
Coexpression Network Analysis in Abdominal and
Gluteal Adipose Tissue Reveals Regulatory Genetic Loci
for Metabolic Syndrome and Related Phenotypes
Josine L. Min1*, George Nicholson2, Ingileif Halgrimsdottir2, Kristian Almstrup3, Andreas Petri3, Amy

Barrett4, Mary Travers4, Nigel W. Rayner1,4, Reedik Mägi1,5, Fredrik H. Pettersson1, John Broxholme1,
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Abstract

Metabolic Syndrome (MetS) is highly prevalent and has considerable public health impact, but its underlying genetic factors
remain elusive. To identify gene networks involved in MetS, we conducted whole-genome expression and genotype
profiling on abdominal (ABD) and gluteal (GLU) adipose tissue, and whole blood (WB), from 29 MetS cases and 44 controls.
Co-expression network analysis for each tissue independently identified nine, six, and zero MetS–associated modules of
coexpressed genes in ABD, GLU, and WB, respectively. Of 8,992 probesets expressed in ABD or GLU, 685 (7.6%) were
expressed in ABD and 51 (0.6%) in GLU only. Differential eigengene network analysis of 8,256 shared probesets detected 22
shared modules with high preservation across adipose depots (DABD-GLU = 0.89), seven of which were associated with MetS
(FDR P,0.01). The strongest associated module, significantly enriched for immune response–related processes, contained
94/620 (15%) genes with inter-depot differences. In an independent cohort of 145/141 twins with ABD and WB longitudinal
expression data, median variability in ABD due to familiality was greater for MetS–associated versus un-associated modules
(ABD: 0.48 versus 0.18, P = 0.08; GLU: 0.54 versus 0.20, P = 7.861024). Cis-eQTL analysis of probesets associated with MetS
(FDR P,0.01) and/or inter-depot differences (FDR P,0.01) provided evidence for 32 eQTLs. Corresponding eSNPs were
tested for association with MetS–related phenotypes in two GWAS of .100,000 individuals; rs10282458, affecting
expression of RARRES2 (encoding chemerin), was associated with body mass index (BMI) (P = 6.061024); and rs2395185,
affecting inter-depot differences of HLA-DRB1 expression, was associated with high-density lipoprotein (P = 8.761024) and
BMI–adjusted waist-to-hip ratio (P = 2.461024). Since many genes and their interactions influence complex traits such as
MetS, integrated analysis of genotypes and coexpression networks across multiple tissues relevant to clinical traits is an
efficient strategy to identify novel associations.
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Introduction

Genome-wide association (GWA) studies are routinely em-

ployed to identify common genetic variants contributing to

complex diseases. Many replicated GWA signals have been found

for metabolic traits including high-density lipoprotein (HDL), low-

density lipoprotein, body mass index (BMI), triglycerides (TG) and

blood pressure, greatly enhancing the understanding of the genetic

basis of these traits [1–6]. However, statistically significant signals

resulting from GWA studies do not necessarily lead directly to the

identification of genes associated with disease or provide limited

insights into the molecular mechanisms of the disease phenotype.

In addition, the associated SNPs explain a very small proportion of

the heritability estimated for the complex trait [7]. For example, a

GWA study for BMI in up to ,250,000 individuals identified 32

loci that, together, explain only 4.5% of the phenotypic variation

or ,6–11% of the genetic variation in BMI [3]. The 1000

Genomes Project Consortium tested ,95% of common variation
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using low-coverage sequencing of 167 individuals and showed that

only one-third of complex trait associations are likely to be caused

by common coding variation, indicating that most contributions of

common variation to complex traits are regulatory in nature [8].

eQTL (expression Quantitative Trait Loci) studies could help in

understanding how known genetic variants identified by GWA

studies influence clinical traits through gene expression, or suggest

potential biological pathways. eQTLs have already been associ-

ated to several complex traits including Type I diabetes [9],

asthma [10] and obesity [11]. In addition, eQTL studies have

shown that top hits from GWA studies are more likely to be

eQTLs [12,13] and eSNPs are enriched for association to Type 2

diabetes (T2D) [14]. Focusing on SNPs that have been associated

with an expression trait in the relevant tissue and testing whether

such eSNPs are associated with disease could highlight novel

genetic loci that fail to meet the stringent genome-wide

significance level of GWA studies.

Metabolic syndrome (MetS) is highly prevalent, occuring in up

to 22% of US individuals, and is a serious public-health problem

world wide [15]. Defined by The International Diabetes

Federation (IDF), it is characterized by central obesity plus the

presence of two of four heritable metabolic abnormalities: raised

TG; reduced HDL; hypertension; and hyperglycaemia. It is

considered a serious risk factor of both T2D and cardiovascular

disease [16]. Traditional approaches have highlighted insulin

resistance, obesity, inflammation, and glucose and/or lipid

metabolism to be important to the pathophysiology of the MetS

[17,18]. Body fat distribution plays an important role due to its

association with metabolic disorders. Individuals with increased

intra-abdominal/visceral fat (high waist-to-hip ratio (WHR)) are at

high risk of MetS, whereas those with increased subcutaneous fat

in the gluteofemoral region (low WHR) are at little or no risk of

MetS [19,20]. The adverse metabolic risk of visceral fat has been

attributed to distinct metabolic properties of adipocytes in this fat

depot compared with those in other sites, including differences in

metabolic responses, gene expression, adipokine secretion and

insulin action [21–23]. In addition, GWA studies have identified

multiple loci that modulate body fat distribution independent of

overall adiposity [24].

The estimated heritability of MetS ranges from 0.10 to 0.51,

whilst that of the individual traits that constitute MetS range from

0.13 to 0.72 [25–27]. The clinical clustering of individual MetS

traits may be explained by shared genetic and environmental

factors contributing to their origin [25]. GWA studies on the

individual metabolic traits have identified many genetic loci,

however, a much smaller number of genetic factors that influence

MetS as a clinical entity have been identified (www.genome.gov/

gwastudies, accessed 02-03-2011 [28]).

It is likely that for a clinical entity such as MetS comprising

multiple complex trait components, there is considerable genetic

heterogeneity in causal pathways. Therefore examining many

genes simultaneously using a systems-based approach, such as

weighted gene co-expression network analysis [29], may be more

powerful than analysing single-gene effects. A previous eQTL

study in adipose tissue has led to the identification of a

macrophage-enriched metabolic network which was enriched for

eQTL signals and associated with obesity-related traits [11].

However, the focus of most eQTL studies so far has been on single

tissue networks ignoring the fact that complex clinical entities such

as MetS are the result of interactions of multiple molecular

networks operating within and between tissues. In addition, it is

not often recognised that molecular phenotypes such as gene

expression traits are influenced by biological and technical

variation, affecting power of association detection.

To uncover eQTLs in tissues relevant to MetS, we analysed

gene expression profiles in abdominal (ABD) and gluteal (GLU)

adipose tissue, and whole blood (WB), from 73 individuals,

allowing the investigation of differential regulation between

different adipose depots applying both single-gene and a network

approaches. Using a second independent cohort comprising 145

and 141 twins with ABD and WB expression data collected

longitudinally across two visits, we demonstrate the relative

contribution of familial, environmental, and experimental vari-

ability to the MetS-associated expression phenotypes. Lastly, we

identify a set of SNPs associated with the expression of genes in

selected MetS-associated modules showing differential expression

between the adipose depots, and test these eSNPs for association

with MetS-related phenotypes in two large GWA cohorts.

Results

Single-gene associations between MetS and gene
expression

Figure S1 shows the study design. Using Affymetrix hgu133-

plus2 arrays, we analysed ABD, GLU and WB samples from 29

MetS cases and 44 controls from the MolOBB study. For each

subject, we collected six quantitative traits used to define MetS

including waist circumference, systolic and diastolic blood

pressure, TG, HDL and fasting glucose levels. We defined MetS

according to IDF Criteria [16]: central obesity, as assessed by waist

circumference plus any two of the following four components

(raised TG, reduced HDL cholesterol, raised blood pressure,

raised fasting plasma glucose) (Table 1). After filtering for high-

quality array data, we limited further analyses to 54, 65, and 68

individuals and those probesets that showed a mean intensity

above 4 arbitrary units of log2 (intensity) in at least 10% of

individuals resulting in 8941 (ABD), 8307 (GLU) and 6909 (WB)

gene expression profiles (probesets were mapped to Entrez Genes),

respectively (see Methods). We identified 893 and 335 genes

showing significant expression changes with MetS in ABD and

Author Summary

Metabolic Syndrome (MetS) is a highly prevalent disorder
with considerable public health concern, but its underlying
genetic factors remain elusive. Given that most cellular
components exert their functions through interactions with
other cellular components, even the largest of genome-
wide association (GWA) studies may often not detect their
effects, nor necessarily provide insight into the complex
molecular mechanisms of the disease. Rather than focusing
on individual genes, the analysis of coexpression networks
can be used for finding clusters (modules) of correlated
expression levels across samples. In this study, we used a
gene network–based approach for integrating clinical MetS,
genotypic, and gene expression data from abdominal and
gluteal adipose tissue and whole blood. We identified
modules of genes related to MetS significantly enriched for
immune response and oxidative phosphorylation pathways.
We tested SNPs for association with MetS–associated
expression (eSNPs), and tested prioritised eSNPs for
association with MetS–related phenotypes in two large-
scale GWA datasets. We identified two loci, neither of which
had reached genome-wide significance levels in GWAs,
associated with expression levels of RARRES2 and HLA-DRB1
and with MetS–related phenotypes, demonstrating that the
integrated analysis of genotype and expression data from
relevant multiple tissues can identify novel associations with
complex traits such as MetS.

Adipose eSNPs Associated with Metabolic Syndrome
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GLU applying a 1% False Discovery Rate (FDR) correction [30]

with 210 genes overlapping (‘single-gene analysis’) (Figure 1, Table

S1, Table S2). Hierarchical clustering of the differentially

expressed genes showed distinct clustering of the majority of

MetS cases. Clustering was independent of gender or the presence

of specific subsets of the two MetS components as defined in the

IDF criteria (waist circumference plus any two of the four MetS

components) (Figure 1).

The large overlap between the two fat depots supports the

robustness of the data and consistency across fat depots. Among

the top 10 genes that were associated with MetS was KCTD10;

SNPs at this locus were previously associated with HDL [31]

(Figure 1C). To validate these findings further, we compared

previously implicated MetS-associated loci [32] and obesity-

related gene expression differences [11] with the MetS-associated

expression differences in our study. This comparison revealed

consistency for MetS-associated expression differences including

LPL, C3AR1, HSD11B1, and FAT3 in ABD and APOE, FAT3 and

FNDC4 in GLU (Table S3, Table S4).

None of the genes was differentially expressed between MetS

cases and controls in WB although for the individual MetS

components (122 genes for waist circumference, nine genes for TG

and one gene for HDL) significant gene expression differences

were identified (not shown). Only two of these genes, ATP5E and

BLVRB showed significant expression changes with multiple MetS

components (waist circumference (FDR P = 9.0 *1023) and TG

(FDR P = 0.01); waist (FDR P = 5.7 *1023) and HDL (FDR

P = 4.3 *1023) indicating that MetS gene expression differences

were more pronounced in the fat depots, which became the main

focus of further analysis.

The distribution of adipose tissue between ABD and GLU

depots varies between individuals and this variation is associated

with MetS and some of the WHR-associated loci have shown

depot-specific differences in expression patterns and/or an

enrichment of associations with metabolic phenotypes [24]. This

led us to test the hypothesis that MetS-associated expression

differences found for genes expressed in both depots might reflect

depot-specific expression differences. Whereas 8.9% and 13% of

the genes associated with MetS in ABD or GLU only exhibited

depot-specific differential expression, 44 of the 210 overlapping

MetS-associated genes (21%) including KCTD10 and C3AR1

showed evidence for depot-specific expression changes. These

findings support the hypothesis that, at least for some genes, the

associations with MetS reflect depot-specific differences.

Construction of weighted coexpression networks
A Pearson correlation matrix (containing an estimate of each

pairwise correlation between gene expression levels, irrespective of

MetS status) was calculated and transformed into a matrix of

connection strengths using a power function resulting in a

weighted network (see Methods and [33]). Using these connection

strengths, genes were clustered in distinct groups of highly

connected genes (modules). For each gene in a module, we

calculated the Module Membership (MM) by correlating its gene

expression profile with the module eigengene (the first principal

component of the gene expression profiles in each module). Genes

with high MM values to the respective module are considered

hubgenes (see Methods and [30]).We constructed gene networks

separately for each of the three MolOBB tissue datasets and

identified 20, 26 and 18 modules in ABD, GLU and WB,

respectively. To distinguish between modules, each module was

assigned an arbitrary color. Figure S2 depicts a hierarchically

clustered connectivity matrix of the ABD dataset and the 20

identified modules.

Biological significance of network modules
We examined the biological significance of the identified

modules by testing for 1) association with MetS 2) enrichment of

Gene Ontology (GO) terms 3) hubgenes and 4) previous

implicated genes. For the former, we extracted the first principal

component of the gene expression profiles in each module (module

‘eigengene’) and tested its association with MetS (see Methods).

From the 20, 26 and 18 modules found in ABD, GLU and WB,

nine, six and zero modules, respectively, were associated with

MetS (FDR P,0.01, Table 2). Four of the nine ABD MetS-

Table 1. Characteristics of the participants included in ABD gene expression analyses (with both nonmissing expression and
phenotype data).

Sample characteristics All cases All controls Male cases Female cases Male controls Female controls

Sample size (N) 22 32 13 9 20 12

Age (years) 4865 4965 4764 4966 4965 4965

Waist (cm) 107614 90611 108613 105616 93610 87612

HDL (mmol/l) 0.9960.25 1.4160.33 0.8860.15 1.1560.27 1.2960.33 1.6360.19

TG (mmol/l) 2.161.3 1.160.3 2.561.5 1.760.9 1.060.3 1.160.4

Diastbp (mm Hg) 90611 7766 89612 91611 7665 7966

Systbp (mm Hg) 134616 120611 132616 136617 12067 122615

Glucose (mmol/l) 5.960.8 5.160.3 5.760.6 6.161.0 5.160.3 5.060.3

Reduced HDL (N)* 20 5 12 8 5 0

Raised TG (N) 15 1 10 5 0 1

Raised Blood Pressure (N)* 14 6 7 7 3 3

Raised Glucose (N) 14 1 7 7 1 0

T2D (N)* 1 0 1 0 0 0

Values are means 6 standard deviation for each quantitative variable.
*Individuals (N = 7) with treatment for lipid abnormalities or hypertension were assigned as having reduced HDL or raised blood pressure. T2D is defined as fasting
blood glucose .7.0 mmol/l or antiglycemic treatment).
doi:10.1371/journal.pgen.1002505.t001

Adipose eSNPs Associated with Metabolic Syndrome
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associated modules and two of the six GLU MetS-associated

modules showed a significant (FDR P,0.01) enrichment of GO

terms (Table 3). In the ABD brown module, the eigengene was

downregulated for MetS cases compared to MetS controls

indicating that genes positively correlated with the eigengene

(MM.0) were downregulated in MetS cases. This module was

enriched for GO Biological Processes related to oxidative

phosphorylation pathways (GO: 0006082 organic acid metabolic

process (FDR P = 7.9*1027) and GO:0006091 generation of

precursor metabolites and energy (FDR P = 7.5*1027). For these

GO categories, the majority of the genes (more than 84% of genes

with MM.0) were downregulated in MetS cases. The genes in

these GO categories had a higher median MM (MM.0.74) than

the 877 genes in the module (MM = 0.51) showing functional

relevance of these genes in the module. Furthermore, among the

top 10 genes with the highest rank of membership (hubgenes),

eight were previously implicated in mitochondrial processes

including generation of metabolites and energy (ATP5B, ACO2,

SUCLG1 and UQCRC), oxidation reduction (MOSC1, MOSC2,

LDHD) and fatty acid oxidation (ECHS1) (Table S5, Figure 2A).

This module contained the genes LPL, FAT3 and PPMG1 for

which SNPs were previously associated with MetS (Table S4) [32].

The eigengene of the ABD cyan module was upregulated for

MetS cases compared to MetS controls and genes in this module

were enriched for immune response related GO categories.

CD163, C1QB, C1QC and C3AR1, which are involved in the

inflammatory response and/or complement cascade were among

the strongest hubgenes (Table S5). This module contained three of

Figure 1. Gene expression changes related to MetS in ABD and GLU. A,B. Heatmap of scaled expression values of 893 and 335 differentially
expressed genes between MetS cases and controls in ABD (A) and GLU (B) samples. The dendogram depicts hierarchical clustering of the differentially
expressed genes. The bottom bars show black boxes for MetS, the presence of the MetS components (reduced HDL, raised TG, raised fasting glucose,
raised blood pressure) and gender (females). C. The top 10 genes differentially expressed in ABD and the top 10 genes differentially expressed in GLU.
The horizontal bars displays 2log10 Pvalues for differential expression between MetS cases and controls in ABD and GLU and between depots.
doi:10.1371/journal.pgen.1002505.g001

Adipose eSNPs Associated with Metabolic Syndrome
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seven reported genes (C3AR1, HSD11B1 and CD68) with a highly

significant MM (MM.0.75) from a previously identified macro-

phage-enriched metabolic network in subcutaneous adipose tissue

in humans and mice that was associated with obesity-related traits

and enriched for inflammatory response and macrophage

activation pathway [11] (Table S3). In addition, CD163 encodes

a monocyte/macrophage specific receptor whose soluble form

(sCD163) is elevated in T2D and obesity [34]. Although, gene

identity and connectivity strength of the previously published

module was not available, which is required for a comprehensive

comparison between studies, the modules might represent similar

immune-response related processes in ABD.

For the GLU samples, the brown module showed an

enrichment for glucose metabolic processes (GO:0045913 positive

regulation of carbohydrate metabolic process (FDR

P = 3.8*1023)). For the darkgreen GLU module eigengene, the

strongest MetS-associated module in GLU and associated with all

MetS components (FDR P,0.01), an upregulation among MetS

cases was observed as compared to controls. No significant

enrichment of GO terms was observed among the genes in the

module (Table 3). Among the top 10 of hubgenes in the darkgreen

GLU module, were GLUL (MM = 20.89) and PHLDA2

(MM = 0.84) (Table S5, Figure 2B). Both these genes are highly

differentially expressed between depots (FDR P,0.01). GLUL,

encoding glutamate synthase, showed lower expression levels in

GLU, as compared to ABD but the relation of this gene to MetS is

unknown. PHLDA2 encoding pleckstrin homology-like domain,

family A, member 2 was upregulated in GLU as compared to

ABD and is known to be involved in fetal growth with elevated

placental expression associated with low birth weight [35].

Differences in single-gene and single-tissue network
approaches

To investigate to what extent gene expression probesets

identified in the single-gene analyses as associated with MetS

were included in the MetS-associated modules, and signified

hubgenes, the correlation between MM and gene significance

(direct association between gene expression probeset and MetS

from single-gene analyses) was calculated for each gene expression

probeset (see Methods and [33]). For 862/893 (97%) and 238/335

(71%) of the MetS-associated probesets in ABD (p,0.01,

MM.0.36) and GLU (p,0.01, MM.0.41), a significant

association with a MetS-associated module eigengene was found

(147 probesets were overlapping). For the ABD brown (Pearson

r.0.41, p,10236) and the GLU darkgreen modules (Pearson

r.0.57, p,1029) most significantly associated with MetS

(Table 2), the correlations between gene significance for MetS

and the individual MetS components and MM were highly

significant (Figure 3, Figure S3). These results imply substantial

concordance in results between the two approaches and support

the increased power of the network-based approach by reducing

the number of tests significantly. A further advantage of the

network approach is the identification of distinct functional

modules within single-tissue networks that associated with MetS.

Genes that fall into these modules were more highly connected

than with genes in other modules (Figure S2) and their relevance

can be inferred based on the correlation with the eigengene. The

MetS-associated modules were enriched for immune response and

oxidative phosphorylation pathways consistent with studies

showing that adipose tissue secretes factors that regulate energy

homeostasis and the immune response and the activation of

inflammatory signalling pathways that emerges in the presence of

obesity, insulin resistance and T2D [11,36].

Differential eigengene network and GO analysis of ABD
and GLU expression data

MetS is a complex trait that is manifested in multiple tissues

and where regulatory processes may act specific to a tissue as

well as across tissues. The regulatory processes that play a role

within a tissue may differ from those processes across tissues. It is

Table 2. Modules for which eigengenes were significantly correlated (FDR p,0.01) with MetS in ABD (N = 9) and GLU (N = 6).

Depot module N genes N DE genes* MetS Waist HDL TG Diast bp** Syst bp*** Glucose

ABD brown 877 69 (8%) 2.5E-05 1.5E-06 1.0E-07 6.5E-03 5.2E-03 0.08 0.19

ABD cyan 582 63 (11%) 4.0E-05 2.2E-09 6.1E-09 3.6E-04 4.0E-04 0.02 0.02

ABD black 1065 142 (13%) 7.1E-05 2.2E-09 1.4E-04 6.5E-03 5.5E-05 4.2E-04 0.02

ABD pink 331 13 (4%) 1.4E-04 9.7E-03 2.9E-03 0.43 0.02 0.13 0.19

ABD darkred 133 22 (17%) 7.7E-04 4.0E-03 1.1E-04 4.2E-03 0.04 0.26 0.19

ABD blue 1231 57 (5%) 9.8E-04 4.5E-06 7.2E-06 0.19 9.7E-03 0.12 0.19

ABD darkgrey 290 63 (22%) 1.7E-03 1.2E-09 1.7E-04 3.6E-04 2.7E-04 9.4E-05 0.02

ABD royalblue 156 9 (6%) 5.0E-03 0.28 0.01 0.71 0.50 0.96 0.90

ABD purple 248 32 (13%) 5.5E-03 8.1E-04 0.07 0.30 1.5E-03 0.02 0.03

GLU darkgreen 107 28 (26%) 1.4E-08 2.2E-13 3.7E-07 5.1E-06 3.9E-07 2.5E-06 2.1E-04

GLU darkred 411 68 (17%) 2.7E-05 2.7E-08 3.7E-07 5.1E-06 2.4E-04 2.7E-04 0.03

GLU royalblue 141 27 (19%) 2.7E-05 8.6E-09 1.7E-05 2.3e-04 2.4E-04 1.6E-04 0.04

GLU black 338 17 (5%) 2.3E-03 9.9E-05 1.7E-04 0.02 1.7E-03 5.8E-03 0.21

GLU brown 771 72 (9%) 2.9E-03 2.3E-06 2.1E-05 1.2E-03 5.8E-03 3.5E-03 0.23

GLU cyan 211 59 (28%) 5.4E-03 5.1E-05 0.08 0.13 5.8E-03 0.02 0.04

FDR corrected pvalues for the associations with MetS and six quantitative metabolic traits are shown.
*DE = differentially expressed between adipose depots;
**Diast bp = diastolic blood pressure;
***Syst bp = systolic blood pressure.
doi:10.1371/journal.pgen.1002505.t002

Adipose eSNPs Associated with Metabolic Syndrome
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likely that if modules of coexpressed genes are preserved among

tissues, these modules may highlight communication between

tissues and elucidate biological pathways that are shared among

the tissues. Studying differential expression of individual genes in

the module may reveal differences in pathway regulation across

tissues.

To examine to what extent biological processes underlying

MetS are shared and differentially regulated among the different

adipose depots, we first examined the overlap of expressed genes

between ABD and GLU (Figure S4). Of 8992 probesets expressed

in ABD or GLU, 685 (7.6%) were expressed in ABD; 51 (0.6%) in

GLU and 8256 (92%) in both adipose depots. For 679 of the 8256

probesets (8.2%), differential expression between depots was found

(FDR P,0.01). GO analysis of the 685 ABD-only probesets

showed enrichment for common GO terms (GO:0051171,regu-

lation of nitrogen compound metabolic process (FDR

P = 7.5*1023)) and other gene transcription terms whilst analysis

of the 51 GLU-only probesets showed no enrichment. The

enrichment of gene transcription categories among genes ex-

pressed in ABD only might suggest regulatory processes specific for

ABD rather than genes that are able to induce gene activity

changes in other tissues. The large overlap of expressed genes

among ABD and GLU, however, suggest the existence of shared

processes or at least communication between tissues.

To examine whether the eigengene networks are similar across

fat depots, we calculated spearman correlations for the median

expression (r= 0.98, p,1*10210 and whole-network connectivi-

ties (r= 0.66, p,1*10210) between ABD and GLU (Figure S5).

These significant correlations suggest that the ABD and GLU

networks are comparable.

Next, we applied differential eigengene network analysis on

8256 genes that were expressed in both the ABD and GLU

datasets [29]. In this analysis, we detected 22 consensus modules,

i.e., modules that are shared by the ABD and GLU datasets. To

identify differences in pathway regulation between ABD and GLU

depots, we examined the relationship between all pairs of the

consensus module eigengenes represented by consensus networks

(see Methods and [29]). For each individual eigengene within an

adipose depot, we found that its relationship with the other

eigengenes was highly preserved across the adipose depots, with an

Table 3. Biological Processes GO terms were significantly enriched (FDR P,0.01) in 15 modules associated with MetS in ABD and
GLU.

Depot Module Term Count % P value* FE** FDR P

ABD brown GO:0006091,generation of precursor metabolites and energy 52 5.9 1.1E-09 2.5 7.5E-07

ABD brown GO:0006082,organic acid metabolic process 69 7.9 2.3E-09 2.1 7.9E-07

ABD brown GO:0042180,cellular ketone metabolic process 68 7.8 1.4E-08 2.0 3.1E-06

ABD brown GO:0022900,electron transport chain 26 3.0 3.2E-07 3.1 5.4E-05

ABD brown GO:0051186,cofactor metabolic process 31 3.5 1.7E-05 2.3 2.3E-03

ABD cyan GO:0009611,response to wounding 48 8.2 3.9E-10 2.7 2.5E-07

ABD cyan GO:0006959,humoral immune response 15 2.6 7.8E-08 5.8 2.5E-05

ABD cyan GO:0006952,defense response 45 7.7 7.9E-08 2.4 1.7E-05

ABD cyan GO:0006956,complement activation 10 1.7 1.9E-06 7.6 3.1E-04

ABD cyan GO:0048731,system development 99 17.0 7.0E-05 1.4 9.0E-03

ABD black GO:0009889,regulation of biosynthetic process 232 21.8 3.7E-06 1.3 2.6E-03

ABD black GO:0060255,regulation of macromolecule metabolic process 257 24.1 8.5E-06 1.3 3.0E-03

ABD black GO:0080090,regulation of primary metabolic process 255 23.9 1.9E-05 1.2 4.5E-03

ABD black GO:0051171,regulation of nitrogen compound metabolic process 217 20.4 2.1E-05 1.3 3.7E-03

ABD blue GO:0002504,antigen processing and presentation of peptide or polysaccharide
antigen via MHC class II

10 0.8 6.0E-07 6.7 4.5E-04

GLU darkred GO:0009611,response to wounding 41 10.0 1.2E-11 3.3 6.7E-09

GLU darkred GO:0006952,defense response 38 9.3 2.6E-09 3.0 7.4E-07

GLU darkred GO:0009653,anatomical structure morphogenesis 51 12.4 1.3E-06 2.0 2.5E-04

GLU darkred GO:0006956,complement activation 9 2.2 2.3E-06 9.1 3.3E-04

GLU darkred GO:0009887,organ morphogenesis 29 7.1 6.2E-06 2.6 7.0E-04

GLU darkred GO:0006959,humoral immune response 11 2.7 7.4E-06 6.0 7.0E-04

GLU darkred GO:0048731,system development 75 18.3 1.7E-05 1.6 1.4E-03

GLU darkred GO:0030198,extracellular matrix organization 13 3.2 1.8E-05 4.6 1.3E-03

GLU darkred GO:0048513,organ development 61 14.9 2.0E-05 1.7 1.3E-03

GLU darkred GO:0002252,immune effector process 14 3.4 5.9E-05 3.8 3.4E-03

GLU darkred GO:0050778,positive regulation of immune response 13 3.2 9.5E-05 3.9 4.9E-03

GLU darkred GO:0048583,regulation of response to stimulus 25 6.1 1.0E-04 2.4 4.9E-03

GLU brown GO:0045913,positive regulation of carbohydrate metabolic process 9 1.2 5.8E-06 7.2 3.8E-03

*P value = Fisher Exact Test;
**FE = Fold Enrichment.
doi:10.1371/journal.pgen.1002505.t003
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overall preservation network density D(PreservABD,GLU) of 0.89

(see Methods; Figure S6).

To assess the relevance of the consensus modules for MetS, we

tested the consensus module eigengenes for association with MetS

(Table S6). Eigengenes of seven consensus modules (six in ABD and

six in GLU) were associated with MetS of which five modules were

overlapping (FDR P,0.01) (Table S6), suggesting that, in general,

the effect of consensus modules on MetS was not characterized by

different patterns of coexpressed genes between different adipose

depots. The yellow module eigengene showed the strongest

association with MetS in both the ABD (FDR P = 1.4*1025) and

the GLU dataset (FDR P = 4.6*1026) and was upregulated in MetS

cases as compared to controls in both fat depots. The genes in this

yellow module were enriched for immune response related

processes (Table S7). Among the hubgenes of the yellow module,

that is, the genes with the highest rank of module membership in

both networks, were C3AR1, CD163 and c22orf9 and NPC2

(Figure 2C and 2D and Table S8). Consistent with the overlap of

hubgenes between the cyan ABD module and the consensus

module, the module eigengenes of ABD cyan and the yellow

consensus module were highly correlated (r= 0.97, p,1*10210)

and contained many common genes (310 genes).

The yellow module eigengenes in ABD and GLU were highly

correlated (r= 0.81) and not differentially expressed (p = 0.64).

However, 94 genes of the 620 genes (15%) were differentially

expressed between depots (FDR P,0.01) which were enriched for

the GO-term: GO:0009611 response to wounding (FDR

P = 2.3*1023) (see Methods). Among these differentially expressed

genes, were the hubgenes C3AR1, C1QC, CD163 involved in the

complement cascade suggesting that the inflammatory response

overlapping in the fat depots are regulated through common

genes.. Thus, the results suggested the presence of a specific, highly

Figure 2. MetS-associated modules found in the different fat depots. Visualization of the ABD brown (A), GLU darkgreen (B), consensus
yellow in ABD (C) and consensus yellow in GLU (D) modules, respectively. For each module the top 150 pairwise correlations (intramodular
connectivities) are shown. Genes with the top 10 highest ranked module membership are displayed in larger circles.
doi:10.1371/journal.pgen.1002505.g002
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preserved Mets-associated module enriched for immune response

pathways containing a significant number of inter-depot differen-

tially expressed genes which may indicate differential regulation

between adipose depots.

Variability of MetS-associated gene expression from
single-gene analyses

Variation of gene expression traits may be driven by biological

as well as experimental factors. Characterizing and quantifying

sources of variation of gene expression traits or module eigengenes

is important for the identification of regulatory genetic variants. In

a separate dataset (MolTWIN) of 154 healthy twins, we retained

gene expression of 202 ABD and 191 WB samples from 145 and

141 twins after quality control, respectively (202/191 visits, with

29/26 duplicate measurements (see Methods)). To examine

whether the two independent ABD datasets were comparable,

spearman correlations for the median expression (r= 0.96,

p,1*10210), whole-network connectivities (r= 0.51, p,1*10210)

and the intramodular connectivities for the brown module

(r= 0.71, p,1*10210) were calculated using the module assign-

Figure 3. Scatterplot between MM (x-axis) and gene significance (y-axis) for MetS and the six MetS components in the ABD brown
module. Gene significance was defined as 2log10 pvalue of the probeset-clinical trait association for each gene in the brown module. Gene
expression probesets marked in red showed evidence for a cis eQTL, and their eSNPs were examined for association with BMI, HDL and TG (Table 4).
doi:10.1371/journal.pgen.1002505.g003

Adipose eSNPs Associated with Metabolic Syndrome

PLoS Genetics | www.plosgenetics.org 8 February 2012 | Volume 8 | Issue 2 | e1002505



ments from MolOBB to calculate the connectivities (Figure S7).

The significant correlations suggested that the ABD networks were

comparable.

The MolTWIN dataset allowed us to decompose the biological

and experimental variation underlying an expression trait into five

components: familiality (genetic and common environment effects

shared by twin pairs); individual environment (unique for twin

individual); common visit and individual visit effects, which

respectively measure the amount of shared (by twins within a

pair) and non-shared variation occurring in the phenotype over

the sampling period. The residual component of variation

comprised experimental effects (two technical replicates of the

same sample). Familiality and individual environment variation

assess longitudinally stable, and common and individual visit

variation, short-term biological components. Although, our main

focus –given the size of the MolTWIN datasets– was on estimating

familiality, we also included heritablity estimates for contrast and

completeness (Table S9). We assessed the relative proportions of

the five sources of variances using a twin mixed-effects modelling

approach (see Methods) retaining 6787 probesets expressed in

MolTWIN ABD and WB, and for four groups of probesets

selected for association with MetS in MolOBB identified in single-

gene analysis and expressed in MolTWIN and in MolOBB 1) 626/

893 ABD probesets; 2) 205/335 GLU probesets; 3) 121/210

probesets with expression in both tissues and 4) 22/121

differentially expressed probesets (see Methods).

Familiality was the largest source of variation that contributed

to the variance of the gene expression traits in ABD and WB

(Figure 4, Text S2). The four groups of MetS-associated probesets

showed similar familiality patterns, and their median familiality

estimates were significantly higher compared to the probesets not

associated with MetS, in both MolTWIN ABD and in WB (Table

S9). Also, the groups of MetS-associated probesets showed a

greater median familiality in ABD than in WB (Table S9). The

highest median estimates were found for the 121 probesets

associated with MetS in ABD+GLU (0.43, IQR: 0.18), and the 22

associated with MetS and differentially expressed between ABD

and GLU (0.41, IQR: 0.15; Table S9). In addition to familiality,

we estimated heritabilities for the groups of MetS-associated

probesets, and the heritability patterns were similar as the

familiality patterns in ABD but not in WB which might suggest

an enrichment of genetic signals in ABD but not in WB.

Variance decomposition of module eigengenes
We also used the MolTWIN data to characterize the sources of

variation underlying the eigengenes of the MetS-associated

modules from the MolOBB data. Rather than constructing

networks in MolOBB and MolTWIN separately, we calculated

module eigengenes in the MolTWIN study using the module

assignments from MolOBB and decomposed the module eigen-

genes into the five variance sources as described above (Figure 5,

Text S2). The variability patterns of the eigengenes were

consistent with the results for probesets identified using the

single-gene approach. Median familiality estimates from MolT-

WIN ABD (Figure 5A) were greater for MetS-associated module

eigengenes than those not associated with MetS in MolOBB ABD

(median = 0.48, IQR = 0.30 vs median = 0.18, IQR = 0.28,

p = 0.08) and GLU (median = 0.54, IQR = 0.10 vs median 0.20,

IQR = 0.28, p = 7.8*1024). This pattern was not observed for

familiality estimates derived from MolTWIN WB (Figure 5B). For

the MetS-associated modules, median heritability estimates were

significantly greater than for modules not associated with MetS in

ABD (median = 0.41, IQR = 0.27 vs median = 6.9*1025,

IQR = 0.25, p = 0.03) and GLU (median = 0.65, IQR = 0.32 vs

median = 0.14, IQR = 0.28, p = 0.007).

eQTL Analysis of differentially expressed genes
To assess whether specific genetic loci were associated with

MetS-associated gene expression in ABD and GLU, we performed

cis eQTL analyses (cis defined as SNP location within 500 kb of the

gene start or stop position; eQTLs are defined as genomic loci that

regulate expression levels of mRNAs or proteins). For the ABD

eQTL analysis, we used both ABD datasets (MolOBB and

MolTWIN) comprising 189 individuals whilst for the GLU dataset

we used 62 individuals from the MolOBB dataset. Out of the 8242

ABD genes tested, we found 1287 cis eQTL genes (FDR P,0.01)

using a fixed-effects meta-analysis [37]. We found evidence for an

eQTL in cis for 77 of the 893 probesets associated with MetS in

the single-gene meta-analysis. Six of these eQTL genes showed

significant inter-depot differences (Table 4). For the GLU eQTL

Figure 4. Sources of gene expression variation in different tissues. A) 626 probesets associated with MetS in MolOBB ABD B) 205 probesets
associated with MetS in MolOBB GLU. Variances are decomposed in MolTWIN ABD and WB.
doi:10.1371/journal.pgen.1002505.g004
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analysis, 628 of the 8307 tested genes had an eQTL in cis

(empirical p,0.01, see Methods). We found a cis eQTL for 6/335

genes associated with MetS. Two of these genes ATP8B4 and

LTBP2, exhibited differential expression between ABD and GLU

(Table 4). Only one of these MetS eSNPs (an eSNP has been

defined as a SNP associated with an expression trait), rs8207,

affecting PHOSPHO2 expression levels, was found in both ABD

and GLU analyses but none of the corresponding expression

probesets showed significant differences between adipose depots

(Table 4).

We similarly calculated cis eQTL associations for probesets in

the ABD brown and GLU darkgreen modules most significantly

associated with MetS in MolOBB. For 124/877 genes in the ABD

brown module (877 tests), we found evidence for an eQTL in cis.

For 14/124 genes, a high MM (p,0.01) and a significant

association with MetS was found (Table 4; Figure 3). For the

GLU darkgreen module comprising 107 genes, we found two

eQTL genes that were significantly associated with MetS and high

MM (p,0.01) (Table 4; Figure S3). For the yellow consensus

module (620 genes), shared between ABD and GLU datasets, we

found 69 and 26 genes with evidence for an eQTL in cis in ABD

and GLU respectively; five eQTLs in ABD and four eQTLs in

GLU, had corresponding genes exhibiting interdepot expression

differences (Table 4).

To validate the eQTL analysis, we evaluated 29 SNPs and their

proxies (r2.0.5) that were associated with MetS in a GWA of

22,161 participants [32]. In both ABD and GLU, an eQTL for

HERPUD1 (rs3764261) was found (Table S4).

Modules are groups of highly correlated genes and could be the

result of transcriptional co-regulation. We examined whether we

could find genomic hotspots i.e. genetic loci that regulate multiple

genes that are coexpressed within the module. We tested the

module eigengenes of the ABD brown, GLU darkgreen and yellow

consensus modules for association with 296,017 SNPs. After

Figure 5. Sources of variation for module eigengenes. Median estimates from: A) MolTWIN ABD and B) MolTWIN WB. From left to right:
eigengenes in MolTWIN are calculated from MolOBB ABD, GLU and WB probesets. In each plot, eigengenes are ordered by decreasing association
with MetS from left to right (modules significantly associated with MetS are marked with * above the bar). Red is familiality, green is individual
environment, cyan is individual visit, blue is common visit and grey displays residual variance.
doi:10.1371/journal.pgen.1002505.g005
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multiple testing correction (FDR P,0.05), we found the 21q22.13

locus (rs2835630, p = 1.4*1027, FDR P = 0.04) significantly

associated with the ABD brown module eigengene and the 6p21

locus (rs909982, p = 8.3*1028, FDR P = 0.02) associated with the

GLU darkgreen module. The SNP at the 21q22.13 locus was

within the Down Syndrome Critical Region in a high LD region

containing the TTC3 and DSCR9 genes. Of the two genes, only

TTC3 was expressed in ABD. This gene was not differentially

expressed between MetS cases and controls (p = 0.01, FDR

P = 0.06) and assigned to the turquoise module (MM = 20.62,

P = 3.4*1027). Remarkably, TTC3 is an E3 ligase facilitating

ubiquitination and degradation of phosphorylated Akt [38]

whereas Akt has a key role in metabolic regulation. The SNP at

the 6p21 locus was in the intronic region of LRFN2. This gene was

however not expressed in GLU and plays a role in neuronal

development. These loci may act as a master regulator of the genes

in the module mediating a gene expression regulatory mechanism.

Confirmation of associations between eSNPs and MetS–
related phenotypes in two large GWA cohorts

To validate our results, we tested our prioritised eSNPs for

association with MetS-related phenotypes using data from two

large GWA cohorts. Based on the eQTL analyses, we prioritised a

set of 32 eSNPs that were associated with MetS-associated

probesets/modules (Table 4): 15 eSNPs associated with probesets

in the most significant ABD (brown) module, three eSNPs in the

most significant GLU (darkgreen) module, and 14 eSNPs

associated with genes exhibiting inter-depot differences in the

consensus (yellow) module and/or with the single-gene models

(nine of which were also significantly associated with MetS). The

32 eSNPs were tested for association with individual phenotypic

components of MetS and the fourteen eSNPs exhibiting ABD-

GLU inter-depot differences were tested for association with

WHR-adjBMI (Table 4): Association with BMI and WHR-

adjBMI was assessed using data from the GIANT consortium

comprising ,120,000 individuals and with HDL and TG in

.100,000 individuals from a large-scale publicly available lipid

study [4]. For each of the four clinical phenotypes, a Bonferroni-

adjusted significance threshold of 1.6*1023 was chosen such that

Pr(Number of False Positives .0) ,0.05 by correcting for 32 SNP-

clinical phenotype associations. This threshold was corresponding

to a FDR of 0.03 across 110 tests. Adopting a much simplified

scenario given the complex correlation structure of the MetS-

related traits, we found three significant associations which was

more than expected by chance; assuming independence between

the 110 tests, the binomial probability was 7.3*1024. SNP

rs10282458, was significantly associated with gene expression

levels of the adipokine RARRES2 encoding chemerin, and was

significantly associated with BMI (genomic control corrected

p = 6.0*1024). RARRES2 gene expression levels showed a

familiality of 0.53 in the MolTWIN ABD dataset and were highly

connected with the brown module eigengene (MM = 0.83). In

MolOBB, expression levels of RARRES2 were strongly associated

with MetS (p = 1.9*1025) and with the individual components of

MetS: waist (p = 1.6*1028), HDL (p = 2.0*1025) and diastolic

blood pressure (p = 1.5*1024). SNP rs2395185, which affected

expression levels of HLA-DRB1, was significantly associated with

HDL (genomic-control corrected p = 8.7*1024). Expression levels

of HLA-DRB1 showed a familiality of 0.59 in MolTWIN ABD and

were correlated with waist circumference (p = 2.9*1025) and HDL

(p = 5.3*1025) in MolOBB.

Next, we tested the 14 eSNPs that were associated with ABD-

GLU inter-depot differences and rs10282458 for association with

WHR-adjBMI in the GIANT consortium. By focusing on WHR
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after adjustment for BMI, we anticipated to detect associations

with body fat distribution independent of those influencing overall

adiposity. SNP rs10282458 was indeed associated with BMI but

not with WHR-adjBMI (Table 4). We found one significant

association (genomic-control corrected) between eSNP rs2395185,

influencing HLA-DRB1 expression levels in ABD and GLU, and

WHR-adjBMI (p = 2.4*1024). These results may suggest that

differential regulation of the HLA-DRB1 region is associated with

WHR-adjBMI.

Discussion

Given that many molecular processes in multiple tissues could

be involved in the onset of MetS, we genotyped and profiled gene

expression in WB and two different adipose depots, ABD and

GLU, from 73 individuals. After constructing coexpression

networks for each tissue independently and between tissues, we

identified MetS-associated modules of coexpressed genes enriched

for immune response and oxidative phosphorylation pathways in

adipose depots but not in WB. By testing eSNPs, that were

associated with expression of the genes in the MetS-associated

modules, for association with MetS-related phenotypes in large

scale GWA datasets, we found associations with RARRES2 and

HLA-DRB1. Thus, by constructing networks across and within

different adipose depots combined with single-gene analysis, two

signals which had not reached genome-wide significance in GWA

datasets of more than 100,000 individuals were identified.

Adipose tissue is a dynamic endocrine organ that secretes

proteins such as cytokines and hormones, collectively named

adipokines. Adipokines may regulate energy and vascular

homeostasis, as well as inflammatory processes, and are involved

in glucose and lipid metabolism. Chemerin, encoded by

RARRES2, is an adipokine known to play an important role in

adipogenesis and metabolic homeostasis and modulating chemo-

taxis and activation of dendritic cells and macrophages [39,40]. In

humans, chemerin levels are associated with multiple components

of MetS including BMI, plasma TG, hypertension, and HDL [41–

43]. In a study of Caucasian individuals, a serum chemerin

concentration of 240 ug/L was selected to diagnose MetS with a

sensitivity of 75% and specificity of 67% [44]. Chemerin

expression and secretion from adipose tissue increases with

adipocyte differentiation and obesity [39,41]. Despite the evidence

linking circulating chemerin levels with metabolic phenotypes, to

our knowledge, this is the first study that identified loci near genes

encoding chemerin for MetS-related phenotypes. A GWA study

reported that serum chemerin levels were heritable and found a

genetic association between the EIDL3 gene and serum chemerin

levels supporting a potential role for chemerin in angiogenesis

[45]. Given the convergence of adipocyte and macrophage

function, chemerin may provide an interesting link between

chronic inflammation, often associated with obesity-related

diseases, and obesity and metabolic function in human adipose

tissue with MetS.

In humans, variations in adipose tissue distribution is associated

to different metabolic consequences, with abdominal increase of

fat producing a much greater risk for metabolic traits than

gluteofemoral fat, suggesting differential regulation between the

two adipose depots [20]. We identified a MetS-associated module

highly preserved across the two adipose depots and enriched for

immune response pathways, with 15% of the probesets differen-

tially expressed between tissues. A modest association between

eSNP rs2395185, influencing HLA-DRB1 expression levels in ABD

and GLU, and WHR-adjBMI was found. The HLA-associated

SNP found in our study has also been linked to ulcerative colitis

[46,47]. Cis eQTLs of the HLA-DRB1 locus with other SNPs have

previously been associated with Type 1 diabetes in liver tissue [9]

and with cholesterol levels in omental and subcutaneous fat [4]

suggesting differential regulation of this locus across different

tissues.

The specific identified genetic associations were found with a

network approach rather than with single-gene association

between expression and clinical traits, even though there was

substantial concordance in results between the two strategies.

Investigating coexpression networks may be a more powerful

approach than a single-gene association analysis since most

cellular components are connected to each other through

regulatory, metabolic and protein-protein interactions and sum-

marising coexpressed genes in a single eigengene reduces the

number of tests significantly. In our study, we tested a set of SNPs,

associated with expression of genes in MetS-associated expression

modules in relevant tissues, with the hypothesis that these eSNPs

are enriched for SNP-MetS associations. Testing this small SNP

set for disease association in large GWAS cohorts revealed two

SNP-disease associations, the signals of which would have been

relatively weak in a genome-wide multiple-testing context.

An additional motivation for utilising a network-based approach

is that it is unlikely that MetS is a consequence of an abnormality

in a single gene product, but reflects the perturbations of a

particular functional module in the gene network by a complex

interaction of genetic and environmental interactions [48,49]. The

existence of distinct disease-specific functional modules is consis-

tent with: findings from GWA studies observing that many genetic

loci identified with GWAs for traits such as height, lipids and BMI

may be not randomly distributed with respect to biological

function [50], genes associated with similar disorders show higher

expression profiling similarity for their transcripts, and proteins

involved in the same disease have an increased tendency to

interact with each other [51].

We found an enrichment of oxidative phosphorylation genes in

the most significant ABD gene network module, which is

consistent with previous studies showing compelling evidence for

mitochondrial dysfunction in association with insulin resistance

and obesity [52,53]. Reduced mitochondrial biogenesis has been

demonstrated in humans with MetS, coinciding with reduced ATP

level and dysfunctional mitochondrial electron transport [54,55].

Mitochondrial dysfunction may lead to an increased production of

Reactive Oxygen Species and consequently oxidative stress which

is coupled to activation of inflammatory pathways and insulin

resistance in adipocytes [36,56].

The network topology-based approach helps to uncover

potential mechanisms that contribute to the shared pathophysiol-

ogy of the multiple components of MetS. Defects in gene products

that are part of the same pathway, may also affect other cellular

functions, resulting in potential comorbidity effects. Consistent

with this view, our results and those of other studies support the

idea that the chronic low-grade inflammatory condition that is

associated with obesity plays a role in the etiology of MetS [36].

Specifically, cells of the innate immune system, particularly

macrophages, are crucially involved in adipose inflammation

and systemic metabolic abnormalities [36]. CD163, one of the

hubgenes found this study, encodes a monocyte/macrophage

specific receptor whose soluble form (sCD163) is elevated in T2D

and obesity [34].

It is however not clear whether obesity is the origin or whether

inflammation is proximal to metabolic dysfunction [36]; a chronic

excess of nutrients can trigger metabolic dysfunction and

inflammatory responses simultaneously leading to metabolic excess

which also leads to inflammatory responses.

Adipose eSNPs Associated with Metabolic Syndrome
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In any expression study, many expression traits associated with

the disease will not necessarily be causative, but instead be mostly

reactive to disease. In addition, expression levels represent

measurements from a heterogeneous mixtures of cells. It is

important to distinguish the effect of genetic variation on gene

expression from other factors that are reactive to the disease or

confounding factors that also correlate with expression variability.

Both our single-gene and network-based results showed that the

expression probesets and modules filtered by association with

MetS had increasing familiality and heritability levels, which may

suggest an enrichment of genetically relevant signals.

Our results arose principally from the analysis of gene

expression in ABD and GLU adipose depots, and not WB. In

addition, the heritability of the genes associated with MetS in both

ABD and GLU was high in ABD tissue of the twins but not in WB.

Moreover, the proportion of variance that was explained by the

fact that the twins attended the hospital together (common visit

effect) was high in WB, indicating stronger short-term environ-

mental effects on WB than ABD expression levels. These

observations suggest that WB is not necessarily the tissue of

choice to detect eQTLs that are of direct relevance to MetS.

In conclusion, we performed an eQTL study in WB, ABD and

GLU and highlighted two genetic loci associated with MetS

mediated by gene expression variation. Considering many genes

and their interactions influence complex traits such as MetS, the

integrated analysis of genotype data and expression networks

across multiple tissues relevant to the clinical traits under study is

an efficient strategy to identify novel genetic associations, and may

offer better targets for drug development.

Methods

Ethics statement
The MolTWIN study was approved by St. Thomas’ Hospital

Research Ethics Committee (EC04/015 Twins UK). The

MolOBB study received ethical approval from Oxfordshire REC

C (08/H0606/107). All participants gave informed consent.

MolOBB data collection
The MolOBB study consists of 44 healthy controls (27 men, 17

women) and 29 cases with MetS (16 men, 13 women) between 39

and 56 years old that were collected from the Oxford Biobank as

part of the MolPAGE consortium [57]. Based upon the IDF

Criteria (www.idf.org), MetS was assigned as central obesity (waist

circumference (or BMI.30 kg/m2) plus any two of the following

four factors: raised triglycerides, reduced HDL cholesterol, raised

blood pressure or raised fasting plasma glucose [16]. Control

subjects were selected to be discordant from the MetS cases

(Table 1). From these individuals, ABD and GLU adipose and WB

samples were taken. A total of 143 samples were obtained, with 71

subjects successfully donating both tissue types, and one individual

donating only GLU. Subcutaneous adipose tissue from the

abdominal wall is taken at the level of the umbilicus; subcutaneous

gluteal tissue is taken from the upper outer quadrant of the buttock

and WB samples were taken using EDTA and PAXgene tubes.

Gene expression data is available at ArrayExpress (E-TABM-54).

MolTWIN collection
A total of 154 twins (56 monozygotic (MZ) pairs and 21

dizygotic (DZ) pairs), were ascertained from the UK Adult Twin

registry at St. Thomas’ Hospital [58] and recruited to participate

in this study. Gene expression data is available at ArrayExpress (E-

TABM-325). Eligible volunteers were healthy, Caucasian, post-

menopausal females of Northern European descent, aged between

45–76 years old. Twins were checked for zygosity using a panel of

47 SNPs [59]. Each participant donated subcutaneous adipose

tissue from the abdominal wall and WB; 34 MZ twin pairs

donated samples during two visits whereas 21 DZ pairs and 22

MZ pairs donated samples during one visit. Both twins in a pair

visited on the same day.

Gene expression profiling
For the WB samples, PAXgene tubes were used and RNA was

extracted according to the manufacturer’s protocol (PAXgene,

QIAGEN). Total RNA was extracted with TRIreagent (SIGMA-

ALDRICH, Gillingham, UK) from the fat biopsies and quantified

using a NanoDrop. For six of the MolOBB subjects and 30 of the

MolTWIN subjects from the first visit (15 MZ pairs), RNA was

split into two aliquots before labelling (technical replicates). RNA

was labelled using the MessageAmp II 96-well amplification kit

(Applied Biosystems, CA, USA). Labelled RNA was hybridized

onto Affymetrix hgu133plus2 arrays washed, stained, and scanned

for fluorescence intensity according to manufacturers protocols

(Affymetrix, Inc., USA). For each tissue, RNA samples were

randomised and extracted in batches of 12 samples, rerandomised

before labelling in 96-well plates and hybridised in batches of 12

samples on a plate-row by plate-row basis. Quality control checks

involved signal intensities, background intensity, expression of

control genes and spike-ins, as well as a spatial representation of

the intensities. To identify outliers further, principal components

analysis was performed on the normalised gene expression dataset

using the NIPALS algorithm. The majority of the probes on the

hgu133plus2 arrays were collected into 17,726 non-overlapping

probesets according to Entrez Gene annotations provided by Dai

et al. [60].

Gene expression preprocessing
After outlying arrays had been removed, there remained data in

the MolOBB study from 54 ABD samples (four in technical

duplicate), 65 GLU samples (five in technical duplicate) and 68

WB samples. During 202 visits, 231 MolTWIN samples from ABD

(29 technical replicates) were successfully profiled from 145

individuals. From the WB samples, 217 MolTWIN gene

expression profiles for 141 individuals were generated during

191 visits (26 technical replicates). All arrays were normalised

concurrently across datasets for comparisons between tissues and

separately for comparisons within a single tissue using GC robust

multi-array analysis [61]. Gene-specific expression summaries

were averaged across technical replicates of a sample. We then

filtered the data, retaining only those probesets that were

annotated to an autosomal location, and also showed a mean

intensity above 4 arbitrary units of log2 (intensity) in at least 10%

of individuals. After this filtering stage in the MolOBB, there

remained 8619 probesets in the ABD-GLU dataset, 8941 in the

ABD dataset, 8307 in the GLU and 6909 probesets in the WB

dataset. In the MolTWIN study, 8928 probesets in the ABD

dataset and 9071 probesets in the WB dataset remained.

Genotyping and quality control
DNA was successfully extracted from WB samples using

GeneCatcher (Invitrogen Life Technologies, Carlsbad, USA)

according to manufacturer’s protocol. 166 samples (70 MolOBB,

96 twins (one MZ individual per MZ pair and two DZ

individuals per DZ pair)) are genotyped with Illumina 317K

BeadChip SNP arrays (Illumina, San Diego, USA). Genotype data

(EGAS00000000102) is available at EGA.

Quality control on the genotyped subjects was performed

applying slightly changed quality control filters as described
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PLoS Genetics | www.plosgenetics.org 14 February 2012 | Volume 8 | Issue 2 | e1002505



previously by the Wellcome Trust Case Control Consortium [62].

Two twin samples are removed due to sample success rate ,95%

and three samples (two twins, one MolOBB) were removed due to

non European ancestry. SNPs are removed when minor allele

frequency (MAF) ,1% or showed a success rate ,95% and

MAF.5%, and when ,99% and MAF,5%. Hardy-Weinberg

equilibrium was calculated by combining all unrelateds of the

MolOBB and MolTWIN dataset (e.g.one twin per twinpair) and

SNPs were removed if P value,1024. After QC, genotypes of the

ungenotyped MZ twin were copied from genotyped MZ twin.

Finally, we included 69 MolOBB individuals and 144 twins

genotyped for 296,017 autosomal SNPs.

Statistical analysis
Identifying differentially expressed genes. For the

differential expression analysis between MetS cases and controls,

we investigated the effect of gender, RNA Integrity Number, age

and plate on gene expression measurements. Several probesets

were associated with gender and plate but none with age or RNA

Integrity Number. We then tested all detected probesets for

association with MetS adjusting for gender and plate-effects using

linear models. To investigate whether genes are differentially

expressed between ABD and GLU, we used a linear mixed model

on in which tissue (ABD versus GLU), MetS case-control status,

gender, and plate were fitted as fixed effects, and subject (sample

donor) as a random effect. Models were fitted using the Rpackage

Maanova [63]. The pvalues from the Fs test were corrected for

multiple testing using FDR [30] and probesets were considered

significant if the adjusted p-value of the Fs test was ,0.01.

Construction of the weighted gene coexpression

networks. We used the Rpackage WGCNA for network constru-

ction. To construct single tissue and consensus eigengene networks,

we adjusted the tutorials from the WGCNA website (http://www.

genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/

WGCNA/Tutorials/index.html). A weighted gene co-expression

network reconstruction algorithm was used to reconstruct co-

expression networks for each of the three MolOBB datasets

(ABD, GLU and WB) [64]. Briefly, a Pearson correlation matrix

(gene-by-gene matrix) between all gene expression pairs was

constructed. To define the weighted coexpression network, an

adjacency matrix was constructed using a soft power adjacency

function aij~cor xi,xj

�
�

�
�
b
. This parameter b of the power

function was defined in such a way that the resulting co-

expression network (adjacency matrix) satifies approximate scale-

free topology. To measure how well the network satisfied a

scale-free topology, we used fitting index R2 of the linear model

that regressed log(p(k)) on log(k) where k is connectivity and

p(k) is the frequency distribution of connectivity [64]. The fitting

index of a perfect scale-free network is 1. For the MolOBB ABD,

GLU and WB datasets, we chose a power of 5, 6 and 12,

respectively, which resulted to an approximate scale-free topology

network with the scale-free fitting index R2 greater than 0.8. The

distribution p(k) of the resulting network approximated a power

law: p(k)*k{1:29 [64].

Modules were defined as groups of genes with similar patterns of

connection strengths with all other genes of the network. The

adjacency matrix was transformed into a topological overlap

matrix. To identify modules of highly co-regulated genes, we used

average linkage hierarchical clustering to group genes based on the

topological overlap of their connectivity, followed by a dynamic

cut-tree algorithm to cluster dendrogram branches into gene

modules [65].

To summarise the gene expression profiles of an entire module

by a single gene expression profile, module eigengenes were

computed. Gene expression profiles for each module were

decomposed using singular value decomposition (X~UDV T ),
where X is a n-by-g matrix where g is the number of genes and n

the number of samples. The first column of V represented the

module eigengene. These module eigengenes were tested for

association with the MetS-related phenotypes adjusted for plate

and gender using a linear regression model. These associations

were adjusted for multiple testing by applying a 1% FDR [30].

To determine whether the MetS-associated modules are

biologically meaningful, GO enrichment analyses were conducted

using DAVID [66]. For each of the MetS-associated modules, we

examined enrichment of Biological Process GO terms as

compared to the expressed probesets of that tissue using a Fisher’s

exact test. FDR Pvalues,0.01 were considered significant [30].

Whole network connectivities were defined as the sum of

connection strength with the other network genes. The intramod-

ular connectivity (kme) of the ith gene is defined as the absolute

value of the correlation between the ith expression profile and the

module eigengene (ME): kme(i)~ cor(x(i),ME)j j. Modules were

visualised using the program VisANT [67].

To assess the preservation of network properties across the ABD

and GLU datasets, we applied differential eigengene network

analysis to identify consensus modules [29]. These consensus

modules were defined using consensus dissimilarity and used for

hierarchical clustering. To compare the consensus eigengene

networks of ABD and GLU whose adjacency matrices are A1
eigen

and A2
eigen we used a preservation network Preserv(A1

eigen,A2
eigen)

in which adjacencies are defined as Preserv
(1,2)
ij ~1{

cor(E1
i ,E1

j ){cor(E2
i ,E2

j )
�
�
�

�
�
�

2
. Here, E1

i and E2
i denote the eigen-

genes of the Ith consensus module in ABD and GLU, respectively.

High levels of the preservation network indicate a strong

preservation between I and J across the two networks. The density

D is an aggregate measure of adjacency preservation between the

A(1) and A(2) [29].

Variability analysis. Maximum likelihood estimation of

variance components from the MolTWIN dataset was

performed by fitting a linear mixed-effects model using the lme4

package [68]. For each normalised probeset or module eigengene,

Yijkl , we fitted a model for the lth aliquot (1,2) from a biological

sample taken at the kth visit (1,2) of the jth twin (1,2) from the ith

pair (1,2,..,76):

Yijkl~mzpzPijzZi jð ÞzEijzWikzVijkzeijkl

with m the overall mean and p the batch-effect i.e. modelling

variation across 96-well plates (fixed effects). The random effects

Pij , Zij , Eij , Wik, Vijk, eijkl represent pair (common to a pair of

twins, irrespective of zygosity), zygosity indicator (shared by a pair

of MZ twins (Zi) but not by a pair of DZ twins (Zij )), individual

environmental, common visit, individual visit and residual

experimental error effects, respectively. The total phenotypic

variance s2
T can be decomposed into the variances of P, Z, E, W ,

V and, e respectively: s2
T~s2

Pz s2
Z zs2

Ez s2
W zs2

V z s2
e .

To estimate the familiality (genetic and common environmental

components) among twin pairs, we calculated: F2~(s2
Pzs2

Z)=s2
T .

where s2
P represents the genetic and common-environmental

phenotypic covariance between a pair of DZ twins, irrespective of

zygosity. DZ pairs share half their additive genetic variance plus all

of their common environmental variance. MZ pairs share this

variance, but in addition also share the remaining half of additive

genetic variance. The latter extra covariance is parameterized by
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s2
Z. The heritability was estimated by 2

s2
Z

s2
T

. Differences between

the familiality distributions in MolTWIN ABD and WB were

determined using the Wilcoxon Signed Rank Test. Familiality

differences between the MetS-associated probesets or module

eigengene and the probesets or module eigengenes that were not

associated with MetS were calculated using the Wilcoxon Rank

Sum Test.

eQTL analysis. We selected subjects who had complete data

on plate, gender, casecontrol status, gene expression and

genotypes. We set out to identify SNPs that affect gene

expression levels in cis. We defined an association between a

SNP and gene expression level as cis-acting if the SNP was located

within 500 kb from the start or stop position of the annotated gene

(NCBI build 36). Genotypes were coded as 0, 1, and 2

corresponding to the counts of the minor allele and an additive

model was fitted in all models. For each of the genes, each SNP in

the cis region was tested independently.

In the MolOBB study, SNP associations were calculated by

regressing expression level against using a linear regression model

adjusting for gender and plate-effects. In the MolTWIN study, we

fitted linear mixed models, for which twin pairing, zygosity,

individual visit, common visit, individual environment and

residual effect were fitted as random effects and genotype and

plate as fixed effects. eQTL associations in MolOBB and

MolTWIN were calculated with the Rpackages lm and lme4,

respectively. In the ABD meta-analysis, we combined study-

specific allelic effect-estimates on 8242 probesets expressed in both

ABD MolOBB (N = 52) and MolTWIN (N = 137) using a fixed

effect model, using the inverse of the variance of the study-specific

allelic effect-estimates to weight the contribution of the two studies

[37]. Results were checked for heterogeneity and adjusted for

multiple testing by FDR [30].

Follow-up of SNP–MetS associations in independent

cohorts. In order to followup eSNPs in independent cohort we

assembled a set of 32 eSNPs based on two criteria: i. Expression levels

had to be differentially expressed between MetS cases and controls

and showed a high MM (p,0.01) with the brown module in ABD or

the darkgreen module in GLU. ii. Expression levels in yellow

consensus module or gene-by-gene model had to be differentially

expressed between depots. In order to confirm the associations

between the 32 eSNPs and the MetS related phenotypes in

independent cohorts, we obtained results of relevant meta-analyses

conducted by two consortia. For the BMI associations, 32 eSNPs

were tested for association in the GIANT consortium consisting of

.120,000 individuals. To confirm associations with TG and HDL,

we used previously published GWA results comprising .100,000

individuals [4]. For the 14 eQTL associations affecting gene

expression levels associated with interdepot differences, 14 eSNPs

were examined for association with WHR-BMIadj. Meta-analysis

statistics were obtained using weighted z-statistics and corrected for

genomic control. For each of four clinical phenotypes, the significance

threshold 1.6*1023 is chosen such that Pr(Number of False Positives

.0) ,0.05. Exact binomial probabilities were calculated through

repeated applications of the standard binomial formula.

We selected 29 variants and their proxies (r2.0.5) previously

associated to MetS or a pair of MetS traits [32] and tested these for

association with expression levels in ABD and GLU. Expression

levels of genes within 500 kb around SNP were examined for

differential expression between MetS cases and controls.

URL
All code is available at http://www.well.ox.ac.uk/ggeu/

PLoSGenet_Minetal_MolPAGE/.

Supporting Information

Figure S1 Study design for the three strategies. Pink, green and

purple colors represent single-gene approach, single tissue

eigengene network analysis and differential eigengene network

analysis, respectively.

(TIF)

Figure S2 Heatmap plot of the topological overlap in the ABD

gene network of 1000 random selected genes. In the heatmap,

each row and column corresponds to a gene, light color displays

low topological overlap, and darker color displays higher

topological overlap. The gene dendogram and module assignment

are shown along the left and top. The cyan and brown modules

are clearly seen by the darker squares along the diagonal.

(TIF)

Figure S3 Scatterplot between MM (x-axis) and gene signifi-

cance (y-axis) for MetS and the six MetS components in the GLU

darkgreen module. Gene significance (y-axis) is defined as 2log10

pvalue of the probeset-clinical trait association for each gene in the

darkgreen module. The red indicated genes show genes with

evidence for a cis eQTL and their eSNPs are examined for

association with BMI.

(TIF)

Figure S4 Venn diagram of number of expressed genes in

MolOBB ABD and GLU.

(TIF)

Figure S5 Preservation of genes across fat depots. A. Scatterplot

of 8256 median expression levels for ABD versus GLU. B.

Scatterplot of whole-network connectivities for ABD versus GLU.

Each point corresponds to a gene expression level. Spearman

correlations and the corresponding p-values are displayed in the

title of each plot. The whole-network connectivity is strongly

preserved between ABD and GLU.

(TIF)

Figure S6 Differential eigengene network analysis across different

depots. A, B Dendrograms of consensus module eigengenes in ABD

and GLU. C, F.The heatmap plots of eigengene adjacencies in each

eigengene network. Each row and column corresponds to one

eigengene (labeled by consensus module color). Within each

heatmap, red indicates high adjacency and green displays a low

adjacency as shown by the color legend. D. Barplot shows the

preservation of relationships of consensus eigengenes of the

consensus modules. D represents the overall preservation measure.

E. Adjacency heatmap for the pairwise preservation network of

ABD (rows) and GLU (columns). Red indicates the adjacency.

(TIF)

Figure S7 Preservation of genes across MolOBB and MolTWIN

study. A. Scatterplot of 8242 median expression levels for

MolOBB ABD versus MolTWIN ABD. B. Scatterplot of whole-

network connectivities for MolOBB ABD versus MolTWIN ABD.

C. Scatterplot of intramodular connectivities of genes in the brown

module for MolOBB ABD versus MolTWIN ABD. Each point

corresponds to a gene expression level. Spearman correlations and

the corresponding p-values are displayed in the title of each plot.

The whole-network connectivity and intramodular connectivities

of genes in the brown module are preserved between MolTWIN

and MolOBB.

(TIF)

Table S1 Genes differentially expressed between MetS cases and

controls in ABD (‘single gene analysis’).

(DOC)
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Table S2 Genes differentially expressed between MetS cases and

controls in GLU (‘single gene analysis’).

(DOC)

Table S3 Module membership and association with MetS and

BMI in the MolOBB ABD dataset of genes identified by Emilsson

et al. [11] as part of a macrophage-enriched metabolic network in

subcutaneous adipose tissue and associated with obesity-related

traits.

(DOC)

Table S4 Evaluation of GWA SNPs previously associated with

MetS.

(DOC)

Table S5 Hubgenes (genes with highest rank of module

membership) in the modules strongest associated with MetS in

the ABD and GLU single-tissue networks.

(DOC)

Table S6 Modules for which eigengenes were significantly

correlated (FDR p,0.01) with MetS in ABD (N = 6) and GLU

(N = 6). FDR corrected pvalues for the associations with MetS and

six quantitative metabolic traits are shown.

(DOC)

Table S7 Enrichment of Biological Processes GO terms in

yellow consensus modules.

(DOC)

Table S8 Hubgenes (genes with highest rank of module

membership) in the yellow consensus module in both the ABD

and GLU networks.

(DOC)

Table S9 Median familiality estimates, assessed in MolTWIN

ABD and WB, of four groups of MolOBB MetS-associated

probesets identified using the single-gene approach, compared

with probesets not associated with MetS.

(DOC)

Text S1 Members of GIANT consortium and members of

MolPAGE consortium.

(DOC)

Text S2 Variability of MetS-associated gene expression.

(DOC)
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