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Achromatic focusing systems for hard X-rays are
examined which consist of a refractive lens paired
with a diffractive lens. Compared with previous
analyses, we take into account the behaviour of thick
refractive lenses, such as compound refractive lenses
and waveguide gradient index refractive lenses, in
which both the focal length and the position of the
principal planes vary with wavelength. Achromatic
systems formed by the combination of such a thick
refractive lens with a multilayer Laue lens are found
that can operate at a focusing resolution of about
3 nm, over a relative bandwidth of about 1%. With
the appropriate distance between the refractive and
diffractive lenses, apochromatic systems can also
be found, which operate over relative bandwidth
greater than 10%. These systems can be used to
focus short pulses without distorting them in time
by more than several attoseconds. Such systems
are suitable for high-flux scanning microscopy and
for creating high intensities from attosecond X-ray
pulses.
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1. Introduction
Diffractive optics such as multilayer Laue lenses (MLLs) and sputter-sliced zone plates are
currently under development as a means to achieve imaging at 1 nm resolution for X-ray
wavelengths of 0.1 nm or less [1,2]. These optical elements are essentially volume holographic
optical elements constructed with nanometre layer thicknesses, and lens thicknesses in the
direction of beam propagation of tens of micrometres, as needed to achieve efficient beam
deflection by Bragg diffraction for high numerical aperture (NA) lenses. Being diffractive optics,
such lenses suffer from chromatic aberrations, with a focal length that varies inversely with
wavelength, λ. Each layer in a diffractive optic imparts an additional wave of optical path to
create the (first-order) focus by constructive interference. In a lens consisting of N layers, the
arrival time of light at the focus will vary by Nλ/c, which may considerably stretch attosecond-
or femtosecond-duration X-ray pulses in ultrafast imaging applications. No matter the duration
of the illumination, a deviation of the wavelength by �λ will result in a cumulative path error
of N �λ as compared with the design condition. To achieve diffraction-limited performance, this
error must be no greater than a wavelength, requiring that �λ/λ < 1/N. Thus, in designing the
optical system for an X-ray microscope or to focus ultrashort pulses to obtain high intensities,
one may have to choose between limiting the bandwidth of the illumination—resulting in a
loss of throughput and a longer pulse duration—or limiting the size of the lens through the
number of periods N. For example, the spectrum of a typical undulator device may have
a relative bandwidth of about 1/300, as given by the number of periods in the undulator.
A lens of 300 bi-layer periods to utilize the full spectrum for imaging at a resolution of, say,
1 nm at a wavelength of 0.05 nm would have a radius of only 300 nm and a focal length of
24 µm. This lens would preserve the transform-limited pulse duration of 50 attoseconds. This
calculation is based on the result that the bi-layer periods in a diffractive optic of focal length f are
positioned according to y2

N ≈ Nfλ, producing a resolution δr = λ/(2NA) = λf/(2yN) = yN/(2N), so
that yN = 2Nδr. Expressed another way, the focal length varies inversely with wavelength, giving
a dispersion �f/f = −�λ/λ or a dispersive power of V = −1, where

V =
(

�f
f

)/(
�λ

λ

)
= λ

f
∂f
∂λ

. (1.1)

The change in focus �f must remain within the depth of focus of the lens, which itself varies
quadratically with the resolution length δr.

A similar analysis finds that refractive lenses suffer even harsher limitations. Typical refractive
indices of materials in the X-ray regime are slightly less than unity and expressed as n = 1 − δ,
with the decrement δ proportional to λ2 at wavelengths away from absorption edges. Given that
the focal length of a refractive lens is proportional to 1/(n − 1) and thus inversely proportional
to the square of the X-ray wavelength, the dispersion of a refractive lens in the X-ray regime is
given by V = −2, which is twice the dispersion experienced by diffractive lenses. A refractive
lens therefore stretches a pulse by twice the amount than does a diffractive lens of the same focal
length. For a similar resolution and bandwidth, a refractive lens would require an even shorter
focal length than considered above to avoid chromatic aberrations.

Regardless of whether we wish to use them in a full-field imaging microscope, to focus a beam
to a small spot for a scanning microscope or to focus a short pulse to a small spot to achieve
high intensities, the short focal-length lenses of these examples would bring several practical
inconveniences. The field of view would be limited to a width that is comparable to the diameter
of the lens [3] and the working distance limits the size of objects that can be examined in a
tomographic setting. The lens must be positioned near the source or to an image of that source,
where the beam size matches the diameter of the lens, placing high demands on the beamline
design and optics. Ideally, lenses more than 100 times larger would be preferred, giving focal
lengths of millimetres. A diffractive lens like an MLL would then consist of tens of thousands
of layers. This increase in N would require a corresponding reduction of tolerable bandwidth to
1/100th of that available and would lead to a stretching of pulses by tens of femtoseconds.
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This analysis naturally leads to reflective optics as a basis for a high-throughput or short-pulse
imaging system. Mirrors are achromatic and hence can focus radiation of a very broad bandwidth
to a small spot, without appreciably stretching the pulse [4]. Kirkpatrick–Baez (KB) mirrors, for
example, have been fabricated with resolutions well below 10 nm [5,6], and the use of refractive
phase plates to compensate measured aberrations of these systems should further improve their
performance [7,8]. The NA of KB optics is limited by the critical angle of reflection but this
can be increased using multilayer reflective coatings with some loss of tolerable bandwidth and
corresponding increase in pulse response time [9].

Another attractive approach for broad-band or short-pulse applications is to form an achromat
by pairing a diffractive lens with a refractive lens. With the appropriate choice of the ratio of
focal lengths of the two lenses, the dispersion of the diffractive lens can be compensated by that
of the refractive lens and still provide a residual focusing effect [10–13]. An achromat design
nulls the linear term in a series expansion of the focal length of the optical system as a function
of the relative wavelength deviation �λ/λ, leaving a quadratic dependence so that an equal focal
length can be obtained for two distinct wavelengths. This typically provides a bandwidth of 1% or
more [11–13], even with diffractive lenses with tens of thousands of layers. Apochromatic designs
can also be made. In these, the quadratic term is also brought to zero, which can be achieved
with the right choice of separation of the diffractive and refractive lenses [12–14]. In this case, the
dominant dependence of the focal length on wavelength is cubic and so an equal focal length can
be obtained for three distinct wavelengths, broadening the tolerable bandwidth to 10% or more.
This corresponds to a correction of group-velocity dispersion in the lens system, to keep pulse
stretching to below about 10 wavelengths or below 2 as for λ = 0.05 nm. The refractive–diffractive
achromat might offer a cheaper and more compact focusing system than KB mirrors, possibly also
at higher resolution.

Here, we examine achromat and apochromat designs to focus short-wavelength X-rays for
imaging modalities such as scanning Compton X-ray microscopy [15,16], scanning fluorescence
microscopy [3], ptychography [17] and projection imaging [18]. The achievable exposure times of
these schemes are usually limited by the available flux that can be focused in a small spot, which
could be significantly increased by the ability to accept a larger bandwidth from the source (such
as the full width of a harmonic of an undulator device at a modern synchrotron radiation facility).
In addition, as attosecond-duration hard X-ray pulses become available at X-ray free-electron
lasers [19,20] and compact accelerator sources [21], there is a need to efficiently focus broad-band
pulses to create high intensities for nonlinear X-ray optics experiments [22]. These goals demand
focused spot sizes considerably smaller than 10 nm over relative bandwidths of several per cent.
While the focusing achromat design requires the refractive lens to be diverging (that is, have a
negative focal length), both lenses must have comparable power.1 We present an overview of
such systems in §2 and find conditions that give achromatic and apochromatic focusing. Given
the dispersions of diffractive and refractive lenses mentioned above, there are two geometries
that give achromatic conditions: Type I, consisting of a negative refractive lens followed by a
positive diffractive lens, and Type II, where the positive diffractive lens is followed by the negative
refractive lens. High-NA MLLs can be considered as thin lenses in paraxial designs of achromatic
systems, but in practice, the refractive lens must be treated differently. Given that the refractive
indices of materials in the X-ray regime barely differ from that of vacuum, high-resolution
imaging necessitates placing many refractive lenses in a row to accumulate focusing power. These
compound refractive lenses (CRLs) must then be treated as thick lenses in the paraxial analysis of
achromatic imaging, as has been carried out in the analysis of Poulsen et al. [13]. In §4, we extend
and improve upon that work by noting that not only does the focal length of a CRL change
with wavelength but also does the position of its principal planes. We find that this change of
the location of the focal plane with a change in wavelength must be accounted for to properly
describe the imaging performance of such optical systems. This is carried out using an accurate

1The power of the refractive lens can be considerably relaxed if the high dispersion of elements near their absorption edges
is exploited [11]. However, the wavelength span for this is limited and we do not consider that case in this paper.
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yet very tractable formalism of the paraxial optics of CRLs introduced in §3, by noting the analogy
of a CRL to a thick gradient refractive index (GRIN) lens [23]. (This approach also enables the
derivation of the pulse front through thick refractive lenses, given in appendix A.) The design
space of achromats in §4 is parametrized in terms of product of the length and refractive gradient
of the refractive lens, as well as the focal length and distance of the diffractive lens. The achievable
bandwidths of thick-lens achromats are examined in §5. The high relative bandwidths found for
apochromatic designs—which can exceed 10%—are verified by ray tracing in §6. Finally, some
examples are presented in §7. A list of symbols used in the paper is given in table 1.

2. Thin lens achromats

(a) The thin-lens doublet
An achromatic doublet lens is formed by placing two lenses in contact that have different
dependences of focusing power on wavelength. In visible-light optics this is conventionally
achieved by combining lenses made of different glasses. For focal lengths fa and fb of the two
lenses, the achromatic condition is found when fa/Va = −fb/Vb where V is the dispersive power
given by equation (1.1). The resulting focal length is f = faVa/(Vb − Va), showing that lenses of
differing dispersive powers are required. All diffractive lenses have V = −1 as explained above
and so an achromat consisting of an MLL must be combined with a refractive lens. This refractive–
diffractive achromat for X-rays was proposed independently by Skinner [10] in the context of
astronomy and by Wang et al. [11] for microscopy and lithography. Since V = −2 for X-ray
refractive lenses (away from absorption edges), a diverging refractive lens of focal length −2f0
at a wavelength λ0 combined with an MLL of focal length f0 at the same wavelength will give an
achromat of 2f0 focal length with zero dispersion at λ0. That is, a positively focusing achromatic
doublet requires a negative (diverging) refractive lens placed in contact with a positive diffractive
lens.

The power of the achromat doublet lens, given by the reciprocal of the focal length, is

1
fA

= 1
fR

+ 1
fD

, (2.1)

where fR = −2f0λ2
0/λ

2 is the focal length of the refractive lens and fD = f0λ0/λ is the focal length of
the diffractive lens. Expanding equation (2.1) and defining �λ = λ − λ0 gives

1
fA

=
(

1 −
(

�λ

λ0

)2
)

1
2f0

, (2.2)

which obviously has zero linear dispersion at �λ = 0. We define the higher-order dispersion terms
V(j) as the coefficients of the powers of �λ/λ in the Taylor-series expansion of f (λ)/f (0). Thus, we
see from equation (2.2) that the achromat doublet has V(2) = 1.

Although the phase velocity of X-rays propagating through a medium of refractive index
n = 1 − δ exceeds the speed of light in the vacuum, the speed of a short pulse is given by the
group velocity, vg = ∂ω/∂k = c/(n − λ∂n/∂λ) = c/(1 + δ), where ω is the X-ray frequency and k
is the wavenumber, and as above, we have assumed that δ ∝ λ2. Thus, when light propagates
through different thicknesses of a material, as in a lens, the pulse front will separate from the
wavefront [24]. A bi-convex lens has negative focal length in the X-ray regime with a thickness of
the refractive material that is greatest on axis and reduces quadratically with distance y from the
axis. In this case, the pulse front lags behind the phase front on the axis and coincides with the
phase front at the periphery of the lens where the thickness is zero. Relative to the pulse front on
axis, therefore, the pulse leads the wavefront by a duration that increases as y2, which is to say
that meridional rays propagate through the lens faster than axial rays. The opposite is true for a
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Table 1. List of symbols and their meanings.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y, z Cartesian coordinates of height from the optical axis and distance along the optical axis
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y0, y′0 ray height and gradient at the entrance face of a refractive lens
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yN height of the Nth zone in a diffractive lens
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ,λ0,�λ wavelength, wavelength for a particular design and deviation of the wavelength fromλ0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c speed of light in vacuum
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vg group velocity of light in a medium
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n, n0, n̄ refractive index, refractive index at the optical axis and average refractive index of a lens as
projected along the optical axis

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δ, δ1, δ2 refractive index decrement (n= 1 − δ), values of δ for the two materials in an MLL
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g, g0 gradient parameter (with units of inverse length) of the refractive index profile, gradient
parameter at the design wavelength

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R, T radius of curvature and thickness of lens elements in a CRL
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L length of the thick refractive lens
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P lens diameter
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NA, NAD numerical aperture, NA of the diffractive lens
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δr image resolution (=λ/(2NA))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f focal length
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f0 focal length parameter, equal to the focal length of the diffractive lens at the design
wavelength

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�f defocus (due to change in wavelength)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fA, fR, fD, fD0 focal length of the achromat, the refractive lens, the diffractive lens and the diffractive lens at
the design wavelength

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lo, li object and image distances
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fo, Fi focal planes in the object and image spaces (front focal plane and back focal plane)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Uo, Ui principal planes in the object and image spaces
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

l1, l2, l3 path lengths of rays used for calculations of time delays
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b, bI, bII , b0 working distance between exit face of the lens and the image plane, working distances for
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positive (converging) lens, and in general, the delay between the phase front and the pulse front
in a thin lens, due to linear dispersion, is given by [24]

�T = −y2

2cf 2 λ
∂f
∂λ

= −y2

2cf
V. (2.3)

Here, when �T < 0, the propagation time is shorter for rays at y than on the axis, which occurs
for an X-ray refractive lens with f < 0 since in that case V = −2.

A pulse is not delayed in traversing a diffractive lens (in the limit of zero thickness), but rays
brought to a focus by a positive diffractive lens accrue a wavelength of path for each period of
the structure, as was noted earlier. If we consider a plane wave focused by a diffractive lens, a
ray intersecting at y must traverse an extra distance y2/(2f ) to reach the focus at f , compared with
the axial ray, and it will take it longer to get there. Thus, we see that equation (2.3) holds too for
a diffractive lens, for which V = −1 [25]. Furthermore, for the achromatic doublet consisting of a
thin zone plate with fD = f0 in contact with a thin negative refractive lens with fR = −2f0, the pulse
front—initially ahead of the wavefront in the refractive lens—is brought back in coincidence with
the wavefront by the extra path length required of the diffractive lens. The propagation delay
due to the linear dispersion, �T, is zero. This is to be expected since the achromat transports
all wavelengths of the pulse to the focus without changing the relative phases of these spectral
components. Also, it was shown [24] that equation (2.3) holds for any composite lens system when
f is replaced by the distance li from the last lens to the image, such that �T ∝ ∂li/∂λ. A smaller
degree of stretching of the pulse may be caused by the group-velocity dispersion, proportional
to V(2) as indicated by equation (2.2). As seen below, this too can be mostly eliminated in
apochromatic designs.

(b) Separated lenses
Skinner [12] examined the case when the diffractive and refractive lenses are separated from
each other by some distance d and found that this extra degree of freedom enabled the design
of an apochromatic system where the quadratic dependence of the image position is brought to
zero, leaving a predominantly cubic behaviour. Poulsen et al. [13] also analysed this situation
in the context of using a CRL together with a diffractive lens. CRLs are required for a practical
achromatic system, for the same reason they are needed for focusing and imaging—the focal
length of a single refractive lens is just too long. Since the principal plane of a negative CRL
is situated between the first and last lenses of the stack (as will be detailed in §3), the smallest
achievable value of d in this situation is greater than zero. While the focal length of the system of
two thin lenses of focal lengths fa and fb can be found from the lens maker’s formula as

1
fA

= 1
fa

+ 1
fb

− d
fafb

, (2.4)

it is the position of the image from the lens that must not vary with wavelength. In a compound
imaging system consisting of two (or more) lenses, a focal length invariant to wavelength does
not necessarily imply that the image position will remain at a constant distance from the lens since
the position of the back principal plane may vary with wavelength. (The back principal plane is
where rays emanating back from the image would appear to intersect incident parallel rays from
a source at infinity.) To choose an image plane, we thus consider the case of the source at z = −∞
with the z-axis defining the optical axis, corresponding to a probe-based microscope. In this case,
the distance of the image from the second lens li is found via

1
li

= 1
fb

+ 1
fa − d

, (2.5)

since the intermediate focus formed by the first lens is at a distance lo = fa − d in front of the
second lens, as depicted in figure 1a. In that figure, the first lens is refractive with fa = fR and it is
diverging such that fa < 0. Lengths that are negative are depicted in the figure by arrows pointing
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to the left, including lo in figure 1a. Equation (2.5) holds both in this case of a diverging lens (fa < 0)
followed by a positive lens (fb > 0) as well as the opposite case where it may be that l0 = fa − d is
positive as shown in figure 1b where fa = fD. We note that most X-ray imaging situations place
either the image or object plane at close to infinity—the results presented in this paper can be
applied to both cases.

As with the doublet lens (for which d = 0), achromatic focusing conditions can only be found
for separated lenses when the refractive lens has a negative focal length and the diffractive lens
is positive. There are thus two possible configurations: one where the refractive lens is followed
by the diffractive lens (fa = fR, fb = fD), and the other in which these lenses are swapped (fa = fD,
fb = fR). We call the first the Type I configuration and the second Type II. The ratio of the focal
lengths of the refractive to the diffractive lenses at the achromatic condition for d > 0 is no longer
−2, and we set fD = f0λ0/λ and fR = αf0λ2

0/λ
2. The achromatic condition can be found by solving

for α in the equation
∂li
∂λ

∣∣∣∣
λ=λ0

= 0, (2.6)

using equation (2.5) with the appropriate choices of fR and fD for the Type I or Type II system.
For a Type I achromatic system, we obtain the solution

αI = −1 + d
f0

±
√

1 − 2d
f0

, (2.7)

with only the choice of the minus sign giving a positive image distance li. An achromat can only
be formed when d < f0/2. Setting λ = λ0 + �λ and expanding li in a Taylor series at �λ = 0 gives

li = f0β

[
1 + ν(2)

(
�λ

λ

)2
+ O

(
�λ

λ

)3
]

, (2.8)

where

βI = li(�λ = 0)
f0

= 1 + 1√
1 − 2d/f0

(2.9)

is the ratio of the image distance to f0 and

ν
(2)
I = − (βI − 3)βI

2(βI − 1)
(2.10)

is the quadratic dispersion coefficient of the system with respect to the position of the image plane
(distinct from the dispersion V(2) with respect to the focal length). Equation (2.8) confirms that the
system is achromatic since there is no linear dependence on �λ. Together with equation (2.10), this
equation also reveals the remarkable effect that the system becomes apochromatic, whereby the
quadratic dispersion is nulled, at a particular separation d which sets the image distance to be
3f0 (that is, βI = 3). From equation (2.9), this apochromatic condition is found when d = 3f0/8 and
α = fR(0)/fD(0) = −9/8.

The overall focal length of the system, given by equation (2.4), is fA = 9f0/4 for this condition.
This is slightly longer than the focal length of fA = 2f0 obtained for the doublet consisting of two
lenses in contact. It should be noted that ∂fA/∂λ �= ∂li/∂λ (or V �= ν) when the lenses are separated.
A consequence of this is that while various wavelengths are brought to focus to the same image
plane, the image magnification will vary with wavelength. Thus, achromatic focusing only occurs
for a source located on axis. The image of an off-axis source point will be dispersed laterally (as
in an aberration-free spectrometer).

A similar analysis applied to the Type II system gives a solution for the ratio of the refractive
focal length to the diffractive focal length given by

αI = −2
(

1 − d
f0

)2
. (2.11)
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Figure 1. Paraxial optics analysis of achromatic systems imaging a source at z = −∞. (a) Type I system consisting of thin
lenses separated by d; (b) Type II thin-lens system; (c) Type I system consisting of a thick refractive lens (TRL) of length L a
distance D from a thin diffractive lens; (d) Type II system consisting of a TRL and a thin diffractive lens. All distances displayed in
black and blue are wavelength dependent. Arrows pointing right indicate a positive length, and left-pointing arrows indicate a
negative length (e.g. fR < 0). The focal planes and principal planes of the refractive lenses are shown by the blue dashed lines;
the focal planes in the image and object spaces are labelled as Fi and Fo, respectively, and the principal planes Ui and Uo. The
working distances for the Types I and II systems are bI and bII . The refractive index of the medium of these lenses is<1. The red
rays in (a) and (b) are for a wavelength that is 10% longer than for the blue rays.
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Figure 2. Plots of (a) the power and (b) the image distance for thin-lens achromats as a function of the separation of the lenses.
All distances are normalized to the focal length of the diffractive lens, f0. Type I systems are depicted with solid lines and Type II
with dashed lines, and the apochromatic conditions are shown by the circles. (Online version in colour.)

It is found that the image distance as a function of �λ at the achromatic condition follows
equation (2.8) with

βI = 2
(1 − d/f0)2

1 − 2d/f0
(2.12)

and

ν
(2)
I

= 1 − 3d/f0
(1 − 2d/f0)(1 − d/f0)

. (2.13)

At d = f0/2, it is seen from equation (2.12) that the image is formed at infinity and, as for the
Type I system, a real image can only be achieved when d < f0/2. The quadratic dispersion of
equation (2.13) is expressed in terms of d/f0 as this gives a more compact form than using β

(the opposite was true for the Type I case in equation (2.10)). It can be immediately seen that an
apochromatic condition is achieved at d = f0/3. In this case, αI = −8/9, βI = 8/3 and fA = 4f0.

Plots of the relative focal lengths and image distances as a function of the normalized lens
spacing d/f0 are given in figure 2. The Type I system gives higher focusing power (shorter focal
length) for all lens spacings, and thus is the preferable configuration for high resolution imaging.
The apochromatic condition for a Type I system gives a performance almost as good as that of the
doublet.

As discussed in §2a, the achromatic condition of ∂li/∂λ = 0 ensures that all rays of a short pulse
are brought to the focus at the same time, �T = 0. Calculation of propagation times through the
lens systems can therefore serve as an independent check of the derivations of the achromatic
conditions and are given in appendix A.

3. Paraxial optics of thick refractive lenses
A typical value of the refractive index decrement δ of light materials (such as diamond, for
example) is about 10−6 at a wavelength of 0.05 nm (a photon energy of 24.8 keV). A bi-convex
lens with surfaces of radius R has a (negative) focal length of fR = −R/(2δ) which is therefore of
the order of metres for lens radii of the order of micrometres. This compares with the millimetre
focal lengths of high-resolution MLLs which have apertures up to about 100 µm and which we
would like to pair in an achromat. Such pairing, as seen above, requires lenses with focal lengths
of comparable magnitude. As is now common practise, stacking N positive refractive lenses in a
row along the optical axis sums their focusing powers to modify the focal length by a factor of
1/N. The same is true for negative lenses.



10

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210334

...........................................................

It is clear that to create a high-resolution achromat, such a negative CRL will require many
hundreds or even thousands of lens elements. Rays traversing this lens will not be deflected in
one particular plane as was assumed for the analysis of §2 but will be gradually nudged as they
pass through each element. Different wavelengths will deflect by slightly different amounts and
thus follow different trajectories. In the limit of many lens elements, these trajectories will appear
curved.

In paraxial optics, as a consequence of treating each lens element as a linear system, any
composite lens can be assigned two principal planes, Uo and Ui, and two focal planes, Fo and
Fi, that together describe the total linear system [26]. The curved trajectories of rays can then be
ignored and instead the ray geometry can be described solely by the intersections of straight rays
with these planes, indicated in figure 1c,d for the refractive lens. Collimated rays parallel to the
optical axis and impinging on the front of the lens will leave the rear of the lens to converge at
the image of the source on the rear focal plane Fi (for a positive lens) or appear to diverge from
the rear focal plane Fi (for a negative lens), in both cases as if focused by a thin lens located at the
rear principal plane Ui. That is, the incident collimated rays appear to intersect the outgoing rays
at Ui. Likewise, rays originating from the front focal plane Fo (or which would converge upon
the front focal plane in the case of a negative lens) will be collimated by the composite lens, and
the front principal plane Uo stands at the place where each collimated ray appears to intersect
with the originating ray. The two principal planes coincide with each other and the plane of the
lens only when that lens is thin. As we will see below, for a negative thick refractive lens, Ui is
downstream of Uo. When the source and image are at places other than, respectively, infinity and
the corresponding focal plane, the input ray that appears to intersect the front principal plane Uo

at a particular height (y, say) produces an output ray that appears to arise from the back principal
plane Ui at that same height y. Again, the entire thick lens seems to behave like a thin lens except
that there is a gap between Uo and Ui where rays are ‘teleported’, or shifted along the optical axis,
from one principal plane to the other (a point on Uo is imaged to a point on Ui with positive unity
magnification).

Based on this linear-systems approach of paraxial optics, several authors have developed
analyses of thick positive CRLs which can be used to describe the positions of their focal planes
and principal planes. One such approach is to use the matrix transfer of vectors of ray parameters
(position and direction), known as Gaussian optics. Given the transfer matrix for a single element,
the analysis of N equally spaced identical lenses requires evaluating its Nth power, which can be
done by diagonalizing the matrix [27,28]. In the limit of a low focusing power per lens element,
each element can be treated as a matrix of differentials, leading to a set of coupled differential
equations for the compound lens [29,30]. This continuous representation of a CRL mimics the
behaviour of the curved trajectories of rays traversing a GRIN lens. Such a lens consists of an
inhomogeneous medium where the refractive index varies continuously and quadratically with
distance y from the optical axis [23,31], equal to the average refractive index of the CRL as
projected along the optical axis, as given by

n(y) = n0

√
1 + g2y2 ≈ n0

(
1 + g2y2

2

)
, (3.1)

where g is the gradient of the refractive index (with dimensions of inverse length) and is defined
here for a diverging (negative) lens where the refractive index increases with y. For a negative
CRL composed of identical bi-convex lenses of refractive index n0 = 1 − δ, thickness T, surfaces
of radius R, and without any further gap between them, the average refractive index at a height
y is

n̄(y) =
(

n0

(
T − y2

R

)
+ y2

R

)
1
T

= 1 − δ + δy2

RT
. (3.2)

Comparing this with equation (3.1) shows that g2 = 2δ/(n0RT) ≈ 2δ/(RT), and thus g ∝ λ. We
assume the refractive index profile is invariant with the coordinate z, equivalent to a CRL made of
identical lens elements. Note that this comparison need not serve only as a simple analogy to give
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a simpler analysis of CRLs, but it also shows that a thick X-ray GRIN lens (made by concurrent
depositions of two materials; e.g. [32]) makes a suitable alternative to a compound lens. Here, we
refer to either the CRL or GRIN lens as a thick refractive lens, abbreviated as a TRL.

The paraxial optics of GRIN lenses are well known and the continuous curved trajectories of
rays can be computed by solving the ray equation [31,33]

d
du

[
n(r)

dr
du

]
= ∇n(r), (3.3)

where r is the position vector of the ray and du is the path element along the ray. For a
diverging lens with a refractive profile of equation (3.1), ray trajectories can be written as a linear
combination of solutions to equation (3.3) as

y(z) = A cosh gz + B sinh gz = C cosh g(z − z0), (3.4)

where the lengths A and B (or C and z0) are determined from the position, y0, and direction, y′
0,

of the ray entering the lens at z = 0. Since y′(z) = Cg sinh g(z − z0), then z0 = −1/g tanh−1(y′
0/gy0)

and C2 = y2
0 − (y′

0/g)2. This set of solutions can be compared with those of a positive lens where
the parabolic refractive profile decreases with position y as n(y) = n0(1 − g2y2/2). In that case,
the trajectories are described by sums of sines and cosines, instead of the hyperbolic sines and
cosines of equation (3.4), to give rays that converge to the optical axis. For our negative lens, we
consider incident rays parallel to the optical axis, whereby y′

0 = 0 so C = y0 and z0 = 0, giving
y(z) = y0 cosh gz and y′(z) = y0g sinh gz. Exiting the lens at z = L, these rays will appear to diverge
from a point a distance

s = −1
g tanh gL

(3.5)

from the rear face of the lens, as depicted in figure 1c. The focal length is then

fR = −1
g sinh gL

(3.6)

and so the distance of rear surface of the lens from the back principal plane of the lens is given by

w = fR − s = tanh(gL/2)
g

. (3.7)

As expected, the focal length fR is negative (Fi is upstream of Ui), and we find the rear surface is
located a positive distance w from Ui. Since the compound lens is invariant to inversion in z, the
front surface is located a negative distance −w from Uo and the front focal plane Fo is located a
positive distance −fR from the principal plane Uo. (For a positive lens Fi is downstream from Ui
and Fo upstream from Uo.)

For a given refractive gradient g, as set by the radius, thickness, and refractive index of the
lens elements in the case of a CRL, the focal length reduces in magnitude as the length of the
lens L increases. However, the rate that the focal plane moves forward does not keep up with
the increase in the length of the lens and so the principal plane Ui actually moves further from
the exit surface as the lens extends. The overall scale of the lens and the focal length is set by the
length 1/g, and as we will see below, this sets the scale and focal length of the achromatic system.

As seen above, g ∝ λ, and hence ∂g/∂λ = g/λ. The dispersion of the TRL, in terms of the position
of the virtual image relative to the exit of the lens, is thus given by

λ

s
∂s
∂λ

= g
s

∂s
∂g

= −
(

1 + 2gL
sinh 2gL

)
. (3.8)

This approaches the thin-lens value of −2 as L → 0 and tends to −1 as L → ∞. The delay between
the pulse front and the wavefront of a collimated beam focused by the negative TRL is derived
in appendix A and given by equation (A 12). It is found that �T follows the same expression of
equation (2.3) (for a thin lens) but with the focal length f replaced with s.
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4. Achromats utilizing thick refractive lenses
The paraxial optics formalism may seem to suggest that the analysis of the separated thin-lens
achromats of §2 could apply in the case of TRLs, by setting the distance d to the separation of
the appropriate principal plane of the thick lens to the diffractive lens. This was essentially the
assumption of Poulsen et al. [13], who analysed a Type II system formed by a diffractive lens
and a CRL. However, that approach assumes that the dispersion of the refractive lens remains
constant at −2, which equation (3.8) shows is not the case. We therefore modify the approach
of §2 to account for a separation of the principal planes that is wavelength dependent. In the
following, we avoid approximations of previous analyses by using the full analytical expressions
of equations (3.6) to (3.7) for the TRL. We consider imaging systems that focus a source located at
−∞. We introduce the gap D between the exit or entrance surface of the TRL and the diffractive
lens, as shown in figure 1c,d. As previously, the diffractive lens is considered a thin lens such
that its principal planes coincide with the plane of the lens. We expect in the limit L → 0 that we
reproduce the results of §2.

(a) Type I systems
For the Type I system, referring to figure 1c, the (positive) distance between the rear principal
plane Ui of the TRL and diffractive lens is d = D + w. Given the negative focal length of the TRL,
the negative object distance for the diffractive lens (that is, the distance to the virtual image created
by the TRL) is lo = fR − d = s − D. The image working distance bI, here equal to the image distance
li of the diffractive lens, is given by

1
bI

= 1
fD

+ 1
s − D

. (4.1)

Using equation (3.5) and substituting g = g0λ/λ0 and fD = fD0λ0/λ, we compute ∂(1/bI)/∂λ at λ =
λ0 in a similar fashion to the procedure in §2. The stationary value of 1/bI (and thus also of bI) is
then found to occur for

fD0 g0 = (cosh g0L + γ g0L sinh g0L)2

g0L + cosh g0L sinh g0L
, (4.2)

where the gap between the lenses relative to the length of the TRL has been parametrized as
γ = D/L.

The image position for an achromatic system obeying the condition of equation (4.2), for λ = λ0,
is given by

bI,0 g0 = 2(cosh g0L + γ g0L sinh g0L)2

g0L(2 + γ − γ cosh 2g0L)
, (4.3)

which is positive for positive values of γ and L, as long as cosh 2g0L < (2 + γ )/γ , giving a useable
achromat that creates a real focus. When the two lenses are in contact, D = 0, equation (4.3)
simplifies to

bI,0 g0 = cosh2 g0L
g0L

, (4.4)

which is positive for all values of g0L.

(b) Type II systems
In the Type II system, the refractive lens images a converging beam instead of a collimated one
and thus we must consider both principal planes of this lens. The distance from the diffractive
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lens to the front principal plane of the TRL is now given by d = D + w, as seen in figure 1d, which
is equal to the expression for the Type I system. Now, however, lo = fD − d = fD − D − w so that

1
li

= 1
fR

+ 1
lo

= fR + fD − w − D
fR (fD − w − D)

. (4.5)

Noting further from figure 1d that bI = li − w, we obtain

bI = s − f 2
R

fD + s − D
. (4.6)

Again, using equations (3.5) and (3.6), and the wavelength-dependent expressions for g and fD,
the stationary value of 1/bI with respect to wavelength occurs when

fD0 g0 =
cosh 2g0L + γ g0L sinh 2g0L + 2γ g2

0L2 ±
√

1 + 2γ sinh 2g0L + 4(1 + γ )g2
0L2

2g0L + sinh 2g0L
. (4.7)

Only the positive root gives a solution where bI is positive. The image position for this achromatic
condition at λ = λ0 is then

bI,0 g0 =
1 − 2g0L tanh g0L +

√
1 + 4(1 + γ )g2

0L2 + 2γ g0L sinh 2g0L

2g0L + tanh g0L
(

1 −
√

1 + 4(1 + γ )g2
0L2 + 2γ g0L sinh 2g0L

) . (4.8)

When D = 0 (γ = 0), equation (4.8) simplifies to

bI,0 g0 =
1 − 2g0L tanh g0L +

√
1 + 4g2

0L2

2g0L + tanh g0L
(

1 −
√

1 + 4g2
0L2

) , (4.9)

which is positive for all values of g0L.

(c) Achromatic and apochromatic conditions
Equations (4.2) and (4.7) show that the solutions for achromatic focusing depend only on the
parameters g0L and γ , and the required diffractive-optic focal length (and hence overall focal
length and image distance) is proportional to the length 1/g0. This length thus determines the
scaling of the imaging system and sets limits on the achievable resolution of the system. Of course,
the zone plate or MLL must be produced with the appropriate focal length to meet that scaling,
but in practise, after determining the focal lengths of the refractive and diffractive lenses, one
would adjust the length L of the TRL and the distance D between them to achieve the achromatic
condition. Graphs of fD0 and b0g0 are shown in figure 3 as a function of g0L for different relative
gaps γ for Type I and Type II systems. The smallest values of fD0 and b0 are obtained when the
diffractive lens is in contact with the TRL, γ = 0. This is not the doublet of §2 where the focal length
of the refractive lens is −2 times that of the diffractive lens, since the principal planes of the lenses
are still separated by d = fR − s. For a Type I system, the smallest value of bI,0 (which will give the
highest NA for a given aperture of the diffractive lens) is then 2.233/g0 at a value of L = 0.772/g0.
For a Type II system with γ = 0, the image distance is decreased as g0L is increased, with bI,0 →
1/g0 as g0L → ∞. However, as will be seen below, this does not necessarily give the highest NA.

The achromatic behaviour of the lens systems can be checked by evaluating the image position
b as a function of the wavelength. This is obtained by expanding b as evaluated in equation (4.1)
or (4.6), using the wavelength-dependent expressions of the focal length of the diffractive lens fD
and the working distance s of the refractive lens. Setting λ = λ0 + �λ, we obtain (with the help of
a symbolic mathematics program)

b = b0

[
1 + ν(2)

(
�λ

λ0

)2
+ O

(
�λ

λ

)3
]

. (4.10)
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Figure 3. (a,b) Plots of the focal length of the diffractive lens (in units of 1/g0, solid lines) required to achieve the achromatic
condition, as a function of the lens parameter g0L of the TRL, for Type I and Type II systems. The negative of the focal length
of the refractive lens is shown by the dashed line. (c,d) The corresponding image distance b (also in units of 1/g0). Each graph
gives plots for a relative gap, γ , of 0 to 2.0 in steps of 0.2. In all four graphs, smaller γ give smaller values of fD0 and b. The
apochromatic condition for each case is depicted by the blue circles. (e,f ) The chromatic and apochromatic conditions are shown
as surfaces and lines, respectively, for fR0 (blue), fD0 (green) and b0 (orange) for Type I and Type II systems.

As expected, there is no linear dependence of b on wavelength. For a Type I system, the
dimensionless coefficient for the quadratic dependence on wavelength is given by

ν
(2)
I = 4g0L(1 + γ ) sinh g0L + γ cosh 3g0L + ((4g2

0L2 − 1)γ − 4) cosh g0L

2(γ cosh 2g0L − 2 − γ )(cosh g0L + g0Lγ sinh g0L)
. (4.11)
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Figure 4. Dependence of the TRL lens parameter g0L on the relative gap of the lenses γ for the apochromatic condition of a
(a) Type I and (b) Type II lens system. The corresponding focal lengths and image distances of−fR0 (blue), fD0 (green) and b0
(orange) in the apochromatic condition, in units of 1/g for a (c) Type I and (d) Type II lens system. (Online version in colour.)

For the Type II system, the expression for ν(2) is rather long and not very illuminating and thus is
not given here. Expressions of ν(2) for both types do take on simpler forms when γ = 0, whereby

ν
(2)
I = 1 − g0L tanh g0L (4.12)

and

ν
(2)
I

= − g0L
g0bI,0

. (4.13)

As with achromats constructed from thin lenses, the second-order dispersion ν(2) can be made
to vanish in certain situations, to give an apochromat. For lenses in contact, γ = 0, this occurs in
a Type I system when tanh g0L = 1/(g0L) as seen from equation (4.12). This has only one solution
for positive g0L, which is g0L = 1.1997. For other values of γ , the solution to ν(2) = 0 can be
found numerically. This value of g0L for apochromatic Type I systems is plotted in figure 4a as
a function of γ between 0 and 2. The plot shows that as the gap between the lenses increases,
the required setting of g0L for apochromatic imaging decreases from 1.1997. Figure 4c shows the
corresponding magnitude of the focal length of the TRL, −fR0 in blue, along with the focal length
of the diffractive lens fD0 in green and the image distance b0 in orange. The smallest magnitudes
of these focal lengths and image distance, achieved when γ = 0, are found to be fR0 = −0.6627/g0,
fD0 = 0.8336/g0 and bI,0 = 2.731/g0.

The Type II configuration has no apochromatic solution when γ = 0. The solution to ν(2) = 0
is plotted in figure 4b and indicates that as γ → 0, the apochromatic condition requires g0L →
∞ and −fR0 → 0. Any non-zero gap between the lenses—even an infinitesimal one—does give
apochromatic solution, as seen in figure 4b,d.

The entire landscapes of the achromatic and apochromatic conditions are captured in
figure 3e,f, where the achromatic condition gives surfaces for fR0, fD0 and b0 as a function of the
parameters g0L and γ . For any relative gap γ there is only one value of g0L which gives the
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apochromatic condition for a positive image distance b, shown as continuous lines in figure 3e,f
as well as by the blue circles in figure 3a–d.

As the gap D = γ L between the two lenses is increased, figure 4a,b shows that the required g0L
or the apochromatic condition reduces, meaning that for a given gradient g0 and scaling of the
optical system the length of the TRL is reduced. This may have the advantage of increasing the
transmission of the TRL. The effects on the NA and resolution are examined below in §6.

(d) Thin-lens limit
The limit of the thin lens of §2 is difficult to discern from figures 3 and 4, since we must examine
the extremes of the parameter g0L (the abscissa in figure 3) and the overall scaling by 1/g0 (the
ordinate). The thin-lens limit certainly requires L → 0 so that w → 0 as per equation (3.7), ensuring
that the principal planes of the refractive lens coincide. However, this limit does not give a finite
focal length, since fR → −1/(g2

0L) as L is reduced. The combined limit of L → 0, 1/g0 → 0 does lead
to a finite focal length—equal to zero. To recover a finite non-zero focal length we must arrange
that L approaches zero faster than 1/g0 does. Given the limiting behaviour of fR, we can achieve
that by setting 1/g0 =√−fL, for which fR → f and w → 0 as L → 0. In addition, as L is reduced the
normalized gap between the lenses γ = D/L becomes larger, and thus we see the thin-lens limit
occurs in the graphs of figure 3 towards small g0L and large γ .

5. Bandwidths and propagation delays of imaging systems
A change in wavelength alters the image distance b. The range of wavelengths that can
be tolerated therefore depends on how much defocus can be tolerated in the image. For a
diffraction-limited imaging system with a square aperture, the depth of focus is given by

DOF = 2λ

NA2 = 8δ2
r

λ
, (5.1)

where δr = λ/(2NA) is the transverse resolution. We saw that for a single lens element, the
dispersion of the imaging system is given by �b/b = ν�λ/λ with ν = −1 or ν = −2 for the
diffractive and refractive lens, respectively. In these cases, the required condition that �b < DOF
reduces to

�λ

λ
<

8λ

2b NA
λ

2NA
1
|ν| = 8δr

P|ν| , (5.2)

for a lens of height or diameter P. As was seen in the Introduction, the ratio of the resolution δr

to the diameter is 2N and so, in accordance with the discussion that each of the N layers adds
a wavelength of optical path, the relative bandwidth is inversely proportional to the number
of layers. For, say, 3 nm resolution with a lens of 200 µm diameter, equation (5.2) gives a rather
stringent limitation of �λ/λ < 1.2 × 10−4 for a diffractive lens.

The tolerable bandwidth of an imaging system relates to the shortest pulse that can be passed
by that system. Ensuring that the relative bandwidth of a short pulse is no greater than 1.2 × 10−4,
by passing it through a monochromator, for example, will stretch the duration to at least about
1.7 × 104λ/c. For a wavelength of 0.08 nm, this corresponds to 4.4 fs.

An achromat eliminates the linear dispersion of the optical system, and it is clear that the
tolerable bandwidth increases to

�λ

λ
<

(
8δr

P|ν(2)|
)1/2

. (5.3)

For the 3 nm-resolution example, the doublet lens of equation (2.2) (where ν(2) = 1) increases the
relative bandwidth from 1.2 × 10−4 to 1.1%. The shortest focusable pulse would be reduced from
4.4 fs to 49 as for a wavelength of 0.08 nm. Other achromats discussed above generally have even
smaller quadratic dispersion, giving higher bandwidth. Of course, the apochromats, for which
ν(2) = 0, give the largest bandwidth. For the example considered here, we would expect this to
reach (1.2 × 10−4)1/3 = 4.9% and a pulse stretching no greater than 11 as. In fact, bandwidths of up
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Figure 5. Plot of the image position as a function of relative wavelength for a Type I apochromat. The solid line shows the
lens designed for the apochromat condition with γ = 0 and the dashed line has the lens separation D increased to maximize
bandwidth. The shaded region indicates the depth of focus for the case of a lens systemwith 3 nm spot size at a wavelength of
0.08 nm (15.5 keV photon energy). This lens systemwould not stretch a short pulse bymore than 2 as. (Online version in colour.)

to 20% can be achieved by balancing some degree of linear dispersion to limit the defocus, which
would allow the focusing of pulses below 2 as. A plot of the relative change in the image distance
�b/b as a function of the relative change in wavelength �λ/λ is given by the solid line in figure 5
for a Type I apochromat of a TRL in contact with a diffractive lens (γ = 0). As noted above, this
requires g0L = 1.1997, giving b0 = 2.731/g0. It is seen that b follows a cubic function, as expected,
but the bandwidth can be increased by half by moving the lenses apart to a separation of γ = 0.013
to balance the dispersion with a linear term. This was optimized such that the two turning points
of b(λ) occur at the extremes of the tolerable defocus values. It is seen from figure 5 that b(λ) can be
made to equal b0 at three distinct wavelengths. The shaded region in the plot of figure 5 indicates
the depth of focus for a particular example of δr = 3 nm. This could be accomplished, for example,
for a TRL of 3.1 mm in length with 1/g0 = 2.58 mm coupled with a diffractive lens of focal length
of 2.15 mm and a diameter of 120 µm.

It is worth mentioning that the relative bandwidths of most apochromat designs that can be
realized for high-resolution imaging at X-ray wavelengths are not very dissimilar to the example
shown here of 20%. This is because the bandwidth depends only on the cube root of the ratio of
resolution to lens diameter.

6. Ray tracing of apochromats
The paths of meridional rays within the length of the negative TRL follow hyperbolic cosine
trajectories given by equation (3.4), calculated using the wavelength-dependent refractive
gradient, g(λ) = g0λ/λ0. In free space, the ray trajectories are calculated as straight lines and,
following the paraxial approximation to a lens, the diffractive optic modifies the ray directions
according to y′ 	→ y′ − y/fD using the wavelength-dependent focal length fD = f0λ0/λ.

Examples of calculated ray trajectories in apochromats are shown in figure 6, with the positions
of the TRL and diffractive lenses depicted by the light grey and dark grey rectangles, respectively.
Collimated rays are incident from the left. Rays at a long wavelength of 1.05λ0 are shown in red
and rays of a short wavelength of 0.95λ0 are blue. Relative gaps of γ = 0, 0.5 and 2 are shown for
the Type I systems, and 0.01, 0.5 and 2 for the Type II systems. All TRLs have the same refractive
gradient g, but their lengths L are adjusted to achieve the apochromatic condition, as are the focal
lengths of the diffractive lenses. The scales of all the diagrams are consistent but the horizontal
and vertical scales are not equal: the incident ray heights range from 0 to 0.1 (in units of 1/g0) for
the Type I systems and the length of the TRL in the Type I system with γ = 0 is 1.1997/g0.
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Figure 6. Ray trajectories of meridional rays focused by apochromatic lens systems for the same TRL gradient g, but different
relative separations of the refractive and diffractive lenses. The red rays are traced for a wavelength of 1.05 and the blue rays
for 0.95, or a bandwidth of 10%. The TRLs are depicted by light grey rectangles and diffractive lenses by darker rectangles. All
images are shown on the same scale, but the horizontal and vertical scales are not equal. The incident ray heights vary from 0
to 0.1/g, and the length of the TRL for the Type I system is 1.1997/g.
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Figure 7. NA of Type I (solid lines) and Type II (dashed lines) apochromats, as a function of the relative gap between the
refractive and diffractive lenses. The NA is plotted in units of yDg.

It is apparent from figure 6 that smaller gaps between the lenses give shorter image distances
and hence smaller diffraction-limited spot sizes. The NA of the Type II system is considerably
less than that of the Type I, given component lenses of similar focal length and aperture size.
Assuming that the limiting aperture is given by the size of the diffractive lens, the NA of a
Type I system is approximately yD/b where yD is the aperture radius. For a Type II system, the
extreme ray leaves the rear principal plane of the TRL at a height yR = yD(fD − D − w)/fD, to
travel a distance li = bI + w to the image plane, giving NA = yR/li. Plots of the achievable NA of
the lens system, in units of yDg, are given in figure 7 for apochromatic lens systems as a function
of the relative gap γ . For a given refractive gradient g, Type I systems give about twice the NA
of Type II systems. As γ → 0, the NA of the Type II system approaches 0. A maximum of NA =
0.151yDg is obtained for Type II systems when γ = 0.150, and the NA falls off slowly as the gap
is increased.
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Figure 8. Ray trace of a Type I achromat with gL= 0.3 and γ = 0, for which the TRL creates a virtual image that is relayed
by the diffractive lens at almost unit magnification. This requires an MLL with almost parallel layers. (Online version in colour.)

7. Considerations and examples using multilayer Laue lenses
For short wavelengths (high photon energies) MLLs give much higher efficiencies than zone
plates fabricated by lithographic techniques. They are also able to achieve higher spatial
resolution, since the layers in MLLs can be smaller than 1 nm. However to reach optimal
diffracting efficiency across the entire pupil of the lens, the layers must be tilted to ensure Bragg’s
law is satisfied [1]. For an MLL focusing a collimated beam to a focal point a distance fD beyond
the lens, the layers should all lie on the surfaces of cones (for an axisymmetric lens) or planes
(for a one-dimensional lens) with a common apex located a distance 2fD from the lens. This is
the requirement for MLLs in Type II achromats. In a Type I system, however, the MLL forms an
image of the virtual image created by the TRL, a distance −lo = d − fR from the MLL. In this case,
the layers of the MLL must lie on cones or planes that converge at a point upstream of the MLL a
distance RC from the lens, found from 1/(2RC) = 1/lo + 1/li. An interesting case is therefore when
−lo = li = bI,0 = 2fD0 since then all the layers in the MLL must be parallel to each other and the
optical axis. A comparison of equations (4.2) and (4.3) yields

bI,0

fD0
= 2g0L + sinh 2g0L

g0L(2 + γ − γ cosh 2g0L)
, (7.1)

which approaches 2 as g0L → 0 (the thin-lens solution) for any value of γ , but approaches this
value faster as γ is reduced. Such a system can make a non-wedged MLL useful for imaging
at high resolution (and achromatic) by the addition of a TRL, at the cost of doubling the image
working distance and the achievable spot size. As an example, consider a negative TRL of a length
L = 0.3/g0 which has a focal length of −1.015/g0. The achromat condition requires fD0 = 1.767/g0.
With the lenses in contact (γ = 0) equation (4.3) gives bI,0 = 3.642/g0, which is 2.06 times the focal
length of the MLL. A ray trace of this lens is given in figure 8.

The Bragg condition depends on wavelength, and thus for a given layer or zone structure
of an MLL the tilt of the layers is only optimized for one particular wavelength. There is
therefore a question as to whether all rays within the bandwidth of an apochromat will be
efficiently focused by the MLL. All wavelengths within the bandwidth of the achromat will
converge on the image point at b, but they will appear to have originated from secondary
source points at different distances from the lens. The largest range of wavelengths that can be
accepted by the MLL depends on the rocking-curve width of the Bragg reflection for the thinnest
layers, which in turn depends on the wavelength. For a Type I system, all rays impinging on
the image point from a certain direction will, obviously, diffract from the same point in the
diffractive lens, for all wavelengths in the bandwidth. By reciprocity, the range of wavelengths
that are diffracted is related to the angular dispersion of a collimated beam. From Bragg’s law,
this is �λ/λ = �θ/ tan θ ≈ �θ/θ , where 2θ is the angle that rays are deflected by diffraction.
Following dynamical diffraction theory applied to multilayer structures, it can be shown that
�θ/θ ≈ |δ1 − δ2|/θ2, where δ1 and δ2 are the decrements of the refractive indices of the two
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Table 2. Examples of Type I apochromat designs with γ = 0, with refractive indices calculated for diamond. The resolution is
computed for a diffractive lens of 100µm radius.

E δ 1/g fD fR fA w L b δr DOF

(keV) (10−6) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (nm) (µm)

8.0 11.41 1.32 1.10 −0.88 2.00 −0.71 1.59 3.62 2.80 0.41
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15.5 3.00 2.58 2.15 −1.71 3.90 −1.39 3.10 7.05 2.82 0.80
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40.0 0.45 6.67 5.56 −4.42 10.06 −3.58 8.00 18.21 2.82 2.06
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

100 0.073 16.55 13.80 −10.97 24.98 −8.89 19.86 45.22 2.80 5.07
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

500 0.0029 83.05 69.23 −55.03 125.33 −44.59 99.63 226.88 2.81 25.53
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15.5 3.00 8.16 6.81 −5.41 12.32 −4.38 9.80 22.31 8.92 7.96
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

materials that make up the multilayer structure [2,34]. The narrowest rocking curve therefore
occurs at the largest scattering angle, where 2θ = NAD, the NA of the diffractive lens, giving

�λ

λ
≈ |δ1 − δ2| 4

NA2
D

. (7.2)

As an example, for an MLL made from SiC and WC layers, |δ1 − δ2| = 6.7 × 10−6 at a wavelength
of 0.08 nm, so that �λ/λ = 1.2% when NAD = 0.046, corresponding to an MLL of radius 100 µm
and focal length 2.15 mm. When used in a Type I achromat, a resolution of 2.8 nm can be achieved,
as seen in table 2. From equation (7.2), it can be seen that since δ1 and δ2 are inversely proportional
to wavelength, and the NA is proportional to wavelength for a given resolution, the bandwidth
for a particular multilayer material pair is proportional to the square of the resolution, δr. Type
I apochromats with 10% bandwidth are therefore limited to a resolution of about 8 nm when
constructed using SiC/WC MLLs. (Other material pairs used for MLLs in this wavelength regime
likely give similar results.)

MLLs are often fabricated by depositing layers onto a flat substrate, in which case they focus
only in one direction like a cylindrical lens. Two orthogonally oriented lenses can then produce a
two-dimensional focus. The aberrations of such systems has recently been studied [2]. Achromats
and apochromats can be made in the same way either by combining a single axisymmetric TRL
with two crossed MLLs or by using a separate one-dimensional achromatic lens system for each
focusing dimension. In the former case, the two MLLs should ideally be in contact. If not, then
the value of γ would be different for each, requiring different focal lengths of the two MLLs.
These will not, however, focus the beam to the same image plane. It may be possible to make an
anamorphic TRL to compensate this, but this may be somewhat complicated. Two separate lens
systems can be positioned to image to the same plane. For example, the entire length of the Type
I system with γ = 0 is less than the working distance of a Type I or II system with γ = 0.5. More
combinations are possible when the gradients of the two TRLs are not equal.

Some design examples are given in table 2 of thick-lens apochromatic systems with γ = 0,
the case depicted in figure 6a. It was seen above that the lens systems scale with the refractive
gradient, g, which ideally should be as large as possible. At a wavelength of 0.08 nm (15.5 keV
photon energy), the refractive index decrement of diamond is δ = 3 × 10−6. Constructing a
diamond CRL with bi-convex lenses of radius R = 20 µm and height h = 1 µm gives 1/g0 =
2.58 mm. The smallest possible lens distances for a Type I apochromatic system (at γ = 0) is then
bI,0 = 2.731/g0 = 7.05 mm, fD0 = 0.834/g0 = 2.15 mm and fR0 = −0.663/g0 = −1.71 mm. The length
of the CRL is L = 1.1997/g0 = 3.10 mm. If the radius of the CRL is 20 µm (matching the radius
of curvature) then the NA of the focused beam is 0.020/7.05 = 0.0028, providing a spot size of
δr = 14.1 nm. However, if the aperture of the CRL is increased to 100 µm, then a resolution
of δr = 2.8 nm would be achieved with NA = 0.014. This could be realized in a CRL since the
parabolic profile y2/(2R) of the lens elements can be continued to y > R (e.g. [35]).



21

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210334

...........................................................

Considering the design of achromatic lens systems at harder X-ray energies, we note that the
gradient g for a particular material and construction scales linearly with wavelength, and thus
the focal lengths and image distance for lenses in the apochromatic condition scale inversely
with wavelength. Thus, the achievable diffraction-limited spot size, dependent on the ratio of
the wavelength to the NA, remains constant. However, as the wavelength (and NA) is reduced
the depth of focus increases inversely with wavelength for a given spot size. This means that
�b/b remains about the same for a given imaging resolution, and thus so too does the relative
bandwidth �λ/λ.

The concept is suitable for very high photon energies. Table 2 shows examples for 100 keV and
500 keV. The latter requires a TRL length of 99.6 mm if made from the same diamond material and
with the same parameters as considered above. However, at these photon energies the absorption
of materials is vastly reduced, making other materials suitable for the task. For example, at
500 keV, Mo gives an increase in g by a factor of 1.6 times compared with diamond. This reduces
the focal lengths, which in turn decreases the achievable resolution to 2.8 nm/1.6 = 1.8 nm. The
design for Mo requires a TRL of 62 mm length. The attenuation length of Mo at 500 keV is
104 mm, so the lens has a transmission of 55%. A similar resolution and higher transmission can
be achieved with Cu.

8. Conclusion
While it is generally well appreciated that diffractive lenses such as zone plates and MLLs exhibit
a strong dependence of focal length on wavelength and, relatedly, an increase in the duration of
short pulses due to the differences in path lengths of rays propagating from the lens to the focus,
it is perhaps not as well known that such effects are even greater in refractive lenses. This result
can be surprising, given that focusing in a refractive lens can be explained as a consequence of
Fermat’s principle of least time. Instead, due to the variation of refractive index with wavelength
(which is strong in the X-ray regime), a short pulse will take longer to reach the focus of a positive
refractive lens when traversing the outer edge of the lens than as along the axis. However, the
different behaviours of diffractive and refractive lenses allow systems to be constructed where
the dispersion of one lens is offset by the dispersion of the other. Since the dispersion of a
refractive lens is twice that of a refractive lens, this requires a negative power that is half that
of the diffractive lens (that is, a negative lens with twice the focal length of the diffractive lens), to
yield a system that has a residual positive focusing effect. In this case the meridional rays travel
faster in the refractive lens than the axial rays (see appendix A) to compensate the time lost along
the longer path length of the diffractive lens.

We exhaustively explored the design space of achromatic systems consisting of a refractive
and a diffractive lens, using a paraxial analysis. Two lenses give enough degrees of freedom to
find both achromatic and apochromatic designs. Apochromaticity is defined as when both the
linear and quadratic dependencies of the image position on wavelength are removed, to leave a
cubic dependence that can give three distinct wavelengths that are focused to exactly the same
plane. Additional degrees of freedom in the design space could be introduced by adding a third
lens (such as a positive diffractive lens surrounded by refractive lenses of lower power) but such
schemes lead to greater complexity and lower efficiency. It is also possible to increase the design
space by changing the dispersion of the refractive lens by operating near an absorption edge of the
refractive material [11]. We did not explore that case here, but this is attractive when bandwidths
are limited to less than about 0.2%. In our study we showed that achromatic imaging could be
achieved at high resolution (spot sizes considerably below 10 nm) over a relative bandwidth of
about 1%. Apochromatic imaging extends this to up to 20%, but only if the rocking-curve width of
the diffractive lens allows. In such designs, pulses as short as 2 as could be focused to a 3 nm spot
size without significant distortion of the pulse in time, for a mean X-ray wavelength of 0.08 nm
(15.5 keV photon energy).

The systems analysed here give an image position that is stationary with wavelength, but,
except for the thin-lens doublet, their focal lengths do vary considerably with wavelength. (The
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difference between focal length and image distance was discussed in §2b.) This implies that the
magnification of the image is wavelength dependent, which leads to a transverse dispersion of
the image of an extended source or of the image of a point source that is displaced from the optical
axis. For imaging at 3 nm imaging, for example, the angular misalignment of the source should
be less than about 10 µrad.

There are two topologies of the positive-focus two-lens achromat designs. The Type I
configuration consists of a negative refractive lens followed by a positive diffractive lens, and
a Type II has the order of lenses reversed. Type I systems have the advantage of achieving higher
NA for a given lens size. The configuration giving the shortest focal length and highest NA is
a Type I system in which the refractive lens is in contact with the diffractive lens. However, any
realizable system for high-resolution imaging must necessarily be made with a refractive lens that
is thick in order to achieve the required focal length for the design that pairs with the short focal
length of the diffractive lens. In the X-ray regime, this then requires a negative CRL composed
of many biconvex thin lenses. This system cannot be treated as a thin lens in the analysis of an
achromatic system. Not only does the focal length of the CRL vary with wavelength, but also
does the position of the principal plane of the lens. Our analysis accounts for a change in distance
between the principal planes of the refractive and diffractive lenses as a function of wavelength
by applying the well-established paraxial optics formalism of GRIN lenses. We are not aware if
it has previously been pointed out, but cylindrical GRIN lenses composed of a material whose
refractive index varies quadratically with radius are equivalent to CRLs in the limit of a large
number of lenses. The achromatic lens systems we present can be constructed using either CRLs
or X-ray GRIN lenses, which we refer to as thick refractive lenses.
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Appendix A. Propagation times of composite lens systems

(a) Thin-lens achromats
The derivations of the achromatic conditions can be confirmed by calculating the propagation
times of rays through systems consisting of lenses separated by d. For a Type I system the delay
of the pulse front relative to the wavefront is found from the sum of the negative delay of the pulse
front in the refractive lens and the positive delay due to the extra path length of the diffractive
lens. The delays for each of the lenses are given by equation (2.3) with the appropriate dispersion,
such that

�T = �TR + �TD = y2
R

cfR
+ y2

D
2cfD

, (A 1)

where yR is the height of the ray at the refractive lens and yD is the height of the same ray at
the diffractive lens. Even though the diffractive lens does not focus a collimated beam, as was the
assumption in the derivation of equation (2.3), this equation still holds. This can be seen from the
fact that the additional path length from the wavefront incident on the diffractive lens and from
that lens to the wavefront converging onto the focus is given by

�l1 + �l2 = y2
D

−2l0
+ y2

D
2li

= y2
D

2fD
. (A 2)
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Noting that yD = (1 − d/fR)yR, equation (A 1) then becomes

�TI = y2
R
c

(
1

αf0
+ 1

2f0

(
1 − d

αf0

)2
)

= y2
R

2cα2f0

(
d2

f 2
0

− 2α
d
f0

+ α(α + 2)

)
, (A 3)

for which �TI = 0 has the same solution as given by equation (2.7).
For the Type II system, yR = yD(1 − d/fD), so that equation (A 1) becomes

�TI = y2
D
c

(
1

αf0

(
1 − d

f0

)2
+ 1

2f0

)

= y2
D

2cαf0

(
2

d2

f 2
0

− 4
d
f0

+ α + 2

)
. (A 4)

This expression evaluates to zero for the solution given by equation (2.11).

(b) Thick refractive lenses
The delay of rays traversing a negative TRL can be determined by calculating the time of flight
along trajectories C of rays by integrating over arc length elements du as

Tg =
∫

C

1
vg(r)

du =
∫L

0

1
vg(r(z))

∣∣r′(z)
∣∣dz, (A 5)

where the group velocity vg in the inhomogeneous material obeys

1
vg

= 1
c

(
n − λ

∂n
∂λ

)
= n0

c

(
1 − g2y2

2

)
, (A 6)

for the refractive index profile given in equation (3.1). For collimated rays incident on the TRL
parallel to the optic axis, the trajectories are

r(z) = (y0 cosh gz, z), (A 7)

for which, in the paraxial approximation,

∣∣r′(z)
∣∣≈ 1 + g2y2

0
2

sinh2gz. (A 8)

Therefore,

Tg = n0

c

∫L

0

(
1 − g2y2

0
2

cosh2gz

)(
1 + g2y2

0
2

sinh2gz

)
dz

≈ n0

c

∫L

0

(
1 − g2y2

0
2

)
dz

= n0

c

(
L − g2y2

0
2

L

)
. (A 9)

Meridional rays travel faster through the lens than the axial ray. The difference of the propagation
of a pulse to the phase front can be determined by making a similar line integral of the optical
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path nr(z) through the lens, as

Tφ = n0

c

∫L

0

(
1 + g2y2

0
2

cosh2gz

)(
1 + g2y2

0
2

sinh2gz

)
dz

≈ n0

c

∫L

0

(
1 + g2y2

0
2

cosh 2gz

)
dz

= n0

c

(
L + gy2

0
4

sinh 2gL

)
, (A 10)

so that

�TR = Tg − Tφ = −gy2
0

4c

(
2gL + sinh 2gL

)
, (A 11)

where we have made a further approximation that n0 ≈ 1. Equation (A 11) can be expressed in
terms of the transverse coordinate at the exit of the lens, yi = y0 cosh gL, so that

�TR = −gy2
i

2c
tanh gL

(
1 + 2gL

sinh 2gL

)

= − y2
i

2cs2 λ
∂s
∂λ

, (A 12)

where the last equality follows from equations (3.5) and (3.8). This expression for the pulse front
delay is in agreement with the result of Bor [24] as given by equation (2.3) when f is replaced with
the distance s of the back focal plane to the lens exit. �TR → 0 as L → 0 and �TR → −y2

i g/(2c)
as L → ∞.

(c) Thick-lens achromats
Using the result of equation (A 12) the pulse front delay in a Type I system can be written as

�TI = −gy2
R

2c
tanh gL

(
1 + 2gL

sinh 2gL

)
+ y2

D
2cfD

, (A 13)

where yR = yi is the height of the ray at the exit of the TRL and, from figure 1c, yD = (1 − D/s)yR

is the height of the ray on the diffractive lens. That is,

�TI = y2
R

2c

(
−g tanh gL

(
1 + 2gL

sinh 2gL

)
+ 1

fD

(
1 + Dg tanh gL

)2) . (A 14)

The solution to �TI = 0 is the same as the expression given by equation (4.2).
The calculation of the delay through the TRL in a Type II achromatic system is not so amenable

to analysis. Numerical simulations confirm that the delay in this system is given by equation (2.3)
with the focal length replaced by the image distance from the lens exit, b.
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