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Abstract

This study aimed to determine the impact of stocking density on the liver proteome and

cecal microbiota of Peking ducks. A total of 1,200 21-day-old ducks were randomly assigned

to 5 stocking density groups of 5, 6, 7, 8 and 9 ducks/m2, with 6 replicates for each group. At

40 days of age, duck serum and pectorals were collected for biochemical tests; liver and

cecal contents of ducks were gathered for proteome and microbiota analysis, respectively.

Serum MDA increased while pectorals T-AOC reduced linearly with enhancing stocking

density. Duck lipid metabolism was altered under different stocking density as well. Serum

LDL-C increased linearly with increasing stocking density. Proteome analysis revealed fatty

acid biosynthesis proteins such as acyl-CoA synthetase family member 2 and fatty acid oxi-

dation related proteins including acyl-CoA dehydrogenase long chain and acyl-coenzyme A

oxidase were enriched in high stocking density group. Additionally, high stocking density

increased oxidative response associated proteins such as DDRGK domain containing 1.

Furthermore, increasing stocking density diminished proteins of anti-oxidant capacity includ-

ing regucalcin and catalase. 16S rDNA analysis revealed that higher stocking density was

accompanied with decreased microbial diversity, as well as depletion of anti-inflammatory

bacterial taxa, including Bacteroidales, Butyricimonas and Alistipe. Besides, reduced bile

acid metabolism-associated bacteria such as Ruminococcaceae, Clostridiales and Desulfo-

vibrionaceae were found in the high-density group. Both proteome and 16S rDNA results

showed inflammation and chronic liver disease trend in the high-density group, which sug-

gests the involvement of the liver-gut axis in oxidative stress.

Introduction

In China, Peking Roast Duck is one of the most popular dishes, and the demand of Peking

duck is increasing in the recent years. The pursuit of high economic interests by producers has

accelerated the evolution of the Beijing duck feeding system from free-range to intensive [1].
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Increasing stocking density can yield higher profits per kilogram of chicken. However,

reduced space limits the ability to rest [2] and has a negative influence on performance [1,3,4],

meat yield [3,4], immune status [5] and gut morphology [6]. In addition, high stocking density

is associated with chronic oxidative stress [3]. However, these studies focused on broilers

rather than ducks. Studies found the effects of high stocking density on ducks were similar

with broilers. Increasing stocking density significantly decreased final body weight (BW) and

weight gain of starter and growing ducks [1,7]. High stocking density also impaired immune

function and anti-oxidative capacity of Peking ducks, high stocking density showed a lower

spleen weight and lower total anti-oxidative capacity [8]. Although the transition from conven-

tional free range outdoors to confinement in birdhouses is the development direction of duck

production [7], the study on the stocking density of duck production is limited. The liver plays

an important role in energy metabolism and it is the major site of triglyceride (TG) metabo-

lism which is involved in TG digestion, absorption, synthesis, decomposition and transport. It

has been demonstrated that high stocking density has been shown to have a deleterious effect

on liver function [9] as indicated by increased activities with aspartate aminotransferase and

alanine aminotransferase [10]. The liver total anti-oxidative capacity was decreased under high

stocking density [8]. The gut microbiome is also highly connected to animal energy metabo-

lism and health [11], and it has been frequently suggested that gut microbiota plays a critical

role in chronic liver disorders through liver-gut axis [12]. High stocking density is associated

with adverse effects on the chicken intestinal commensal bacteria [4]. However, it is unclear

that whether stocking density could influence liver metabolism or gut microflora.

The emergence of novel proteomic techniques in recent years has greatly aided in the

understanding of biological mechanisms. Tandem mass tag (TMT) [13] and isobaric tags for

relative and absolute quantitation (iTRAQ) [14] methods have been widely used for analyzing

the hepatic proteome. The TMT method can also be used to characterize liver proteome-wide

changes in response to oxidative stress [15]. Further, due to progress in high-throughput next-

generation sequencing, 16S rDNA analysis can be used to infer the structure and function of

gut microbiota.

To investigate whether stocking density could affect liver function and gut microbiome,

TMT-labeled quantitative proteomics combined with 16S rDNA analysis was used to identify

changes in the protein profiles and microbiota of Peking ducks under low and high raising

density.

Materials and methods

Ethics approval

All of the experiments were approved by the Institutional Animal Care and Use Committee of

the China Agricultural University (Beijing, China).

Facilities and experimental animals

A total of 1,200 mixed-sex 21-d-old white Peking ducks were randomly assigned to 5 stocking

density treatments, each having 6 replicates. Each replicate corresponds one pen with 40 ducks

(20 males, and 20 females). The raising area in different treatments was 8.20 m2 (2.50 × 3.28

m), 6.88 m2 (2.50 × 2.75 m), 5.93 m2 (2.50 × 2.37 m), 5.20 m2 (2.50 × 2.08 m) and 4.65 m2

(2.5 × 1.86 m). The corresponding stocking density was 5 (low stocking density represented as

L group), 6, 7, 8, and 9 (high stocking density represented as H group) ducks/m2, respectively.

All ducks were raised in a plastic wire-floor pen and provided water and feed ad libitum from

21 to 40 d of age. In the house, lighting, temperature and ventilation programs followed
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commercial practices. During the experimental period, all ducks were raised with diets based

on the NRC (1994) feeding standard.

Growth performance and carcass traits

Initial body weight, final BW and feed intake (FI) were recorded. The weight gain and feed/

gain ratio were calculated.

Sample collection

On day 40, a total of 6 male ducks per treatment were collected and sacrificed by stunning

after blood collection. The liver samples of ducks from L and H density treatments were col-

lected, flushed with cold PBS, frozen using liquid nitrogen, and stored at -80˚C for proteomic

analysis. Cecum contents of ducks from L and H density treatments were also collected, trans-

ferred into Eppendorf tubes, and immediately frozen in liquid nitrogen and stored at -80˚C

for microbiota analyses.

Abdominal fat and left pectorals of each duck were removed manually from the carcass and

weighed. For each duck, a piece of pectorals fixed position was separated and put on the ice

bag immediately, then stored at -80˚C for biochemical analysis.

Serum and pectorals biochemical parameters

Serum levels of malondialdehyde (MDA, cat#A003-1), TG (cat#A110-2), total cholesterol (TC,

cat#A111-2), high-density lipoprotein cholesterol (HDL-C, cat#A112-2), low-density lipopro-

tein cholesterol (LDL-C, cat#A113-2), total antioxidant capacity (T-AOC, cat#A015-1) and

the activities of lactate dehydrogenase (LDH, cat#A020-1), creatine kinase (CK, cat#A032),

lipoprotein lipase (LPL, cat#A067) along with MDA, T-AOC, LPL and protein concentration

(cat#A045-2) of pectorals were determined by using commercial analytical kits according to

the manufacturer’s recommendations (Jian Cheng Bioengineering Institute, Nanjing, China).

Statistical analysis

One-way analysis of variance (ANOVA) models of SPSS (v.20.0, SPSS Institute, Chicago, IL)

was fitted to determine the relationships between the stocking density groups and serum

parameters, pectoral redox and lipid metabolism indices. Means were compared using

Duncan’s multiple comparison procedure of SPSS software when density treatment was signif-

icant (P< 0.05), and curve estimation was used to assess the linear and quadratic effects of

increasing stocking density on final body weight, body weight gain, feed gain ratio, and pecto-

rals percentage. P< 0.05 indicated statistical significance, and results were considered as a sig-

nificant trend at P< 0.1.

Proteome analysis

Protein extraction. Liver samples (~100mg each) were ground to a fine powder in liquid

nitrogen and then transferred into a centrifuge tube. Four times volumes of lysis buffer con-

taining 8 M urea (Sigma) and 1% Protease Inhibitor Cocktail (Calbiochem) was added, fol-

lowed by sonication on ice for three times using a high-intensity ultrasonic processor

(Scientz), and centrifuged for 10 min at 4˚C and 12,000g. Finally, supernatants containing sol-

uble proteins were collected, and the protein concentration was quantified with BCA kit

(Beyotime Biotechnology) according to the manufacturer’s instructions.

Trypsin digestion. For trypsin digestion, the protein solution was reduced with 5 mM

dithiothreitol (Sigma) for 30 min at 56˚C and alkylated with 11 mM iodoacetamide (Sigma)
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for 15 min at room temperature under dark conditions. The protein sample was diluted with

100 mM triethylammonium bicarbonate (TEAB, Sigma) to make urea concentration less than

2 M. Finally, the sample was digested with trypsin (Promega) overnight with a 1:50 trypsin-to-

protein ratio and then further digested for 4 h with 1:100 w: w trypsin-to-protein ratio (37˚C).

TMT labeling. After trypsin digestion, the peptides were desalted in a Strata X C18 SPE

column (Phenomenex) and vacuum dried. The peptide was dissolved in 1 M TEAB and pro-

cessed according to the manufacturer’s protocol for TMT kit. Briefly, one unit of TMT reagent

(defined as the amount of reagent requirement for labeling 100 μg of protein) was thawed and

dissolved in acetonitrile (Fisher Chemical). The peptide mixtures were then incubated for 2 h

at room temperature, pooled, desalted and dried by vacuum centrifugation.

HPLC fractionation. Peptides were fractionated by high pH reverse-phase HPLC with an

Agilent 300 Extend C18 column (5 μm particles, 4.6 mm ID, 250 mm length). Briefly, peptides

were firstly separated by 8% to 32% acetonitrile (pH 9.0) over 60 minutes into 60 fractions.

Subsequently, the peptides were combined into 18 fractions and dried by vacuum

centrifugation.

Mass spectrometry and TMT data analysis. Peptides were dissolved in 0.1% formic acid

(Fluka), and separated by EASY-nLC 1000 Ultra Performance Liquid Chromatography

(UPLC) system. Solvent A is an aqueous solution containing 0.1% formic acid and 2% acetoni-

trile; solvent B is an aqueous solution containing 0.1% formic acid and 90% acetonitrile. Run-

ning conditions included a liquid-phase gradient using a linearly increasing gradient of 5% to

24% solvent B for 38 min, 24% to 35% of solvent B for 14 min, then climbing to 80% in 4 min,

and then maintaining at 80% for the last 4 min, all at a constant flow rate of 800 nl/min.

The peptides results were subjected to nano electrospray ionization (NSI) source followed

by tandem mass spectrometry (MS/MS) in Q Exactive PlusTM (Thermo Fisher Scientific) cou-

pled to the UPLC. The electrospray voltage applied was 2.0 kV. For MS scans, the m/z scan

range was 350 to 1800. Intact peptides were detected in an orbitrap at a resolution of 70,000.

Peptides were then selected for MS/MS in the orbitrap at a resolution of 17,500. Fixed first

mass was set to 100 m/z. A data-dependent procedure that alternated between one MS scan

was used, followed by 20 MS/MS scans. To improve the effective utilization of the mass spec-

trometer, the automatic gain control (AGC) was set to 5E4, the signal threshold was set to

10000 ions/s, the maximum injection time was set to 200 ms, and the dynamic exclusion time

of the tandem mass scan was set to 30 seconds to avoid repeating a scan of the parent ion.

Database search. The resulting MS/MS data were processed using Maxquant with an

integrated Andromeda search engine (v.1.5.2.8). Tandem mass spectra were searched against

the uniprot Anas platyrhynchos database concatenated with reverse decoy database. Trypsin/P

was specified as cleavage enzyme allowing up to 2 missing cleavages. The mass tolerance for

precursor ions was set as to 10 ppm in First search and 5 ppm in Main search, and the mass

tolerance was set as 0.02 Da for fragment ions. TMT 10-plex was selected for protein quantifi-

cation. False discovery rate (FDR) was adjusted to< 1% for protein identification.

TMT quantification. For TMT quantification, the ratios of the TMT reporter ion intensi-

ties in MS/MS spectra (m/z 126–131) from raw data sets were used to calculate fold changes

between samples. For each sample, the quantification was mean-normalized at the peptide

level to center the distribution of quantitative values. Protein quantitation was then calculated

as the median ratio of corresponding unique or razor peptides for a given protein. The mass

spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via

the PRIDE [16] partner repository with the dataset identifier PXD010952. Two-sample, two-

sided T-tests were used to compare the expression of proteins. A significance was set at

P< 0.05 and the significant trend was set at P< 0.1 for statistical analysis.
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Gene Ontology (GO) annotation. GO annotation proteome was derived from the Uni-

Prot-GOA database (www.http://www.ebi.ac.uk/GOA/). Firstly, Converting identified protein

ID to UniProt ID and then mapping to GO IDs by protein ID. If some identified proteins were

not annotated by UniProt-GOA database, the InterProScan soft would be used to annotated

protein’s GO functional based on protein sequence alignment method. Then proteins were

classified by Gene Ontology annotation based on three categories: biological process, cellular

component and molecular function.

16S rDNA sequencing

DNA was extracted from 180–220 mg of the cecal samples using a QIAampTM Fast DNA

Stool Mini Kit (Qiagene, No. 51604) according to the manufacturer’s instructions. Total DNA

was quantified using a Thermo NanoDrop 2000 UV microscope spectrophotometer and 1%

agarose gel electrophoresis. 16S rDNA high-throughput sequencing was performed by Realbio

Genomics Institute (Shanghai, China) using the Illumina Hiseq PE250 platform. The V3-V4

region of the 16S rDNA gene was amplified using the universal primers, 341F (CCTACGG
GRSGCAGCAG) and 806R (GGACTACVVGGGTATCTAATC). The raw pair-end reads were

merged and quality-filtered to remove tags with lengths < 220 nt, an average quality score of

<20, and tags containing >3 ambiguous bases using PANDAseq (v2.9) [17]. Singletons and

chimeras were removed, and the resulting quality-filtered sequences were clustered into 97%

operational taxonomic units (OTUs) using USEARCH (v7.0.1090) in QIIME software. The

Ribosomal Database Project (RDP) algorithm trained on the Greengenes database was used to

classify each OTU (http://greengenes.lbl.gov). The open source software package QIIME

(http://qiime.org) was used to measure alpha diversity (including the chao1, observed species

and PD whole tree indices). The metagenomic reads have been submitted to the NCBI-SRA

database under accession number SRP159441.

16S rDNA analysis. For 16S rDNA, the Wilcoxon rank sum test to evaluate changes in

alpha diversity between H and L groups. Venn diagrams were constructed in R v3.1.0 using

the Venn Diagram package. Principal component analysis (PCA) was used to assess the rela-

tionships between samples based on the composition of the microbiota [18]. The bacterial rela-

tive abundance profiles were further compared between two groups by Linear Discriminant

Analysis (LDA) Effective Size (LEfSe) in the literature [19]. Taxa with the logarithmic LDA

score >2 were identified as differentially abundant.

Results

Duck performance and carcass traits

In our study, both the final body weight and the body weight gain over the study period

decreased linearly with the increase of stocking density (Fig 1A and 1B). The feed/gain ratio

increased linearly with increasing density (Fig 1C). Pectorals percentage was affected by stock-

ing density as well, decreasing linearly with increasing stocking density (Fig 1D).

Biochemical indices of serum and pectorals

Increasing stocking density suppressed anti-oxidant capacity. In redox indices, raising density

was significantly associated with serum MDA and LDH, as well as pectoral T-AOC (Table 1).

Serum MDA increased linearly, while pectoral T-AOC decreased linearly with increasing

stocking density (Table 1).

Stocking density was also significantly altered lipid metabolism indices including serum

LPL, TG, TC, HDL-C and LDL-C, as well as pectoral LPL (Table 2). Additionally, serum
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Fig 1. Duck performance and carcass traits. Data presented as means ± SE. n = 6.

https://doi.org/10.1371/journal.pone.0198985.g001

Table 1. Redox related biochemical indices in serum and pectorals.

Pectorals Serum

density/m2 T-AOC MDA T-AOC MDA LDH

5 0.71±0.15AB 2.12±0.60 15.79±2.30 7.39±0.54B 9186.19±888.64A

6 0.50±0.14AB 1.42±0.59 13.03±5.35 7.47±0.51B 9224.32±195.84A

7 0.48±0.28AB 1.74±0.77 10.77±5.51 7.10±0.58B 10192.19±732.17A

8 0.46±0.16AB 1.37±0.44 14.55±1.23 8.68±0.05AB 7864.87±814.26B

9 0.22±0.08B 1.87±0.46 11.51±3.95 9.57±1.56A 9225.23±273.26A

P-value

ANOVA 0.015 0.176 0.278 0.008 0.001

Linear 0.023 0.490 0.253 0.038 0.238

Quadratic 0.069 0.148 0.269 0.068 0.470

Note: Total antioxidant capacity (T-AOC), malondialdehyde (MDA), lactate dehydrogenase (LDH).

https://doi.org/10.1371/journal.pone.0198985.t001
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LDL-C increased linearly, and HDL-C had a linear increasing trend with increasing density.

Serum TG and pectoral LPL had quadratic trends associated with stocking density (Table 2).

Proteins identification and comparison

In GO analysis, the most striking different pathways between H and L group were small mole-

cule metabolic process, organic acid metabolic process, oxoacid metabolic process and carbox-

ylic acid metabolic process, high stocking density elevated all of these pathways. Pathways

including oxidation-reduction process, cellular amino acid metabolic process and fatty acid

metabolic process were significantly increased in H group as well (Fig 2). Many proteins

involved in redox, lipid metabolism, protein turnover, DNA repair, and immunity were associ-

ated with stocking density (Table 3).

Antioxidant related proteins such as regucalcin and catalase were downregulated in H

group. Oxidative response associated proteins like DDRGK domain containing 1 and metal-

lothionein were enhanced in the H group.

Fatty acid synthesis protein acyl-CoA synthetase family member 2 (ACSF2) was enriched

in high stocking density. Fatty acid oxidation connected proteins including acyl-CoA dehydro-

genase long chain (ACADL), acyl-coenzyme A oxidase (ACOX1) and 2-hydroxyacyl-CoA

lyase 1 (HACL1) were enriched in the H group.

Protein turnover related proteins including Ribosomal protein S20, Pyridoxal kinase and

aspartyl-tRNA synthetase (DARS2) were elevated while Asparaginyl-tRNA synthetase was

reduced in the H group.

In DNA repair associated proteins, both RNA-binding motif protein X-linked (RBMX) and

Lamin B2 showed enhancing trends in H group. The immunity associated macrophage man-

nose receptor (MR) 1 was elevated, while major histocompatibility complex (MHC) class I

antigen α chain was decreased in the H group.

16S rDNA analysis of cecal microbiota

Microbiota PCA analysis showed a clear separation of samples from the H group and samples

from the L group (Fig 3A). The H group and L group had 290 bacterial taxa in common, while

the H group and L group had 35 and 13 unique taxa, respectively (Fig 3B).

LEfSe analysis, revealed a higher relative abundance of Firmicutes and Phascolarctobacterium
in the H group, while Bacteroidia, Bacteroidales, Thermoplasmata, Methanomassiliicoccales,

Table 2. Lipid metabolism related biochemical indices.

Pectorals Serum

Group LPL LPL TG TC HDL-C LDL-C

5 0.67±0.10BC 2.76±0.62A 1.01±0.22C 4.14±0.32B 4.01±0.30 3.24±0.60B

6 0.99±0.23AB 1.15±0.17B 1.54±0.07B 4.17±0.30B 4.76±0.68 3.59±0.59B

7 1.13±0.27A 2.67±0.39A 1.31±0.12BC 4.13±0.15B 4.41±0.83 4.83±0.73A

8 0.84±0.30ABC 2.52±0.79AB 2.09±0.20A 5.03±0.36A 5.10±0.84 4.88±0.85A

9 0.55±0.09C 2.80±0.36A 1.58±0.16B 4.74±0.10A 5.30±0.11 5.02±0.69A

P-value

ANOVA 0.003 <0.001 <0.001 <0.001 0.111 0.001

Linear 0.990 0.311 0.089 0.118 0.095 <0.001

Quadratic 0.098 0.506 0.050 0.302 0.250 <0.001

Note: lipoprotein lipase (LPL) triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C).

https://doi.org/10.1371/journal.pone.0198985.t002
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Methanomassiliicoccus and Methanomassiliicoccaceae were more abundant in the L group (Fig 4A

and 4B). Additionally, the H group had elevated Lachnospiraceae and Ruminococcaceae lower

abundance of Butyricimonas, Desulfovibrionaceae, Alistipes and Clostridiales (Fig 5). Overall, the

ratio of Firmicutes to Bacteroidetes in the H group was higher than in the L group (P = 0.058).

Discussion

Previous studies have indicated that high raising density has negative influences on physiology

and overall meat production [3,4,7]. This study showed a linear decrease of BW with increas-

ing stocking density. Similarly, breast muscle was depressed by increasing stocking density,

which was consistent with the former research that increasing stocking density decreased

breast fillet weight and its relative yield [20].

Increased density is associated with impaired antioxidant capacity, including decreasing

total glutathione concentration and the glutathione (GSH): oxidized glutathione (GSSG) ratio

[3]. Liver antioxidants including superoxide dismutase (SOD), catalase (CAT), GSH have pre-

viously been found to be reduced under high raising density [21]. In this study, enhancing

stocking density increased serum MDA and decreased pectoral T-AOC. In the proteomic anal-

ysis of this study, regucalcin and catalase expression were reduced in high density group.

Fig 2. GO pathways enriched by H group. Log-transformed P-value indicates the degree of difference between the H group and L group.

https://doi.org/10.1371/journal.pone.0198985.g002
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Catalases are involved in protecting cells from the damaging effects of ROS [22], while regucal-

cin is a calcium-binding protein with multiple roles that include calcium homeostasis, anti-

oxidative, anti-apoptosis, and anti-proliferation [23]. Decreases in these proteins indicate that

high stocking density may reduce duck anti-oxidant capacity.

High stocking density increases blood oxidative stress, including acute phase proteins, heat

shock protein 70, and circulating corticosterone [24]. In the current study, high stocking den-

sity had higher expressions of DDRGK domain containing 1, metallothionein, DARS2 and

RBMX. DDRGK domain containing 1 and metallothionein were enriched in high density

group. DDRGK1 is an endoplasmic reticulum membrane protein and plays an important role

in maintaining the homeostasis of endoplasmic reticulum [25]. Metallothionein is an essential

protein for the protection of cells against reactive oxygen species (ROS) [26]. Therefore, metal-

lothionein can neutralize ROS and protect host from oxidative stress. A previous study found

that loss of mitochondrial DARS2 leads to the activation of various stress responses in a tissue-

specific manner independently of respiratory chain deficiency [27]. The RBMX is a nuclear

protein that is involved in alternative splicing of RNA [28]. It can confer resistance to DNA

damage [29]. Enhancement of these proteins suggests oxidative stress of Peking ducks under

high stocking density.

Lipid storage is essential for protection against ROS toxicity [30]. The lipogenesis occurs in

liver most exclusively, especially to waterfowls [31]. High stocking density was previously asso-

ciated with higher hepatic TG storage [32]. This study showed serum LDL-C increased with

Table 3. Differentially expressed proteins identified under different stocking density.

Accession IDa Annotation Gene H:Lb P-value

Redox related proteins

U3I9D6 DDRGK domain containing 1 DDRGK 1.218 0.010

MT Metallothionein N/A 1.332 0.014

U3ID81 Regucalcin RGN 0.706 0.025

R0M3U9 Catalase Anapl_09675 0.882 0.051

Lipid metabolism related proteins

U3IAY7 Acyl-CoA dehydrogenase, long chain ACADL 1.154 0.040

U3I7T9 Acyl-CoA synthetase family member 2 ACSF2 1.103 0.032

U3J928 Acyl-coenzyme A oxidase ACOX1 1.098 0.007

U3I7I1 2-hydroxyacyl-CoA lyase 1 HACL1 1.143 0.095

Protein turnover related proteins

U3I9U9 Pyridoxal kinase PDXK 1.324 0.011

U3IHG9 Ribosomal protein S20 RPS20 1.103 0.045

U3I350 Aspartyl-tRNA synthetase DARS 1.119 0.096

U3J7Z7 Asparaginyl-tRNA synthetase NARS 0.904 0.068

DNA repair related proteins

U3IUN7 RNA binding motif protein, X-linked RBMX 1.136 0.068

U3IUB7 Lamin B2 LMNB2 1.119 0.076

Immunity related proteins

R0K747 Macrophage mannose receptor 1 Anapl_08603 1.170 0.004

Q6JWQ2 MHC class I antigen alpha chain Anpl-U 0.785 0.021

Note
a UniProt accession ID (http://www.uniprot.org/).
b ratio of protein abundance in the H group compared to the protein abundance in the L group

https://doi.org/10.1371/journal.pone.0198985.t003
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density incrementing. Moreover, high density group elevated ACSF2 expression. Acetyl-CoA

synthetase catalyzes the formation of acetyl-CoA from acetate, CoA and ATP and participates

in various metabolic pathways, including fatty acid and cholesterol synthesis and the tricarbox-

ylic acid cycle [33]. ACSF2 belongs to the acyl-CoA synthetase family, activating fatty acids by

forming a thioester bond with CoA [34]. Therefore, the increasing lipid biosynthesis may be

the self-protection mechanism of Peking ducks under oxidative stress.

ROS are considered to be involved in the progression of non-alcoholic fatty liver dis-

ease (NAFLD) [35]. Interestingly, fatty liver production in waterfowls is relatively similar

to human NAFLD [36]. Therefore, waterfowl can be a good model for liver steatosis

research. In current study, ACADL, ACOX1 and HACL1 were enriched in high stocking

density group. ACADL is a crucial enzyme participating in fatty acid oxidation [37]. Simi-

larly, ACOX1 are involved in β-oxidation in the liver [38]. HACL1 has two critical roles in

α-oxidation, the degradation of phytanic acid and shortening of 2-hydroxy long-chain

fatty acids so that they can be degraded further by β-oxidation [39]. It has been reported

that inhibition of β-oxidation decreases NADPH levels and increases ROS levels [40].

Therefore, the elevation of these proteins may protect ducks from oxidative stress. It is

increasingly recognized that the composition of the gut microbiota plays a critical role in

influencing predisposition to chronic liver disorders such as NAFLD [12]. Samples from

high stocking density had high levels of Lachnospiraceae. Interestingly, high Lachnospira-
ceae abundance was observed in patients with nonalcoholic steatohepatitis [41]. Rumino-
coccaceae and Alistipes were depleted in the high density group. Cirrhotic patients were

previously shown to have lower Ruminococcaceae (7α-dehydroxylating bacteria) abun-

dance compared to healthy patients [42]. Also, Alistipes was significantly more abundant

in the gut microbiota of healthy subjects compared to NAFLD patients [43].

Fig 3. PCA and Venn chart of microbiota. a, PCA diagram; b, Venn chart.

https://doi.org/10.1371/journal.pone.0198985.g003
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Oxidative stress can regulate immunity. A decreased broiler bursa weight was previously

reported to be associated with higher stocking densities [3]. DDRGK domain-containing pro-

tein 1 and Macrophage mannose receptor (MR) expression was higher in high density com-

pared to the low density group. DDRGK1 is also an essential regulatory protein of NF-κB [44].

A recent study found MR can protect against ROS burst [45]. The increase of these proteins

reflects the immune response status of Peking ducks under high stocking density. MHC class I

antigen α chain was decreased under high stocking density. MHC class I plays a crucial role in

immunity by capturing peptides for presentation to T cells and natural killer (NK) cells [46].

Dysregulation of MHC class I was correlated with unfolded protein response (UPR) and endo-

plasmic reticulum (ER) stress [47]. Upregulation of these proteins in the high density group

suggests the immune adaption to high stocking. Moreover, high stocking density has been pre-

viously associated with adverse effects on the chicken intestinal commensal bacteria [4]. In the

current study, Phascolarctobacterium was enriched, while Bacteroidales, Butyricimonas and

Alistipe are depleted in high density group. A previous study found that Phascolarctobacterium
was significantly correlated with systemic inflammatory cytokines [48]. Besides, depletion of

Fig 4. Bacterial taxa in H or L groups by LEfSe analysis. Phylogenetic relationships among significant bacterial biomarkers are indicated in the cladogram (top). Log-

transformed linear discriminant analysis (LDA) scores of the significant biomarkers are stated in the bar chart (bottom).

https://doi.org/10.1371/journal.pone.0198985.g004
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Bacteroidales has previously been associated with disease status [49]. Additionally, reduction

in Butyricimonas is associated with increased proinflammatory gene expression [50]. Studies

confirm that patients with IBD and Clostridium diffcile infection have a lower abundance of

Alistipe than their healthy counterparts [51]. The current study showed higher Firmicutes to

Bacteroidetes ratio in high density group. The microbiota of irritable bowel syndrome (IBS)

patients, compared with controls, had a 2-fold increased ratio of the Firmicutes to Bacteroidetes
[52]. Bile acids are ensential metabolites of the microbiome and can modulate the composition

of the gut microbiota directly or indirectly through the activation of the innate immune system

[53]. Bile acid plays a crucial role in the control of inflammation and NAFLD [54]. Samples

from the high stocking density group had higher levels of Ruminococcaceae and lower abun-

dance of Desulfovibrionaceae, and Clostridiales compared to low density group. Cholesterol

7α-hydroxylase (CYP7A1) is the enzyme responsible for catalyzing the first and rate-limiting

step in the classical bile acid synthetic pathway [55]. Furthermore, an inverse relationship

between Cyp7a1 expression and Ruminococcaceae abundance has been previously demon-

strated [21]. A study found enriched Desulfovibrionaceae was accompanied by increased

hepatic taurine-conjugated cholic acid and β-muricholic acid, which were the main constitu-

ent of bile acid pool [56]. Clostridiale was positively correlated with muricholic acid as well

[21]. A loss of bacteria belonging to the Clostridiales order was connected with a disturbance

in the bile-microbial axis [57]. Therefore, alternations of bacteria showed a decrease trend in

bile acid synthesis.

In conclusion, high stocking density caused alternations of liver proteome and gut micro-

biome, which may cause oxidative stress of Peking ducks (Fig 6).

Fig 5. Relative abundance of anti-inflammatory bacterial taxa in H or L groups.

https://doi.org/10.1371/journal.pone.0198985.g005

Proteome and microbiota alterations of liver-gut axis under high stocking density of Peking ducks

PLOS ONE | https://doi.org/10.1371/journal.pone.0198985 October 26, 2018 12 / 17

https://doi.org/10.1371/journal.pone.0198985.g005
https://doi.org/10.1371/journal.pone.0198985


Acknowledgments

This research was supported by the National Key Research and Development Program of

China (2016YFD0500509) and the System for Poultry Production Technology, Beijing Agri-

culture Innovation Consortium (Project Number: BAIC04-2017).

Author Contributions

Conceptualization: Jianmin Yuan.

Data curation: Yuqin Wu, Xin Qin, Zhibin Xiao, Xiaoyu Dong, Muhammad Suhaib Shahid,

Dafei Yin.

Fig 6. Graphic summary of liver proteome and gut microbiota alternations under high stocking density.

https://doi.org/10.1371/journal.pone.0198985.g006

Proteome and microbiota alterations of liver-gut axis under high stocking density of Peking ducks

PLOS ONE | https://doi.org/10.1371/journal.pone.0198985 October 26, 2018 13 / 17

https://doi.org/10.1371/journal.pone.0198985.g006
https://doi.org/10.1371/journal.pone.0198985


Formal analysis: Yuqin Wu, Xin Qin.

Funding acquisition: Jianmin Yuan.

Investigation: Muhammad Suhaib Shahid.

Methodology: Jianhui Li, Jianmin Yuan.

Project administration: Jianmin Yuan.

Supervision: Jianhui Li.

Validation: Jianmin Yuan.

Visualization: Shiqiang Sun.

Writing – original draft: Yuqin Wu.

Writing – review & editing: Jianmin Yuan.

References
1. Zhang YR, Zhang LS, Wang Z, Liu Y, Li FH, Yuan JM, et al. (2018) Effects of stocking density on growth

performance, meat quality and tibia development of Pekin ducks. Anim Sci J 89: 925–930. https://doi.

org/10.1111/asj.12997 PMID: 29682864

2. Buijs S, Keeling LJ, Vangestel C, Baert J, Vangeyte J, Tuyttens FAM (2010) Resting or hiding? Why

broiler chickens stay near walls and how density affects this. Appl Anim Behav Sci 124: 97–103.

3. Simitzis PE, Kalogeraki E, Goliomytis M, Charismiadou MA, Triantaphyllopoulos K, Ayoutanti A, et al.

(2012) Impact of stocking density on broiler growth performance, meat characteristics, behavioural

components and indicators of physiological and oxidative stress. Br Poult Sci 53: 721–730. https://doi.

org/10.1080/00071668.2012.745930 PMID: 23398415
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