this, it has been shown that putisolvins preferentially adhere to
the cell surface of the producing cell19. Interestingly, adhesion to
bacterial cell surfaces has also been shown for other
biosurfactants38–40, which may therefore represent a more
general phenomenon. In analogy to our findings, Burch et al.41

showed that the biosurfactant syringafactin, which is produced by
the plant epiphyte P. syringae pv. syringae B728a, is adsorbed to
the adjacent waxy cuticle or retained on the bacterial cell surface.
It is shown that its production primarily benefits the producer
both by attracting moisture and facilitating access to nutrients.

Our results relate to recent work on QS in P. aeruginosa, where
it has been shown that QS not only coordinates the expression of
public goods at the group level, but also directs the expression of
metabolically important enzymes at the cellular level13,15. The QS
regulatory control over both social and self-directed traits has
been interpreted as an adaptation to prevent invasion of cheating

mutants. The idea is that the fitness increase a QS-deficient
mutant gains by exploiting a QS wild-type strain, is cancelled by
the fitness loss these mutants face, because they lack an important
cellular enzyme. The situation is clearly different in our study
system where the risk of cheating is reduced, because both the
AHL-signal and putisolvins are not or only partially available to
others. Taken together, our insights highlight that QS is much
more complex than previously thought, as the traits being
induced by QS can cover the entire continuum from a cooperative
public good trait that generates benefits to others (for example,
elastase production11), to extracellular traits that mostly generate
self-directed benefits (for example, putisolvin production), to
entirely intracellular traits that solely provide benefits to the
producer.

Methods
Strains and culture conditions. Bacterial strains and plasmids used in this study
are listed in Supplementary Table S1. Escherichia coli strains used for recombinant
manipulations were propagated in Luria–Bertani medium at 37 �C. Plasmids were
delivered to P. putida by triparental mating22. Briefly, donor, recipient and helper
strain, E. coli HB101(pRK600), were harvested from overnight cultures, mixed and
spot-inoculated on Luria–Bertani plates. After overnight incubation at 37 �C,
transconjugants were isolated on Pseudomonas Isolation Agar (PIA) at 30 �C. P.
putida strains were grown in modified AB medium supplemented with 10 mM
sodium citrate42 (referred to as ABC medium). When required, media were
supplemented with antibiotics at the following concentrations. For E. coli:
50 mg ml� 1 ampicilin, 50mg ml� 1 kanamycin, 10mg ml� 1 gentamycin,
10 mg ml� 1 tetracycline and 50 mg ml� 1 trimethoprim. For P. putida: 100 mg ml� 1

kanamycin, 20 mg ml� 1 gentamycin and 100 mg ml� 1 tetracycline.

Construction of P. putida IsoF mutants. The psoA mutant PL11 was generated as
follows: an internal psoA fragment was PCR amplified using the primers psoAF
(50-ctgatggtgtcgttcgaagagg-30) and psoAR (50-gctcgtcgagcacgtacaactg-30). The
amplicon was digested with SmaI and cloned into the gene replacement vector
pEX18Gm cut with the same enzyme. The resulting plasmid, pEX18psoA, was
mobilized into P. putida IsoF by triparental mating and gene replacement mutants
were selected on PIA medium containing 20 mg ml� 1 gentamycin. The fliM
mutant GC25 was constructed by amplifying a fliM internal fragment using
primers FliMF (50-gccatggccgggttgaytc-30) and FliMR (50-gaygaygggctggtrcagac-30),
and cloning the PCR product blunt-ended into the Stul-digested gene replacement
vector pSHAFT2Gm. The resulting plasmid, pSHAFT2fliM, was used to construct
a fliM mutant as described for the psoA mutant. A pso conditional mutant was
constructed as follows: first, the gentamycin resistance cassette from pBBR1MCS-5
was amplified using the primers genF (50-gcagcaacgatgttacgcag-30) and genR
(50-ttggtaccccgatctcggcttgaacg-30), the amplicon was digested with XbaI and KpnI
(restriction site underlined), and cloned into plasmid pSC200 cut with the same
enzymes, yielding plasmid pSC200Gm. Next, a 590-bp fragment beginning at the
start codon of psoA was amplified using primers pos2F (50-tgcctgccgccgaaacctt-30)
and pos590R (50-atctagagccagccaataatcgcggtc-30), and the resulting DNA fragment
was blunt ended with Klenow fragment and cloned into the filled-in NdeI site of
pSC200Gm. This plasmid was mobilized from E. coli CC118 into P. putida IsoF by
conjugation and the conditional mutant was selected on PIA medium supple-
mented with 20mg ml� 1 gentamycin. The genetic structures of all mutants con-
structed were confirmed by PCR and sequence analysis. The following primers
were used: pSHAFT2F (50-CGCTCTCGCGGCTTACGTTC-30), pSHAFT2R
(50-AAGCCAGGGATGTAACGCACTG-30), peX_F (50-CACCGACAAACAACA
GATAA-30), peX_R (50-CCCCAGGCTTTACACTTT-30) pSC200end (50-GTCAT
ACTGGCCTCCTGATGTCGT-30).

Construction of transcriptional fusions. The pUT/mini-Tn5Km-based plasmid
pPLlas21 was used to integrate the GFP-based AHL sensor into the chromosome of
P. putida IsoF. Three independent mutants with different insertion positions were
purified and used for flow cell experiments. To construct a PpsoA-gfp transcriptional
fusion, the psoA promoter region was PCR amplified using the primers p-psoAF
(50-aggatccgattctaagctttgcggcg-30) and p-psoAR (50-tggatccgctcagggcaaaggtttcg-30).
PCR fragments were cloned as BamHI fragments (restriction sites are underlined)
into the respective site of the promoter–probe vector pGA-G1, generating the
plasmids pPLM1 (PpsoA-gfp). A PpsoA-cfp fusion was generated by cloning the PCR
product containing the ecfp gene from pBK-mini-Tn7 into the TOPO vector. Then,
the psoA promoter region from PLM1 was inserted as a BamHI fragment upstream
of the ecfp gene in this plasmid. Finally, the the PpsoA-cfp cassette was excised as a
SacI fragment and inserted into the same site of plasmid pBBR1MCS-3, yielding
pLUM3 (PpsoA-cfp). The plasmids were mobilized from E. coli CC118 to P. putida
strains by conjugation and selected on PIA medium supplemented with
50 mg ml� 1 gentamycin (pPLM1) or 100 mg ml� 1 tetracycline (pLUM3).
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Measurement of promoter activities. P. putida strains harbouring pPLM1
were grown in 10 mM ABC medium for 24 h at 30 �C with continuous shaking.
When required, 3-oxo-C10 homoserine lactone was added to the medium at a
final concentration of 5 mM. Green fluorescence was measured using 200 ml
samples in a microtitre plate reader (SynergyTM HT, MWG Biotech, Germany)
with an excitation wavelength of 485 nm and emission detection at 528 nm.
The data were corrected for autofluorescence and processed with the KC4 soft-
ware (BioTek Instruments). Specific fluorescence was calculated by normalizing
relative fluorescence to OD600, which was simultaneously measured in the
instrument.

Swarming motility assays. Swarming motility was determined on ABC agar
plates supplemented with 0.1% casamino acids and solidified with 0.4% (wt/vol)
agar as described previously43. Briefly, overnight cultures were adjusted to an
OD600 of 0.1, and 2 ml samples were inoculated on swarming plates, which were
incubated for 3 days at 30 �C. The swarming plates were supplemented with 0.5%,
1% or 2% (wt/vol) rhamnose when appropriate.

Biosurfactant production. Semi-quantitative measurement of biosurfactant
activity was done by using the drop-collapsing assay, in which the reduction of
surface tension causes a collapse of the droplet placed on a hydrophobic surface. To
quantify biosurfactant production, the decrease of surface tension between culture
medium and air was determined with a Du Nouy ring18.

Cultivation and analysis of biofilms. Biofilms were grown in flow cells supplied
with ABC medium. The flow system was assembled and prepared as described
previously22. Briefly, the flow channels were inoculated with
P. putida cultures grown for at least five generations at a low cell density
(OD600o0.3) in minimal medium supplemented with citrate as the carbon source.
The medium flow was kept at a constant rate of 0.2 mm s–1 by a Watson–Marlow
205S peristaltic pump. The incubation temperature was 30 �C. Microscopic
inspection and image acquisition were performed using a confocal laser scanning
microscope (DM5500Q; Leica) equipped with a � 40/1.3 or a � 63/1.4 oil
objective. Captured images were analysed with the Leica Application Suite
(Mannheim, Germany) and the Imaris software package (Bitplane, Switzerland).
Images were prepared for publication using CorelDraw (Corel Corporation) and
PowerPoint (Microsoft) software.

To quantify the proportion of AHL-induced and non-induced cells, five
independent experiments were conducted. In each experiment, five random
positions were chosen on the flow chamber glass surface and surveyed every 30 min
for 10 h, starting 6 h post inoculation. Aliquots of a low-cell-density inoculum
(OD600¼ 0.01) were used to initiate the flow cell biofilms to allow single cell
analysis. To distinguish between free and colony-associated cells, an aggregate size
of eight cells was defined as threshold, below which cells were considered as free.
Using this threshold, the average aggregate size for free cells was found to be
3.5±0.5. As transmitted light was used to obtain the total cell number, only
microcolonies with few cell layers were used for quantification. When analysing
older biofilms consisting of multiple cell layers, we either used strains marked with
mCherry or stained cells with SYTO 62 (Life Technologies).

Statistical analysis. An LMM was used to test whether the proportion of AHL-
induced cells differs between free and colony-associated cells, and whether the
induction pattern changes over time. Position identity within experiments was
introduced into the model as a random factor to account for the nested approach
(that is, five positions within five experiments). Prism (GraphPad Software) was
used for one-way analysis of variance. If the analysis of variance yielded significant
differences between factor levels, the Bonferroni method was applied for pairwise
comparisons between factor levels.
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