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Abstract In recent years, there have been multiple advances
in positron emission tomography/computed tomography
(PET/CT) that improve cancer imaging. The present genera-
tion of PET/CT scanners introduces new hardware, software,
and acquisition methods. This review describes these new
developments, which include time-of-flight (TOF), point-
spread-function (PSF), maximum-a-posteriori (MAP) based
reconstruction, smaller voxels, respiratory gating, metal arte-
fact reduction, and administration of quadratic weight-
dependent 18F–fluorodeoxyglucose (FDG) activity. Also,
hardware developments such as continuous bed motion
(CBM), (digital) solid-state photodetectors and combined
PET and magnetic resonance (MR) systems are explained.
These novel techniques have a significant impact on cancer
imaging, as they result in better image quality, improved small
lesion detectability, and more accurate quantification of radio-
pharmaceutical uptake. This influences cancer diagnosis and
staging, as well as therapy response monitoring and radiother-
apy planning. Finally, the possible impact of these develop-
ments on the European Association of Nuclear Medicine

(EANM) guidelines and EANM Research Ltd. (EARL) ac-
creditation for FDG-PET/CT tumor imaging is discussed.

Keywords Time-of-flight . Point-spread-function . Digital
PET . PET/MR . Lesion detectability . EARL

Introduction

PET/CT is nowadays widely used in oncology and has be-
come an essential multimodality imaging method that pro-
vides both anatomic and metabolic information [1, 2]. PET/
CT imaging is important for the detection, localization, char-
acterization, and staging of cancer [2]. However, the two main
limitations of PET are the relatively low spatial resolution,
which results in a partial-volume effect (PVE) affecting im-
ages both visually and quantitatively [3], and the generally
low signal-to-noise ratio (SNR). The PVE limits the detection
of small, low-contrast lesions (typically <2 cm), since they
appear to be larger while their radiopharmaceutical uptake
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appears to be lower than the actual value, due to spill out of
activity [4]. In addition, this also decreases the detection sen-
sitivity itself when the signal-to-noise ratio of these lesions
becomes too small. These effects are especially important
when accurate quantification is needed. In recent years, there
have been multiple advances in PET/CT that potentially im-
prove cancer imaging and small lesion detection. In this arti-
cle, these recent advances in PET/CT technology are ex-
plained. Also, the potential consequences of these develop-
ments for the EANM guidelines and EARL accreditation for
FDG-PET imaging are discussed.

New PET technologies and image reconstruction methods

In this section, an overview of several PET technological de-
velopments that took place during the last decade will be giv-
en, as well as a short description of their underlying principles.
In particular, this review addresses TOF [5], PSF modeling
[6], MAP-based reconstruction [7], smaller voxels [8], respi-
ratory gating [9], metal artefact reduction [10], as well as
hardware improvements like CBM [11], the development of
solid-state photodetectors using digital photon counting tech-
nology [12] and the introduction of combined PET/MR imag-
ing [13].

Our descriptions will be limited to those features that are
currently available in commercial, clinical whole-body PET/
CT, and PET/MR systems. Nevertheless, still newer develop-
ments are under way, and might enter the market within the
coming years. Among these, the most important ones in our
opinion, could be the following. New PET reconstruction
methods for which PET attenuation correction by CT is not
necessary [14]. This can reduce or avoid several artefacts
(motion, metal) in the PET images, and leads to lowering of
the radiation dose. Further, a substantial improvement of the
TOF timing resolution (see next section) can be expected [5],
thus improving image quality, reducing scan time, or reducing
administered activity. Finally, scanners with very large axial
FOV, such as the total body system proposed by Cherry et al.
[15] could provide an even larger improvement of these
parameters.

Time-of-flight

PET imaging is based on the detection of annihilation photons
along a line-of-response (LOR).When the difference in arrival
time between two annihilation photons is known, the location
fromwhich these photons originated can be determined. If this
difference equals Δt, the location of the annihilation event,
with respect to the midpoint between the two detectors, is
given by Δx = c Δt/2, where c is the speed of light
(3 × 108 m/s). This technique is called time-of-flight PET.

In 2006, the first commercial whole-body TOF-PET scan-
ners were introduced. These PET scanners use lutetium

oxyorthosilicate (LSO) or lutetium-yttrium oxyorthosilicate
(LYSO) scintillators, which provide a timing accuracy of
350–550 ps, resulting in a localization accuracy of 5.3–
8.3 cm. Table 1 shows vendor-specific timing and localization
accuracy information. The spatial resolution of PET without
TOF is already in the order of several millimeters. This indi-
cates that TOF information will not directly lead to a higher
spatial resolution. However, the incorporation of TOF infor-
mation in the PET image reconstruction algorithm does pro-
vide images with a higher SNR, which improves the detection
of small lesions with relatively low activity that would other-
wise have been indistinguishable due to background noise.
The SNR is approximated by SNRTOF ≈ √(D/Δx) SNRnon-

TOF where D is the effective patient diameter [25]. Therefore,
the effect of TOF is most pronounced in obese patients [5, 25,
26]. It has been shown that the SNR (as a property of the
image) is proportional to the square root of the noise equiva-
lent counts (NEC) [27], which is a property of the PET scan-
ner. The increase in SNR is sometimes regarded as a gain in
counts: a TOF image is equivalent to a non-TOF image ob-
tained with a larger number of counts, where D/Δx is called
the gain factor. The sensitivity times this gain factor is some-
times called the effective sensitivity. In other words, the incor-
poration of TOF information increases the effective sensitivi-
ty. This can be used to provide better image quality and im-
proved lesion detection, or to shorten the scan time while
keeping the same image quality with better clinical workflow
and added comfort for the patient, or finally to reduce radio-
nuclide costs and reduce radiation dose to the patient and
hospital personnel with the same scan time and image quality.

Point-spread-function modeling

Iterative image reconstruction methods use a system matrix
that couples the coincidence counts along each LOR to the
activity in the different voxels. In principle, this matrix takes
into account all processes that influence the measured counts
along each LOR. Among these are resolution degrading ef-
fects such as positron range, photon non-colinearity, and
detector-related effects, including crystal widths, inter-crystal
scattering, and inter-crystal penetration (depth of interaction
effects). Resolution modeling or PSF modeling takes into ac-
count these effects during image reconstruction [6]. However,
PSF modeling can also be applied as a post-reconstruction
deconvolution [28]. The first method has been implemented
by Siemens (HD) and GE (SharpIR), while the secondmethod
is used by Philips, as can be seen in Table 1.

It has been demonstrated that PSF modeling in PET recon-
structions leads to higher and more uniform spatial resolution
over the transaxial FOV [29–31]. Special attention should be
given to some pitfalls, noise and Gibbs artefacts can be am-
plified [32]. However, for noise, this depends on its definition.
As explained by Alessio et al. [33], PSF modeling can reduce
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noise when it is defined as intensity variation on a voxel-to-
voxel basis, but may increase the ensemble standard deviation
of mean lesion uptake. Also, spatially correlated noisy patterns
can be introduced, especially for low count statistics [34].

An example of a clinical PET scan demonstrating the im-
pact of TOF and PSF is shown in Fig. 1. It is interesting to note
that although PSF modeling was developed and tested mainly
for 18F–FDG imaging, it clearly also enhances small lesion
detectability using 68Ga-based tracers. Apparently, this is not
hampered by the higher positron energy and larger range for
68Ga versus 18F.

Bayesian penalized likelihood

When using conventional iterative reconstruction algorithms
based on maximum likelihood estimation maximization
(MLEM) such as ordered subset expectation maximization
(OSEM), the quantitative accuracy of the resulting images
improves (the standardized uptake values (SUVs) of lesions
increase) when the number of iterations is increased.
However, image noise levels also increase with each iteration,
hampering visual small lesion detection. As a compromise,
some bias (underestimation of SUV in smaller lesions) is
allowed in the reconstructed images in return for reduced
noise levels, by stopping the iterative process after a limited
number of iterations, or by applying post reconstruction spa-
tial smoothing [35].

Bayesian methods are applied in PET image reconstruc-
tions to further improve the quality of reconstructed images
by taking advantage of prior knowledge of the image, e.g.,
non-negativity of the tracer concentration, limited variation
between neighboring voxels (while preserving real edges),
or anatomical information for example from CT. The
Bayesian penalized likelihood technique (BPL) or MAP algo-
rithm (for instance as incorporated in Q.Clear (GE) [7]) allows
effective convergence of image accuracy while suppressing
noise, by using a penalty function [7, 36].With every iteration,
the outcomes with lower variation between neighboring
voxels are slightly favored over noisier ones. The strength of
this penalty term is chosen to match the procedure type. A
substantial number of iterations (typically 25) warrants con-
vergence without amplifying noise, resulting in improved im-
age quality and increased SUV, particularly in small lesions
when compared with reconstruction techniques without using
MAP [7, 35, 37]. An example is given in Fig. 2.

Small voxel reconstruction

In current practice, the image voxel size for whole-body FDG-
PET scans is typically around 4 × 4 × 4 mm3 [18, 38, 39],
which is in the order of the NEMA spatial resolution of the
PET scanner [40], defined as the full width at half and tenth
maximum (FWHM/FWTM) of a point source whenT
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reconstructed using filtered back-projection without any cor-
rections. Recent studies demonstrated that the use of smaller
voxels and corresponding larger matrices, in combination with
TOF-PET/CTsystems, improves the detection of small lesions
[8, 41–43]. Li et al. [41] demonstrated that using a 400 × 400
matrix (2 × 2mm2) resulted inmore detected lymph nodes and
a better visual image quality, as compared to a 200 × 200
matrix (4.1 × 4.1 mm2). Furthermore, Koopman et al. [8]
showed that the use of 2 × 2 × 2 mm3 instead of 4 × 4 × 4
mm3 voxels was preferred by physicians, based on rankings
including lesion sharpness, lesion contrast, and diagnostic
confidence. Moreover, the use of 2 × 2 × 2 mm3 voxels re-
sulted in an increase in SUVmean, SUVmax, and SNR for small
lesions (<11 mm) in patients. This is also demonstrated in
Fig. 3. Additionally, they found that the contrast recovery
coefficients (as defined in their paper) for phantom spheres
were more accurate using 2 × 2 × 2 mm3 voxels [8].

A drawback of the use of small voxels is an increase of
noise in the PET images as smaller voxels imply fewer counts
per voxel [8]. These higher noise levels may result in more
false-positive findings [44].

Respiratory gating

Respiratory motion causes blurring of lesions in the thorax
and upper abdomen, and can cause additional artefacts be-
cause of an inaccurate attenuation correction due to a mis-
match between PET and CT [45]. This results in a lower de-
tectability of tumors, inaccurate SUVs, and sub-optimal radio-
therapy treatment planning [46, 47]. Respiratory gating can be
used to create an essentially motion-free PET image. There are
two methods that are most common. For the first method, the
respiration of the patient is tracked and only a part of the PET
data is used to reconstruct a motion-free image. For the second
method, the respiration is also tracked, but all PET data is used
to reconstruct a motion-free image by translating gated images
of the different respiratory phases. In recent years, several
respiratory gating methods have been developed for PET im-
aging [46, 48]. For the first method, to maintain image quality,
respiratory gating requires a longer scan time and/or a higher
injected activity. Therefore, respiratory gating is nowadays not
routinely used for diagnostic imaging [49, 50]. However, it is
more commonly applied for radiotherapy planning, where an
accurate delineation and quantification is evenmore important
[51–53].

Different vendors offer different respiratory gating
methods. Philips, GE, and Toshiba use a phase-based gat-
ing method [54]. Siemens also allows phase-based gating,
but in addition offers an amplitude-based optimal gating
method, called HD•Chest. With this method only PET data
collected from the respiratory amplitude range with the
least amount of motion are used [9, 46]. GE also intro-
duced Q.Freeze, which should only be used for diagnostic

purposes. Q.Freeze is a phase-based gating method in com-
bination with a non-rigid translation of the other phases, so
all collected data are used for the final motion free image
[48]. An example of the impact of respiratory gating on a
PET image is shown in Fig. 4.

Metal artefact reduction

Metal artefact reduction is a standard tool in stand-alone
CT systems and different methods are well described in the
literature [55]. However in PET/CT, reduction of metal
artefacts is relatively new, not commonly implemented,
and little research has been performed on the impact of
CT metal artefacts on PET imaging. Artefacts on CT im-
ages can influence the PET reconstruction, as CT data are
used for PET attenuation correction. If the region of inter-
est is located near the implant, the metal not only distorts
the CT image but also influences the quantification of ra-
diotracer uptake and can reduce the image quality and in-
terpreter confidence [10, 56]. Metal artefact reduction is
important for diagnosis [57] and therapy planning [58] in
head and neck cancer, and it can improve the image quality
of 68Ga-PSMA PET studies for metastasis detection in pa-
tients with one or two hip prostheses [10, 59].

Recently, iterative metal artefact reduction was introduced
for some PET/CT scanners. Siemens introduced the iMAR
algorithm [10], Philips introduced O-MAR and Toshiba
SEMAR. It is expected that these algorithms result in an im-
proved quantification and interpretation of the PET image near
metal implants. An example is shown in Fig. 5.

Continuous bed motion

Due to the limited axial FOVof PET scanners, more than one
bed position is generally needed to cover the section of the
body that needs to be imaged. Since the sensitivity decreases
toward the edges of the axial FOV, these bed positions are
chosen to partly overlap to improve the uniformity in sensi-
tivity along the axial direction [60]. Recently, CBM acquisi-
tion was introduced by Siemens (FlowMotion). The PET
scanner shows similar performance compared to its predeces-
sor system with discrete bed positions. The image quality was
also similar for both techniques, with the exception of slightly
increased noise levels for the planes at the edges of the outer
bed positions in the standard acquisition [11, 61].

However, an advantage of the CBM technology is that the
scan range can be selected without being restricted to a dis-
crete number of bed positions, thus on average saving scan
time by using a shorter scan range [62]. CBM could result in
less CT radiation exposure due to this shorter range [62].
Finally, it has been stated that patients prefer the more fluent
scanning of the CBM method over the more abrupt move-
ments using discrete bed positions [61, 62].
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Solid-state and digital PET

Recently, three vendors introduced PET scanners based on
solid-state photodetectors, replacing the conventional

photomultiplier tubes (PMTs). Siemens introduced their
mMR PET/MR scanner that uses avalanche photodiodes
(APD), which can operate in a magnetic field, thus offering
the possibility of constructing an integrated PET/MR scanner.

Fig. 2 Top row: images of a 100 Mcounts acquisition of the NEMA
image quality phantom (sphere-to-background activity concentration
ratio 4:1). Measured sphere-to-background ratios (hottest pixel) are
given for the two smallest spheres. Bottom row: 18F–FDG PET images
(four-ring Discovery MI, GE) of a patient with ovarian cancer with
peritoneal carcinomatosis, (a) reconstructed using OSEM, (b) TOF-
OSEM with PSF modeling, and (c) block-sequential regularized
expectation maximization (BSREM; Q.clear) with PSF modeling and a

beta-value of 400. SUVmax [g/cm
3] is given for the two lesions. Note the

much better recovery in the small lesions when adding TOF and PSF,
with further improvement for BSREM, optimized for BPL. The beta
value in the BSREM reconstruction was chosen to result in similar
background variability in the BSREM and TOF-OSEM images of the
NEMA phantom (data are from Uppsala University Hospital, Uppsala,
Sweden)

Fig. 1 68Ga-labeled prostate-specific membrane antigen (PSMA)
maximum intensity projection PET images (mCT, Siemens) of a patient
with metastasized prostate cancer. PSMA uptake is visible in the prostate
and four metastases (two lesions in the acetabulum (right), and two para-
iliac lymph nodes (left and right)). All images were reconstructed with a

transaxial matrix size of 256 × 256, pixel size of 3.1 × 3.1 mm2. (a) PET
reconstruction without PSF modeling and without TOF, (b) PET
reconstruction with PSF modeling and without TOF, and (c) a PET
reconstruction with both PSF modeling and TOF (data are from
Radboudumc, Nijmegen, The Netherlands)
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GE introduced their Signa PET/MR scanner using silicon
photomultipliers (SiPM), which can also operate in a magnetic
field. Philips introduced the Vereos PET/CT scanner based on
SiPMs with digital readout, and GE released their Discovery
MI PET/CT scanner, also based on SiPMs with digital
readout.

In case of the digital PET scanner from Philips, the digital
SiPMs are capable of detecting and processing single scintil-
lation photons because their elements match the size of the
scintillator crystal elements and they incorporate electronics to
achieve a one-to-one relation between the scintillator crystal

elements and the digital photomultipliers [63–65]. In terms of
system performance, this design results in an improved spatial
and timing resolution and relatively high maximum count
rates. In case of the Discovery MI scanner (GE), 12 crystals
(4 × 3) are coupled to an array of SiPMs (3 × 2), much like the
block design of analogue PMT-based scanners. This reduces
count-rate capability and spatial resolution compared to one-
to-one coupling of crystals and SiPMs, but improves
sensitivity.

Based on phantom and patient studies that were recently
performed on a digital PET system [16, 66, 67], it is expected

Fig. 4 18F–FDG PET/CT images (mCT, Siemens) of a patient with a
non-small cell lung cancer lesion in the left lower lobe. (a) Non-gated
and (b) an essentially motion-free image (HD•Chest). Both PET images
have been reconstructed with a matrix size of 400 × 400, pixel size of
2 × 2 mm2, with PSF modeling and TOF. For the non-gated images, the

first 35% (126 s) of the acquired data was used for image reconstruction,
resulting in an equal number of acquired true coincidences as the gated
image. There is a considerable increase in SUVmean of 70% and a
decrease in volume of 80%. Images have been reproduced from [46]

Fig. 3 18F–FDG PET/CT images (Ingenuity TF, Philips) of a patient with
metastasized breast cancer. The reconstructions were made without PSF
modeling, but with TOF. (a, c) A standard 4 × 4 × 4 mm3 voxel
reconstruction and (b, d) a small 2 × 2 × 2 mm3 voxel reconstruction.

On the small-voxel images, there is an improved visualization of axillary
lymph nodes, with an increase of SUVmax of more than 65% for the small
lymph nodes (data are from Isala Hospital, Zwolle, The Netherlands)
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that digital PET can provide a higher image quality and/or
allow for a lower radiopharmaceutical dose and improved
small lesion detection for oncology scans, as compared to an
analogue PETsystemwith PMTs. Figure 6 shows PET images
of an analogue, PMT-based system and a digital PET system,
of a NEMA image quality phantom (sphere diameters 10–
37mm) and amicro hollow sphere phantom (sphere diameters
4–8 mm). The reconstructed images demonstrate that image
quality and small object detection improve using reconstruc-
tion settings with small voxels, on both the analogue and the
digital PET. Furthermore, there is a higher contrast of the
smallest spheres on the digital PET images as compared to
the analogue PMT-based PET. Nguyen et al. [68] reported
their initial experience in cancer patients with a prototype
digital PET scanner compared to an analogue PET system

with PMTs. They found a better image quality, diagnostic
confidence, and accuracy with their digital PET.

Hybrid PET/MR imaging

During the development of hybrid PET/MR systems, two ma-
jor challenges needed to be overcome. First of all, convention-
al PET photodetectors are based on PMTs that cannot be op-
erated in the high magnetic field of anMR scanner and are too
large to allow placement inside an MR body coil whilst still
leaving a sufficiently large patient opening. Integrated PET/
MR was achieved using (analogue) APDs or SiPMs for con-
version of the light produced by the scintillator crystals. In
addition to their ability to function properly in a magnetic
field, both APDs and SiPMs are much smaller than traditional

Fig. 5 18F–FDG PET/CT images (mCT, Siemens) of a patient with
uptake in the palatine tonsils (arrows in a), and 18F–FDG-avid lymph
nodes (arrows in b). Both PET images have been reconstructed with a
matrix size of 200 × 200, pixel size of 4 × 4 mm2, with PSF modeling and
TOF. The metal artefact is visible on the (a) standard PET/CT

reconstruction, while the (b) PET/CT reconstruction with metal artefact
reduction (iMAR) shows fewer CT artefacts. There is an SUVmean

increase from 2.5 to 2.8 g/cm3 when iMAR is used for the tonsil.
Images have been reproduced from [10]

Fig. 6 PET images of a NEMA phantom (sphere diameters 10–37 mm)
and micro phantom (sphere diameters 4-8 mm), filled with 20 and 2 kBq/
ml FDG in the spheres and the background, respectively. Data were
acquired on an analogue, PMT-based PET (Ingenuity TF, Philips) and a
digital SiPM-based PET (Vereos, Philips). (a) Images of the analogue

PET that fulfils EARL requirements. (b) Images of the analogue PET
using 2 × 2 × 2 mm3 voxel reconstruction. (c) Images of a digital PET
using a 2 × 2 × 2 mm3 voxel reconstruction (data are from Isala Hospital,
Zwolle, The Netherlands)
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PMTs, allowing for detector rings of about 5 cm thickness
inside a 70-cm MR bore, leaving a 60-cm patient port diam-
eter. An advantage of SiPMs compared to APDs is that SiPMs
allow for TOF, whereas APDs, due to their timing resolution
of about 2000 ps, do not. Specifications of the PET compo-
nents for two fully integrated PET/MR systems are given in
Table 1.

The second major challenge of quantitative PETwith PET/
MR, is that the PETattenuation correction needs to be derived
from MR images, which essentially provide proton density
rather than attenuation coefficients. Most PET/MR systems
employ a dedicated (fast) MR sequence, followed by segmen-
tations or tissue classification of the resulting MR image and
assigning a priori known attenuation coefficients to a limited
number of segmentation or tissue classes. This approach has
several limitations. First of all, bone tissue is typically not
included in this process and its attenuation is assumed to be
equivalent to soft tissue attenuation. Secondly, lungs are seg-
mented and assigned a uniform attenuation coefficient.
Thirdly, the patient couch, fixation devices, and the coils used
for MR image acquisition are not detected by the MR scanner
and dedicated predefined attenuation templates need to be
added to the attenuation image to compensate for them.
Fourthly, the MR FOV is typically smaller than that of the
PET scanner and truncation of the MR image in the transaxial
direction is often observed, resulting in incomplete attenuation
coefficient images and thus incorrect attenuation correction of
the PET data. For most of the limitations indicated above,
solutions have been proposed but not all of them are yet rou-
tinely available on all systems. For example ultra-short echo
time (UTE) or zero echo time (ZTE) MR can be used to
visualize bone and has only recently been introduced for brain
PET/MR [69]. Another approach would be the use of CT-
based templates which are registered onto the patients MR
images and finally combined and processed to generate
patient-specific attenuation images [69]. MR truncation arte-
facts in the attenuation images can be solved by first
performing a PET reconstruction without attenuation, then
derive the outer contour of the patient from this image and
assign soft tissue attenuation to the tissues missed in the MR
image [69]. However, advanced reconstruction methods, such
as maximum likelihood of activity and attenuation (MLAA),
might also be used to correct for MR truncation or otherwise
incorrect attenuation maps [70–72]. A more complete over-
view of current PET/MR technologies, opportunities and chal-
lenges can be found in a review by Quick and Boellaard [73].

Possible future implications of technological developments
on imaging guidelines and applications

To date, most of the new technologies that were discussed in
this paper are not yet widely spread in clinical practice.
However, several of these, such as digital photodetector

technology, PET/MR and novel PET reconstruction methods
will become more available. We expect that they will be in-
creasingly clinically used in the next decade and will have a
large impact on image quality, lesion detection, and quantifi-
cation in cancer PET imaging. These new technological de-
velopments thus provide a technology push for the evolution
of new standards and imaging guidelines.

Imaging guidelines and quantitative standards

The EANM guidelines for FDG-PET/CT tumor imaging and
the associated PET/CT system accreditation program run by
EARL aim to harmonize the use of FDG-PET/CT in oncology
as a quantitative imaging biomarker in multicenter studies
[39]. To date, the EANM/EARL standard is based on the
technological status for the majority of the installed PET/CT
systems. In order to allow sites to benefit from the advantages
of the new technologies described, two different PET recon-
structions could be made: one optimized for visual interpreta-
tion and another meeting international quantitative standards
[39, 74–76]. With the introduction of new acquisition and
reconstruction techniques in the latest scanners from multiple
vendors, and assuming that the availability and presence of
PET scanners using older technology will decrease, it is ex-
pected that these technologies will become widely spread dur-
ing the next 5 to 10 years. Consequently, EARL standards will
need to be updated over time and the implication of new
technologies on harmonized quantitative performance is pres-
ently being explored by EARL as discussed in more detail
elsewhere in this supplement issue [77].

New applications facilitated by new technologies

The improved image quality can be used to adjust adminis-
tered activity and/or scan duration. In 2013, de Groot et al.
[78] published an optimized FDG-activity regimen, which is
based on a quadratic relation between FDG-activity and pa-
tient’s body weight. They demonstrated that when using a
quadratic administration regimen, the image quality (in terms
of SNR in the liver) remains constant for patients with various
body masses. This FDG-activity regimen has been mentioned
as an alternative to the linear regimen in the second version of
the EANM guidelines for FDG-PET tumor imaging [39].
Recently, a technical note was published by Koopman et al.
[79] describing how to derive an FDG-activity formula, taking
into account both EANM guidelines [39, 80] and a quadratic
relation between FDG-activity and patient’s body weight.
Their equation can be applied for all PET/CT systems, regard-
less of their technological status. A drawback of the quadratic
administration of FDG-activity is that it requires a high
amount of FDG-activity in obese patients. Alternatively, a
quadratic-dependent duration of the PETscan could be imple-
mented in these cases.
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An example of a new application of PET/CT that has been
facilitated by the recent developments in PET/CT technology
is the use of 90Y–PET/CT imaging in patients with liver me-
tastasis who were treated by selective internal radiation thera-
py (SIRT). 90Y is a radionuclide with a very small positron
fraction (31.9 × 10−6) and therefore it is challenging to use it
for PET imaging [81]. However, several studies have recently
compared Bremstrahlung 90Y–single-photon emission com-
puted tomography (SPECT)/CT with 90Y–PET/CT and dem-
onstrated that 90Y–PET/CT scans using state-of-the-art TOF-
PET systems provide a higher image quality with improved
lesion detection and more accurate quantification and dosim-
etry [82–86].

Furthermore, the recent developments in PET/CT technol-
ogy facilitate the use of low-count-rate PET studies such as
imaging with 124I, which is performed in the follow-up of
thyroid cancer. In general, the image quality for the 124I–
PET scan is poor due to the complex decay scheme and espe-
cially the emission of prompt gamma rays with an energy of
602.7 keV, well within the standard energy window of a PET
scanner. Furthermore, even higher energy gammas are pres-
ent, which can downscatter into the energy window, or in-
crease the dead time. For such a radionuclide, TOF results in
a better SNR for the same number of counts [5, 87]. It is
expected that recent developments in PET/CT technology,
combined with a careful application of correction methods
for the prompt gammas [88], further facilitate the use of
124I–PET/ CT [89] (or tracers labeled with other radionuclides
such as 89Zr [90]) with an improved image quality and a more
accurate quantification [91].

Conclusions

In recent years, the development of PET/CT scanners has
mainly focused on improved small lesion detection. The in-
troduction of TOF, PSFmodeling, and smaller voxels were the
main reasons for this improvement. Also, an increased axial
length increased the sensitivity of the scanner [60], while the
spatial resolution was improved by reducing the size of the
scintillator crystal element and by using smaller voxels [60].
Other reconstruction techniques have been developed for spe-
cific problems, such as respiratory gating and metal artefact
reduction. Together, all these advancements made it possible
to improve the quality and quantification of PET/CT images
and optimize radiation dose and scan time.

The increase in effective sensitivity and improved spatial
resolution led to an improved visibility of small lesions, which
is not only important for detection of lesions and metastases in
18F–FDG-PET/CT scans, but also for other tracers, for in-
stance the use of 68Ga-PSMA for the detection of (lymph
node) metastases in patients with prostate cancer, 89Zr-MAb
immunoPET studies, 90Y imaging for patients who are treated

for liver metastasis, or 124I imaging for follow-up of thyroid
cancer. This implies that PET/CT is nowadays not only used
for detection and identification of lesions but has also been
increasingly implemented for radiotherapy planning and ther-
apy response monitoring [39]. For these applications, an ac-
curate quantification and repeatability/reproducibility is of the
utmost importance. The ongoing improvements discussed in
this paper can contribute to this.
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