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Abstract: Drought perturbs metabolism in plants and limits their growth. Because drought stress
on crops affects their yields, understanding the complex adaptation mechanisms evolved by plants
against drought will facilitate the development of drought-tolerant crops for agricultural use. In
this study, we examined the metabolic pathways of Arabidopsis thaliana which respond to drought
stress by omics-based in silico analyses. We proposed an analysis pipeline to understand metabolism
under specific conditions based on a genome-scale metabolic model (GEM). Context-specific GEMs
under drought and well-watered control conditions were reconstructed using transcriptome data
and examined using metabolome data. The metabolic fluxes throughout the metabolic network were
estimated by flux balance analysis using the context-specific GEMs. We used in silico methods to
identify an important reaction contributing to biomass production and clarified metabolic reaction
responses under drought stress by comparative analysis between drought and control conditions.
This proposed pipeline can be applied in other studies to understand metabolic changes under specific
conditions using Arabidopsis GEM or other available plant GEMs.

Keywords: Arabidopsis; drought; flux balance analysis; genome-scale metabolic model; metabolism;
metabolome; transcriptome

1. Introduction

In the era of global climate change and increasing food demand caused by population increases,
it may become challenging to grow enough agricultural crops to produce sufficient amounts of foods for
human consumption. Drought is among the major environmental problems in agriculture worldwide,
as water deficits limit plant growth and reduce crop production [1,2]. Therefore, understanding how
plants cope with drought has become a major research focus in plant science.

Plants have evolved phenotypic plasticity under changing environments and have altered their
metabolism to balance their growth and specific stress responses. Plants utilize various strategies
to cope with drought stress of different degrees and durations. The complex regulatory circuits
under drought stress lead to physiological or morphological changes across a range of temporal and
spatial scales. One well-known regulatory circuit is the abscisic acid (ABA) biosynthesis and signaling
pathway. When water deficit occurs, plant cells undergo osmotic changes and induce regulatory
genes. Subsequently, ABA levels are transiently increased [3,4]. ABA triggers the expression of
many drought-stress-associated genes, resulting in the accumulation of protective proteins, increasing
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the levels of compatible solutes (e.g., sugars and proline) and antioxidants (e.g., flavonoids and
polyphenols), and finally suppressing energy-consuming pathways [5–7]. Regulatory elements, such
as transcription factors and protein kinases, have been intensively studied in the molecular genetics
field. However, metabolic adaptation, which is also important for the cell to maintain a steady state
(homeostasis), has not been widely examined. Considering the intricate mechanism of drought stress
responses, it is difficult to observe the entire metabolic adaptation process at a specific temporal and
spatial point using current technologies. Additionally, as eukaryotes contain organelles, the distribution
and localization of metabolites in plants are difficult to examine at the subcellular level.

To understand the whole metabolic system response, simulation using biochemical metabolic
networks, known as a genome-scale metabolic model (GEM), is performed [8]. Based on the concept of
system biology, simulation of the metabolite distribution across diverse conditions can be performed
to estimate and interpret stress-related metabolic adaptation [8,9]. GEM is a metabolic network of
chemical reactions constructed from genome sequence information and detailed pathway information
from the literature [10]. In a GEM, metabolic flux (i.e., producing-consuming flow rates of metabolites
through a metabolic reaction) can be assessed by several mathematics computational approaches.
Among these approaches, flux balance analysis (FBA) is commonly used [11]. The core feature of FBA
is metabolic reactions, which are represented as a stoichiometric matrix. Each row of the stoichiometric
matrix represents one unique compound, and each column represents one reaction. The matrix values
are stoichiometric coefficients of the participating metabolites in the reaction. When the objective
function is appropriately set, fluxes throughout the network can be determined by linear programming
to determine the maximum or minimum of the assigned objective function [11]. The strength of
a GEM is its simplicity and ability to predict the flux distribution after metabolic perturbation by
genetic modifications or environmental changes. GEM has been applied in a wide range of studies of
microorganisms and humans [9,12,13].

In general, a GEM contains all possible reactions that organisms of interest can process. This means
that some reactions may not occur in specific cell types or under specific conditions. Consequently,
integration of omics data representing gene expression, protein expression, or metabolite accumulation
levels enables recapitulation of the metabolic pathway in a specific cell type under specific conditions [14].
Particularly, modeling of multicellular organisms such as humans and plants requires the integration
of omics data to transform a global GEM into a context-specific GEM [12], which is a subset of the
global GEM in which inactive reactions are removed while maintaining metabolic functions in the
extracted model. Thus, tailoring the comprehensive GEMs into context- specific networks improves in
silico prediction to better representation of the actual metabolism of a cell or tissue [14].

In this study, we established a pipeline for generating context-specific GEMs to understand the
metabolic changes in plants under specific conditions. We performed an in silico investigation of
metabolic adaptation of Arabidopsis thaliana in response to water deficit. We used publicly available
transcriptome data to tailor the Arabidopsis GEM and reconstructed context-specific metabolic network
models. The context-specific GEMs were used to estimate the flux distribution under drought
stress and well-watered control conditions. The biomass production rate, which is considered as an
important agricultural trait, was predicted and compared to the actual leaf biomass production rate.
By comparative analysis of the flux distribution under drought and control conditions, we identified
reactions and metabolites associated with drought adaptation. Finally, we discussed the limitations of
this method and provided considerations for further applications.

2. Results

2.1. Reconstruction and Examination of Context-Specific GEMs

2.1.1. Reconstruction of Context-Specific GEMs

AraGEM, a genome-scale metabolic network model of A. thaliana [15], was used as a global
model in this study (Figure 1a). The model contained 1601 reactions, 1737 metabolites, and 4833
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gene-enzyme reaction-association entries and was compartmentalized into the cytosol, mitochondrion,
plastid, and peroxisome. The reactions were grouped into 250 metabolic subsystems according to their
metabolic functions. AraGEM covers mainly primary metabolism and contains a part of secondary
(plant-specialized) metabolism. First, we removed all preset constraints in the model, creating a
no-constraint model as the global model before applying the tailoring algorithm (Supplementary data 1).
The transcriptome data of A. thaliana rosette leaves under progressive drought stress [16] were retrieved
from the Gene Expression Omnibus [17,18].
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Figure 1. Outline of this study for extracting information for the metabolic network by reconstructing
context-specific genome-scale metabolic models (GEMs): (a) Transcriptome data were used to tailor the
global GEM of A. thaliana and to obtain context-specific GEMs under progressive drought treatment
(days 1–13). (b) Using flux balance analysis (FBA), the biomass production rate and flux distribution
were estimated. Comparative analysis of the flux distribution between drought and control conditions
was performed to identify candidate reactions associated with adaptation to drought. Drought and
control GEMs are colored in red and blue, respectively. The eliminated reactions and metabolites are
shown in grey. Examples of optimal solutions for flux distribution that lies on the border of the feasible
space are represented by red and blue dots for drought and control GEMs, respectively.
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The data set consisted of time-series data from days 1–13 under drought stress and control
(well-watered) conditions. The average expression value of four replicates was used as the gene
expression value. We selected the Gene Inactivity Moderated by Metabolism and Expression (GIMME)
algorithm [19] as a tailoring tool to reconstruct context-specific GEMs. Briefly, GIMME determines
active and inactive reactions according to the weights of gene expression and the model’s objective
function. In this study, we used the biomass production rate as an objective function (Supplementary
data 2). The algorithm added weights according to the quantitative gene expression values. The reaction
weights were divided into inactive and active reactions by setting a gene expression threshold. We
set the gene expression threshold so that the time-dependent change in the biomass production rate
was most consistent with the rate of rosette leaf fresh weight increase. GIMME minimized the usage
of low-expression reaction while maintaining the objective function above a certain value. GIMME
tailored the global GEM, resulting in 26 context-specific GEMs (13 time points × 2 conditions) (Figure
S1 and Supplementary data 1). The sizes of the GEMs varied from 1133 to 1184 reactions (Figure 2a)
and contained 1322–1358 metabolites (Figure 2b). The number of reactions present only in the drought
or control models varied depending on the day of treatment. Drought and control models were similar
at the beginning of treatment and showed a larger difference in the number of the reactions in later
stages. From days 10 to 13, 22–54 reactions were present only in the drought models (Figure 2a).
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Figure 2. Features of context-specific GEMs: (a) Total number of reactions in each GEM, (b) total
number of metabolites in each GEM, and (c) number of reactions in the “flavonoid biosynthesis”
subsystem in each GEM. In Figure 2a–c, the left and right bars in a day represent the number in control
and drought GEMs, respectively. The control-specific, drought-specific, and common reactions are
displayed in blue, red, and grey, respectively. (d) Number of metabolites present only in drought
GEMs: Metabolites are categorized based on KEGG BRITE database (Kyoto encyclopedia of genes and
genomes - functional hierarchies of biological entities: https://www.genome.jp/kegg/brite.html) and
shown in different colors.

https://www.genome.jp/kegg/brite.html
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In AraGEM, the reactions are grouped into metabolic subsystems according to metabolic pathways
in which they are involved. Concerning the subsystem “flavonoid biosynthesis”, more reactions
remained in drought GEMs than in control GEMs at the later stage of treatment (Figure 2c). This
is consistent with the result of gene ontology analysis and metabolome analysis performed by
Bechtold et al. [16], whose transcriptome data were used to tailor the context-specific GEMs. No other
subsystem showed a marked difference between drought and control GEMs (Figure S2). When
examining the metabolites present only in drought GEMs, we found large numbers of flavonoids,
terpenoids, and sugars in later stages (Figure 2d). These metabolites are known as scavengers of
reactive oxygen species or osmolytes [5,7,20]. The results are consistent with the actual metabolome
data reported by Bechtold et al. [16].

2.1.2. Model Examination Based on Occurrence Percentage of Metabolites

To examine whether the reconstructed context-specific GEMs represented actual metabolic states,
we defined the occurrence percentage of metabolites. Among the metabolites in the global GEM, 66
metabolites were detected by metabolite profiling in Bechtold et al. [16]. They were primary metabolites
in central carbon metabolism, amino acids, sugars, and a small number of secondary metabolites.
The occurrence percentage was defined as the percentage of metabolites in a context-specific GEM
among 66 metabolites. The occurrence percentage was around 90%, indicating that the context-specific
GEMs had the ability to represent actual plant metabolic states (Figure 3). However, several sugars
and sugar phosphates were not included in the context-specific GEMs, indicating that the effect of
drought stress on these metabolites cannot be predicted.
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Figure 3. The list of 66 metabolites indicating occurrence percentage of each GEM: Blue and red
represent metabolites present in control and drought GEMs, respectively.

2.2. Biomass Production Rate

2.2.1. Comparison of Estimated and Actual Biomass Production Rate

We reconstructed the context-specific GEMs so that the time-dependent change in the biomass
production rate, the objective function to be maximized (Figure 1b), was consistent with the actual
value. As the biomass production rate was not experimentally measured by Bechtold et al. [16], we
calculated the rate of fresh weight increase in rosette leaves by using the data reported in the study
(Figure 4a; see the Material and Methods section). The rates of fresh weight increase were almost
the same between drought and control until day 10, and the difference between drought and control



Metabolites 2020, 10, 159 6 of 17

became distinct from days 11 to 13. On the other hand, when the gene expression threshold was
appropriately set, the simulated biomass production rates showed similar time-dependent patterns
(Figure 4b). This result indicates that context-specific GEMs can properly estimate physiological
properties (biomass production rate in this case) in plants under drought stress.
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2.2.2. Identification of the Reaction Involved in Increasing Biomass Production Rate

We further investigated which reactions are important for metabolic adaptation in terms of
biomass production. First, we identified reactions that accelerated the biomass production rate in
control GEMs on days 12 and 13 (Figure 4b). To this end, each single reaction was systematically
removed from the day-13 control GEM, after which the biomass production rate was calculated. When
reaction ID R00243_c, which corresponds to glutamate dehydrogenase (GDH, EC: 1.4.1.2, 1.4.1.3) in
the cytosol, was removed, the biomass production rate was reduced (Figure 5). We further examined
the presence or absence of the GDH reaction in other GEMs and found that this reaction was absent
from all GEMs except for in control GEMs at days 12 and 13 (Supplementary data 1). To confirm the
importance of this reaction, we added the GDH reaction into the day-13 drought GEM and performed
FBA. We found that the biomass production rate increased to a level comparable to that in the day-13
control GEM (Figure 5). We also added this reaction to the day-11 control GEM and observed a similar
increase in the biomass production rate (Figure 5).

Transgenic tobacco and maize lines overexpressing Escherichia coli gdhA were reported to increase
their biomass production by enhancing drought tolerance [21,22]. Improved drought resistance was
also observed in field experiments [22]. These reports support the ability of this pipeline to identify
reactions involved in drought tolerance (Supplementary Table S1).
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2.3. Changes in Flux Distribution Under Drought Stress

We investigated the difference in the flux distribution between drought and control GEMs on
each day by flux comparative analysis. We considered that, if the flux size of a reaction is larger under
drought conditions than in controls, the reaction was more active under drought conditions. Next,
we calculated the fold-change in the flux size (drought/control) (Figure 6a) and counted the reactions
showing fold-change values greater than two or less than one-half (Figure 6b). The largest number
of reactions with increased or decreased flux size was observed on day 13. This result is consistent
with the observation that Arabidopsis plants under progressive drought stress showed the greatest
physiological changes at day 13 [16]. For instance, the relative leaf water contents were maintained
from days 1 to 12 and then began to decline at day 13 [16].

Further, cluster analysis of these reactions was performed (Figure 6c) and metabolic changes
during progressive drought stress were summarized (Figure 6d). The reactions were classified
into 26 clusters according to their time-dependent patterns. Among them, cluster 3 was notable,
as it consisted of reactions that were highly active in later stages, particularly on days 12 and 13.
This cluster included the peroxisomal reactions: serine-glyoxylate aminotransferase (R00588_x),
hydroxypyruvate reductase (R01388_x), isocitrate hydro-lyase (R01900_x), and citrate hydro-lyase
(R01325_x), which are involved in the photorespiration process and glyoxylate cycle. Several transport
reactions such as serine transporter (TCX2), glycerate transporter (TCX13), and citrate transporter
(TCX14), which are involved in photorespiration, were also included in cluster 3. Nicotinamide
adenine dinucleotide (NADH): monodehydroascorbate oxidoreductase (R00095_c and R00095_tmx) is
involved in the glutathione- ascorbate cycle. The pyruvate transporter (TCM1) and mitochondrial
reactions via pyruvate dehydrogenase (R00209_m) and citrate synthase (R00351_m), which participate
in the beginning of the tricarboxylic acid cycle (TCA cycle), were also in this cluster. In contrast,
clusters 5–7 consisted of reactions which were less active at the beginning of drought stress and
tended to become active in the later stage. Most members participated in pyrimidine metabolism
and purine metabolism. Cluster 8 contained the cytosolic glycolysis reactions: beta-D-fructose
1,6-bisphosphate 1-phosphohydrolase (R04780_c) and fructose-bisphosphate aldolase (R01070N_c),
which were less active throughout drought treatment. Interestingly, cluster 26 contained the plastidic
glycolysis reactions, R04780_p and R01070N_p, which appeared to be active throughout drought
treatment. The other reactions in this cluster, R00948_p and R02421_p, are involved in starch and
sucrose metabolism. Clusters 9–16 were less active at days 12 and 13. These included the water, CO2,
and amino acid transporters and reactions associated with the TCA cycle.
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Figure 6. Changes in flux distribution: In the figures, fold-change (drought/control) value was
transformed into logarithm to base 2 for clarity. (a) Distribution of log2(fold-change) values and
(b) number of reactions showing fold-change values greater than two or less than half (namely,
|log2(fold-change)| > 1). In Figure 6a,b, orange and purple indicate increased and decreased flux under
drought, respectively. (c) Clustering analysis of reactions showing fold-change values greater than
two or less than half at least one time point. (d) Summary of metabolic change during progressive
drought stress.
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2.4. Change in Turnover Rate of Metabolites Under Drought Stress

Next, we employed the flux-sum, which is defined as half of the summation of all consumption flux
(efflux) and generation flux (influx) related to a specific metabolite under a pseudo-steady state [23,24].
As the size of the flux-sum of each metabolite is closely related to the turnover rate of metabolites,
the metabolic state of the system can be examined [23,24]. The flux-sum of each metabolite was
calculated using the context-specific GEMs, after which fold-changes (drought/control) were calculated
(Figure 7a). The metabolites showed a higher fold-change in later stages of drought stress. Metabolites
exhibiting fold-change values of greater than two or less than one-half were classified into 12 clusters,
clusters m1–m12 (Figure 7b).
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This analysis clarified the metabolic changes from the perspective of metabolites, while cluster
analysis of the reactions (Figure 6c) revealed metabolic change in terms of the flux distribution. For
example, cluster m10 consisted of metabolites such as hydroxypyruvate and cis-aconitate for which
turnover was highly active at later stages. This cluster corresponded to cluster 3 (Figure 6c), which
included reactions involved in photorespiration (e.g., hydroxypyruvate reductase; R01388_x) and
the glyoxylate cycle (e.g., citrate hydro-lyase; R01325_x). Clusters m2 contained several sugars such
as D-glucose, D-fructose, and beta-maltose. These sugars are involved in the reactions of starch
and sucrose metabolism clustered in cluster 26. Several nucleosides and nucleotides in clusters m8
and m11 corresponded to clusters 6 and 7, containing reactions involved in pyrimidine and purine
metabolism. Interestingly, the metabolites involved in the reactions in clusters 8 and 26, e.g., fructose
1,6-bisphosphate and glyceraldehyde 3-phosphate, did not appear in the metabolite clusters (Figure 7b).
This was because the same reactions involving these metabolites were active in the cytosol under control
conditions; the plastids under drought stress showed similar turnover rates under both conditions.

As distinct differences were observed at day 13, the metabolic change on day 13 was summarized
in a pathway map (Figure 8). Several reactions associated with photorespiration, pyruvate oxidation,
plastidic glycolysis, and starch and sucrose metabolism were active under drought conditions. These
included peroxisomal reactions (serine-glyoxylate aminotransferase (R00588_x), hydroxypyruvate
reductase (R01388_x), isocitrate hydro-lyase (R01900_x), and citrate hydro-lyase (R01325_x)), plastidic
reactions (alpha-D-glucose 6-phosphate ketol-isomerase (R02740_p), beta-D-fructose 1,6-bisphosphate
1-phosphohydrolase (R04780_p), fructose- bisphosphate aldolase (R01070N_p), ADP-glucose
pyrophosphorylase (R00948_p), starch synthase (R02421_p), glucan phosphorylase (R02111_p),
1,4-alpha-D-glucan maltohydrolase (R02112N_p), and 4-alpha-glucanotransferase (R05196N_p)),
and mitochondrion reactions (citrate hydro-lyase (R01325_x) and pyruvate dehydrogenase
(R00209_m)). In contrast, the reactions involved in cytosolic glycolysis (alpha-D-Glucose 6-phosphate
ketol-isomerase (R02740_c), beta-D-fructose 1,6-bisphosphate 1-phosphohydrolase (R04780_c),
and fructose-bisphosphate aldolase (R01070N_c)) were active in the control. In addition, several
transport reactions via transporters such as pyruvate transporter (TCM1), serine transporter (TCX2),
glycerate transporter (TCX13), and citrate transporter (TCX14), which are involved in cellular respiration
and photorespiration, were active under drought conditions.

Some of the abovementioned reactions were reported to be involved in the drought stress
response, validating our analytical pipeline for identifying significant reactions related to the drought
stress response (Supplementary Table S1). Reaction R01070_p corresponds to fructose-bisphosphate
aldolase (EC: 4.1.2.13) in the plastid, and the genes encoding this enzyme were highly expressed under
abiotic stresses including drought in several plants such as Arabidopsis, wheat (Triticum aestivum L.),
and shoreline purslane mangrove (Sesuvium portulacastrum) [25–27]. Serine-glyoxylate aminotransferase
in the peroxisome (EC: 2.6.1.45; R00588_x) plays an important role in photorespiration during drought
stress in barley [28,29]. Hydroxypyruvate reductase in the peroxisome (EC: 1.1.1.81; R01388_x) is
involved in the drought stress response, as a mutation in the hydroxypyruvate reductase 1 gene of
Arabidopsis enhanced the susceptibility to drought stress [30].
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Figure 8. Metabolic pathway showing the reactions involved in drought stress response at
day 13: Red and blue arrows represent active reactions in drought and control, respectively.
The thickness of arrows represents fold-change values. Metabolites: αGlc, alpha-D-glucose; αGlc6P,
alpha-D-glucose 6-phosphate; βF6P, beta-D-fructose 6-phosphate; Fruc1,6P, fructose 1,6-bisphosphate;
G3P, glyceraldehyde 3-phosphate; PEP, phosphoenolpyruvate; PYR, pyruvate; AcCoA, acetyl-CoA;
OAA, oxaloacetate; CIT, citrate; Ser, serine; 3HP, 3-hydroxypyruvate; CAA, cis-aconitate; ISO,
isocitrate; MDR, monodehydroascorbate; Glu, glutamate; αGlc1P, alpha-D-glucose 1-phosphate;
ADPglu, ADP-glucose; Amy, amylose; Mal, maltose. Reactions: PGI, alpha-D-Glucose 6-phosphate
ketol-isomerase (R02740_c and R02470_p); FPK, beta-D-Fructose 1,6-bisphosphate 1-phosphohydrolase
(R04780_c and R04780_p); ALDOA, fructose-bisphosphate aldolase (R01070N_c and R01070N_p); SGAT,
serine- glyoxylate aminotransferase (R00588_x); HPR, hydroxypyruvate reductase (R01388_x); ICL,
isocitrate hydro-lyase (R01900_x); CL, citrate hydro-lyase (R01325_x); PD, pyruvate dehydrogenase
(R00209_m); CS, citrate synthase (R00351_m); MDHAR, NADH: monodehydroascorbate oxidoreductase
(R00095_c and R00095_tmx); AGPase, ADP-glucose pyrophosphorylase (R00948_p); SS, starch
synthase (R02421_p); GP, glucan phosphorylase (R02111_p); GM, 1,4-alpha-D-glucan maltohydrolase
(R02112N_p); AG, 4-alpha-glucanotransferase (R05196N_p); Ex2, water transporter; Ex6, glutamate
transporter; Ex10, serine transporter; TCP1, glucose translocator between cytoplasm and plastid; TCP8,
triose phosphate translocator between cytoplasm and plastid; TCM1, pyruvate translocator between
cytoplasm and mitochondrion; TCM17, CO2 translocator between cytoplasm and mitochondrion;
TCX2, Serine translocator between cytoplasm and peroxisome; TCX13, glycerate translocator between
cytoplasm and peroxisome; TCX14, Citrate transporter between cytoplasm and peroxisome.

3. Discussion

We aimed to establish a systematic pipeline to gain insight into metabolic adaptation to
environmental changes. The pipeline integrating genome-scale model and omics data allowed
us to capture the reactions and metabolites that may enhance drought stress tolerance without prior
knowledge. As an example, we clarified that the reaction R00243_c (glutamate dehydrogenase), which
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was lacking in drought GEMs, is an important reaction affecting the biomass production rate. Previous
physiological and molecular genetic studies indicated the significance of glutamate dehydrogenase in
drought tolerance [21,22]. However, transcriptome analysis did not suggest the importance of this
gene because the genes [16] encoding this enzyme were not induced under drought stress (Figure S3).
Further, several reactions in context-specific GEMs (e.g., TCX2, TCX13, TCP1, and TCM1) were shown
to be active under drought stress in this study. These reactions lack gene-enzyme reaction associations
because the responsible genes have not been identified. This indicates the advantage of using this
model to identify candidate active metabolic reactions compared to using only transcriptome data.

In this study, we tailored context-specific GEMs by using the established tailoring algorithms.
The tailoring algorithms were categorized into three families: GIMME-like, Integrative Metabolic
Analysis Tool (iMAT)-like, and The Model Building Algorithm (MBA)-like families [31]. Among these,
we avoided using algorithms in the MBA-like family, which provide only context-specific model
reconstruction without the flux distribution. Therefore, three algorithms, GIMME, iMAT, and INIT
(Integrative Network Inference for Tissues), were tested in this study. We found that GIMME-tailored
models extracted a larger number of reactions and metabolites compared to the other algorithms.
The maximum number of reactions in the GEMs tailored by GIMME, iMAT, and INIT were 1184, 576,
and 557, respectively. GIMME allowed the model to capture many possible reactions, which is also
beneficial for further analysis. Thus, we reconstructed the context-specific model using this algorithm.

To perform in silico analysis using this pipeline, two points should be carefully considered.
The first point is setting the threshold of the expression value of transcriptome data. The threshold
setting has a major effect on the content of the tailoring model [14]. In this study, several thresholds
were examined (Figure S4). The less restrictive threshold did not provide a clear difference between the
control and drought conditions, whereas a more restrictive threshold lost reactions that may be active in
the plant system. We chose a threshold that gave the time-dependent pattern of the biomass production
rate which was most consistent with the rate of increase in the rosette leaf weight (Figure 4a,b). Thus,
it is recommended to set a suitable objective function for a plant trait exhibiting an apparent difference
between control and target conditions. The second point is the robustness and capabilities of the
global model. Although AraGEM has been assessed for its robustness and capabilities in numerous in
silico simulations, secondary metabolism is largely neglected and it is recommended to manually add
secondary metabolites to the biomass constituting equation [32]. Although our drought-specific GEMs
contained more reactions related to flavonoid biosynthesis than control models (Figure 2b), the flux
was not distributed to these reactions in our simulation because flavonoids were not included in the
biomass production reaction (Supplementary data 2).

The pipeline proposed in this study can be applied in studies aimed at understanding metabolic
adaptation to stresses other than drought. Plant GEMs have been reported for several species, including
rice, maize, and soybean [32]. The pipeline is also applicable to genome-scale metabolic models of
other organisms.

4. Materials and Methods

4.1. Genome-Scale Metabolic Model

AraGEM, a genome-scale metabolic model of A. thaliana, was downloaded as an sbml file from [15].
The downloaded model contained preset constraints, such as photosynthesis condition of the leaf
cell, which were removed prior to use. Thus, the lower and upper bound constraints were set to
0 and infinite, respectively, for the irreversible reactions, whereas both bound constraints were set
to infinite for reversible reactions. Kyoto encyclopedia of genes and genomes (KEGG) IDs were
retrieved via KEGG Application programming interface (API), a Representational state transfer (REST)
application programming interface, to the KEGG database using BioServices python framework
version 1.6.0 [33,34], whereas the missing compound IDs were reiterated with manual curation.
The no-constraint model was saved as a new sbml file for use in later steps.
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4.2. Transcriptome Data Processing

Microarray data were retrieved from Gene Expression Omnibus under accession number
GSE65046 [16] using package GEOquery version 2.52.0 in R [35]. Briefly, signal intensities of microarray
data were normalized within array by Lowess normalization, and then, variation due to arrays and
dyes was removed by a random effects model and averaged in log space using a modified version of
R/MAANOVA (MicroArray ANalysis of VAriance) [16,36]. Using the getGEO function, the deposited
normalized expression values of 32,501 feature probes of 108 samples were downloaded. The gene
expression values were calculated from a mean of replicated samples under individual conditions.
The gene expression values were subsequently used to tailor context-specific GEMs.

4.3. Calculation of the Rate of Fresh Weight Increase

The rate of fresh weight increase in rosette leaves was used to represent the actual biomass
production rate. From the experimental data reported by Bechtold et al. [16], the fresh weights of
rosette leaves were used for Equation (1).

Rate of fresh weight increase =
∆rosette leaf fresh weight

∆t
(1)

4.4. Flux Balance Analysis (FBA)

FBA was performed on context-specific GEMs to simulate the maximum possible flux of the
feasible flux distributions [11]. The objective function (Z) was the biomass production rate (vbiomass).
Gurobi Optimizer v8 (Academic version) was used to solve the given objective function by linear
programming in Equation (2).

Maximize Z = cT
× vbiomass

subject to S× v = 0
l < v < u

(2)

where c ∈ <n is a vector of reaction coefficient contributing to the objective function; S ∈ <m×n is a
matrix of the stoichiometric coefficient for m metabolites and n reactions; and v ∈ <n is a vector of
flux distribution of all reactions that maximizes the objective function and stands between lower and
upper bounds, l and u, respectively. To avoid the possibility of multiple optima during optimization
which results in different flux distribution even with the same optimal objective flux, the objective (Z)
was regularized by subtraction with a strictly concave function equation [37]. The minimization of the
squared Euclidean norm of internal flux was performed by setting an optimization parameter called
“minNorm” to be 1 × 10−6. The FBA was performed using COBRA toolbox version 3.0 in MATLAB
(version 9.5-R2018b) [37].

4.5. Reconstruction of Context-Specific GEMs Using GIMME

Reconstruction of context-specific GEMs was performed using Gene Inactivity Moderated by
Metabolism and Expression (GIMME) [19]. Briefly, GIMME removed inactive reactions below a
specified threshold of low expression genes and then reinserted reactions required for the objective
function to produce at or above a certain level. First, the algorithm found the maximum possible flux
through the objective function (e.g., biomass production rate in this study) by performing FBA in
Equation (1) and used the flux for the reaction bound in the following step. Second, the algorithm
identified the active reactions by minimizing inactive reactions according to the gene expression-weight
coefficient by following linear programming in Equation (3).

minimize Z =
∑

x× |v|
subject to S× v = 0

a < v < b
where x = {xthreshold − xn where xthreshold > xn, 0 otherwise for all n}

(3)
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where x ∈ <n is a vector of gene expression-weight reaction coefficients of n reactions calculated
from a setting threshold value and gene expression values mapped to each reaction, xthreshold and
xn, respectively. The expression values above the threshold were excluded from the minimization
(xn = 0 where xthreshold < xn). S ∈ <m×n is a stoichiometric matrix of m metabolites and n reactions,
v ∈ <n is a flux vector describing flow through all reactions, and a and b were lower and upper
bounds, respectively. The maximal value of the objective value was set to 90%. The lower bounds,
corresponding to the objective function (Z), were set to the maximal value, whereas other bounds were
set as the original bounds.

The expression threshold was set to be the same on all days and under all conditions. The expression
thresholds ranged from 0.7 to 0.9 (0.01 for intervals) were tested (Figure S4). Then, we decided to set the
expression threshold at quantile 0.83, at which the time-dependent pattern of biomass production rate
was most similar to that of the fresh weight increase rate. The above procedures were performed using
COBRA toolbox version 3.0 in MATLAB (version 9.5-R2018b) [37]. The example script is provided as
Supplementary data 3.

4.6. Occurrence Percentage

The occurrence percentage of metabolites in context-specific GEMs was calculated for each GEM
by comparison with the metabolites for which contents were reported in Reference [16]. If a metabolite
was not present in the global AraGEM, that metabolite was excluded before calculation. The occurrence
percentages were calculated among 66 metabolites using the following Equation (4).

Occurrence percentage (%) =
The number of present metabolites in GEM

The number of reported metabolites
(4)

4.7. Single Reaction Deletion

Each single reaction in the day-13 control GEM was deleted individually using the
singleRxnDeletion function from COBRA toolbox version 3.0 in MATLAB (version 9.5-R2018b) [37].
Next, the biomass production rate of each single reaction-deleted model was calculated and compared
to that calculated using day-13 drought GEM. If a deleted model gave the same value, this reaction
was selected for insertion to the day-13 drought GEM. FBA was then performed, and the biomass
production rates before and after insertion were compared.

4.8. Flux-Sum

Flux-sum is defined as one-half of the summation of all incoming fluxes (influx) and outgoing
fluxes (efflux) concerning individual metabolite (xi) in Equation (5) [23]:

vxi =
1
2

∑
j

∣∣∣si jv j
∣∣∣ (5)

where si j refers to the stoichiometric coefficient of metabolite i participating in reactions (j) and v j is the
flux of reactions (j).

4.9. Comparative Analysis of Flux and Flux-Sum

4.9.1. Fold-Change in Flux

All reactions present in each context-specific GEM were listed to create a matrix of simulated
fluxes, F ∈ <m×n, where m is the number of context-specific GEMs and n is the number of reactions.
The missing values in the matrix were filled with one-tenth of the minimum value of flux sizes.
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The fold-change in flux size under drought to control conditions was calculated in Equation (6) and
transformed into logarithm to base 2.

Fold change =
Fdroughtn

Fcontroln
(6)

4.9.2. Fold-Change in Flux-Sum

All metabolites present in each context-specific GEM were listed to create a matrix of flux-sum
values, Fs ∈ <m×n, where m is the number of context-specific GEMs and n is the number of metabolites.
The missing values in the matrix were filled with one-tenth of the minimum value of flux-sum values.
The fold-change in flux-sum under drought to control conditions was calculated in Equation (7) and
transformed into logarithm of base 2.

Fold change =
Fsdroughtn

Fscontroln
(7)

4.9.3. Cluster Analysis

Cluster analysis was performed using agglomerative clustering using a correlation metric with
average linkage. Reactions showing a correlation greater than 0.5 were grouped into clusters and are
shown in different colors. Heatmap representation was performed using python library SciPy and
library Seaborn [38,39].

5. Conclusions

In this study, context-specific GEMs were reconstructed using transcriptome data under drought
stress. In silico single reaction deletion experiments revealed the reactions important for increasing the
biomass production rate. Comparative analysis between drought and control conditions clarified the
candidate reactions associated with the drought stress response, which can be utilized, after further
biological validation, to improve the drought tolerance of crops. This strategy can be applied to other
stresses to gain a better understanding of metabolic pathways affecting the stress response involved in
growth and yield, which will help improve future agricultural strategies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/4/159/s1.
Figure S1: Heatmap depicting present or absent reactions in 26 context-specific GEMs. Figure S2: Number of
reactions in respective subsystems in each GEM. Figure S3: Changes in glutamate dehydrogenase gene expression
under drought stress in Arabidopsis. Figure S4: Effect of threshold setting on the time-dependent pattern of biomass
production rate of 26 context-specific GEMs. Table S1: Reactions involved in drought metabolic adaptation in
terms of biomass production. Supplementary data 1: Constraint-free AraGEM and the 26 context-specific GEMs.
Supplementary data 2: Biomass production reactions in the 26 context-specific GEMs. Supplementary data 3:
Example script for tailoring a context-specific GEM.
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