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Summary 
Major histocompatibility complex (MHC) products and self-antigens expressed in the thymus 
determine the repertoire of mature or//3 T cells. While positive selection of self-MHC-restricted 
T cells is directed by MHC molecules expressed by thymic epithelial cells, negative selection 
depends to a large extent on self-antigens presented by lymphohemopoietic cells. However, 
radioresistant components of the thymus also influence negative sdection, but it remains controversial 
whether this is accomplished by clonal deletion, clonal anergy, or other mechanisms. In this 
study, T cell development in mice expressing a transgenic T cell receptor (TCR) specific for 
lymphocytic choriomeningitis virus (LCMV) plus H-2D b was analyzed in the presence or 
absence of the viral antigen. A novel approach to analyze the thymic tissue requirements for 
negative selection was possible by comparing thymocyte selection in H-2D b versus H-2D bin13 
mice, since the latter allowed positive selection but not LCMV-specific deletion of transgenic 
TCR-expressing thymocytes. In irradiation bone marrow chimeras expressing the restriction element 
for negative selection (H-2D b) on host tissue, we show that radioresistant recipient cells in the 
thymus deleted developing T cells at an early stage of differentiation. In contrast, chimeras expressing 
H-2D b on lymphohemopoietic donor cells showed clonal deletion at a later stage during 
ontogeny. 

T he thymus provides a highly efficient environment for 
differentiation of T lymphocytes (1, 2). Engagement of 

the ot/~ TCR in immature T cells plays a critical role both 
in inducing the development of T cells beating receptors 
specific for foreign antigen presented by self-MHC molecules 
(positive selection), and the deletion of potentially harmful 
self-reactive T cells (negative selection). The sequence of 
thymocyte developmental stages and the cellular interactions 
may provide important clues to understand how T cells "learn" 
to discriminate self from nonself. The cells involved in thymic 
selection have been analyzed extensively. It has become clear 
that positive selection is largely controlled by thymic epithe- 
lial cells (3-13). 

Negative selection, however, is influenced by both bone 
marrow-derived cells and thymic epithelia (5-7, 14-27). It 
has been demonstrated that antigens presented by lympho- 
hemopoietic cells induce tolerance (reviewed in references 5, 
6, 14, and 15). For example, clonal deletion ofT cells specific 
for I-E + (28-30), Mls-1 ~ (31, 32), Mls-2a/3 a (33), or staphy- 
loccocal enterotoxin B (SEB) (34) is induced by bone marrow- 
derived thymic cells (7, 21-23). In contrast, the role of thymic 

epithelial cells in negative selection is less defined. While early 
investigations using thymus grafting failed to demonstrate 
negative sdection by the MHC molecules displayed on thymic 
epithelium (35-37), other studies in chimeras and/or trans- 
genic mice indicate that tolerance may be induced by thymic 
epithelial cells (16-22, 24-27). Often it was not possible to 
determine whether nonresponsiveness was due to deletion, 
anergy, or other mechanisms. Recently, it has been postu- 
lated that a nondeletional mechanism such as clonal anergy 
may occur when lymphocytes encounter their specific self- 
antigen on thymic epithelia (21, 22, 24, 25). However, while 
some authors claimed that thymic epithelial cells induced 
anergy of Mls-la-specific T cells (21, 22), our comparative 
analysis indicated that Mls-la-spedfic anergy was induced by 
lymphohemopoietic cells (23). 

In this study transgenic mice were used carrying the P14 
TCR ot/~ chains (Vot2-Jc~TA31, V~8.1-DJ/~/2.4) specific for 
the lymphocytic choriomeningitis virus (LCMV) 1 glycopro- 

1 Abbreviations used in this paper: aa, amino acids; LCMV, lymphocytic 
choriomeningitis virus; tg, transgenic. 
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tein epitope amino acids (aa) 32-42 presented in the context 
of H-2D b (38). Positive selection of transgenic T cells has 
been shown to depend on the presence of the H-2 b mole- 
cule, while clonal deletion occurred in H-2 b LCMV carrier 
mice (38). The virus carrier state (established by virus infec- 
tion either neonatally or during immunosuppression) was as- 
sociated with ubiquitous virus expression, including thymic 
epithelia and lymphohemopoietic cells (39, 40). In this study 
the respective roles of the host's thymus versus lympho- 
hemopoietic donor cells in clonal deletion was evaluated by 
investigating thymocyte maturation in LCMV carrier bone 
marrow chimeras. The results show that transgenic T cells 
were clonally deleted at different stages of development de- 
pending upon expression of the viral antigen restriction ele- 
ment H-2D b either on host-derived radioresistant or donor- 
derived lymphohemopoietic cells. 

Materials and Methods 
Animals. Inbred BALB/c (H-2 a) and C57BL/6J (H-2 b) mice 

were purchased from the Institute fiir Zuchthygiene (Tierspital, 
University of Zfirich, Switzerland). Breeders of the two C57BL/6 
H - 2 D  b mutant inbred mouse strains B6.C-H-2 bma3 and B6.C-H- 
2 bin14 (41, 42) (referred to as H-2 bin13 and H-2 bin14 mice) were kindly 
provided by Dr. Cornelis J. Melief (The Netherlands Cancer Insti- 
tute, Amsterdam, Holland). H-2 bin13 mice express a mutated 
H-2D b molecule with three amino acid changes at the bottom of 
the peptide antigen binding groove (B-pleated sheet) at positions 
114 (Leu ~ Gln), 116 (Phe-~Tyr), and 119 (Glu~Asp). The mu- 
tated H-2D bm~4 molecule has a single amino acid changed on the 
c~1 helix of the TCR binding site at position 70 (Gln~His) (42). 

The transgenic mouse line 327 expressing the c~/B TCR de- 
rived from the cytotoxic T cell clone P14 specific H-2D b plus 
LCMV glycoprotein peptide aa 32-42 was generated by coinjec- 
tion of the P14 TcR c~ and B chain gene constructs into (C57BL/6 
x DBA/2)Fz-fertilized eggs (38). The male founder 327 bearing 
10-20 copies of both cr and ~ transgenes integrated at the same 
chromosome was backcrossed to C57BL/6 mice. c~/B TCR trans- 
genic (tg) H-2 a and H-2 bma3 mice were obtained by backcrossing 
to BALB/c and B6.C-H-2 bm13, respectively. Characteristics of the 
strains relevant to the present study are summarized in Table 1. 

Chimeras. Bone marrow recipients were lethally irradiated (950 
tad, 117 rad/min, ~37Cs source) and reconstituted 1 d later with 
1-2 x 107 T cell-depleted bone marrow cells as described (3). To 
establish a I.CMV carrier state, chimeras were infected intravenously 
with 5 x 1@ PFU of LCMV-WE strain 4-14 h after bone marrow 
transfer. For the following 5 wk, chloramphenicol (0.4 g/liter) was 
added to the drinking water. Both infected and noninfected chimeras 
had a survival rate of 85-100%. Analysis was performed between 
8 and 12 wk after reconstitution. Chimerism was monitored by 
FACS | analysis (Becton Dickinson & Co., Mountain View, CA) 
of lymph node cells with H-2 haplotype-specific mAbs. 

Virus, MLR, and Cytotoxicity Assay. The WE strain of LCMV 
had been originally obtained from Dr. Fritz Lehmann-Grube (Ham- 
burg, FRG) (43). Virus stocks were diluted in MEM supplemented 
with 2% FCS. To examine the functional response of T cells from 
activities of chimeric mice, spleen cells (4 x 10S/ml) were cultured 
with irradiated (2,000 rad) LCMV-infected peritoneal macrophages 
(4 x 104/ml) from C57BL/6 mice in 96-well plates. Cell prolifer- 
ation was determined after 3 d by 10-h [3H]thymidine uptake. The 
lytic activity of spleen cells from chimeras infected 4 d earlier with 

5 x 1@ PFU LCMV-WE intravenously was determined against 
LCMV-infected and uninfected MC57G (H-2 b) target cells in 5-h 
SlCr-release assays as described previously (3). 

CytofluorographicAnalysis. Aliquots of untreated thymocytes or 
lymph node cells were stained at 4~ in balanced salt solution (BSS) 
containing 2% FCS and 0.2% NaN3 with rat mAbs B20.1 (Vc~2 
specific; reference 44) or KJ16-133 (VB8.1/VB8.2 specific; refer- 
ence 31) detected with FITC goat anti-rat lgG (Tago Inc., Burlin- 
game, CA). Biotinylated CD8-specific mAb 53-6.7 (Becton Dick- 
inson & Co.) detected with avidin-PE (Tago Inc.) or PE-conjugated 
CD4-specific mAb GK 1.5 (Becton Dickinson & Co.), respectively, 
was used for double staining. To assess the chimerism of transplanted 
mice, haplotype-specific mAbs H141-31 (D b specific), K7-309 (K b 
specific), or 34-2-12 (D d specific), respectively, were used followed 
by fluorescent goat anti-mouse IgG or IgG2a reagents (Southern 
Biotechnology Associates, Inc., Birmingham, AL); samples were 
similarly double stained as described above. Viable cells (20,000 per 
sample) were analyzed by flow cytometry on an Epics profile ana- 
lyzer (Coulter Electronics, Inc., Hialeah, FL) with logarithmic scales. 

Results 
Early Deletion by Host Radioresistant Cells of Maturing Thymo- 

cytes in LCMV Carrier Bone Marrow Chimeras. (C57BL/6 
x BALB/c)F1 mice were lethally irradiated and recon- 
stituted with T cell-depleted P14 ol/~ TCR transgenic bone 
marrow from either H-2 b or H-2 d mice. To establish a virus 
carrier state, chimeras were infected with 5 x 106 PFU of 
LCMV strain WE (LCMV-WE) between 4 and 14 h after 
irradiation and bone marrow reconstitution. Livers and spleens 
obtained up to 30 wk after infection contained ~106 PFU 
LCMV per gram organ (data not shown), confirming that 
these mice were virus carriers. Between 8 and 12 wk after 
bone marrow transplantation, T cell maturation was analyzed 
by flow cytometry with mAbs specific for the transgenic TCR 
domains Vc~2 (B20.1) and V~8.1 (KJ16). A strong reduc- 
tion of thymocytes expressing the transgenic TCR was ob- 
served in F1 chimeric virus carriers reconstituted with either 
H-2 b or H-2 a transgenic bone marrow (Fig. 1 c and d). The 
extent of deletion was comparable with nonchimeric virus 
carriers published previously (38) and similar to the deletion 
described in other class I-restricted cr TCR transgenic 
mouse models (8, 9). In contrast, thymocytes from uninfected 
control chimeras expressed transgenic Vol2 (Fig. 1, a and b) 
and V~/8.1 (not shown) at high levels. Lymph node cells in 
uninfected chimeras were "~40% Vc~2+CD8 +, whereas in 
chimeric virus carriers <2% were Vol2 + CD8 + (not shown). 
In summary, the data suggest that radioresistant thymic cells 
expressing the appropriate restriction element H-2D b in H- 
2d---~H-2 bxd carrier mice induced clonal deletion of virus- 
specific CTL precursors. 

Deletion by LymphohemoFoietic Cells Occurred at a Later Stage 
of T Cell Differentiation. Since bone marrow chimeras in- 
evitably contain remaining radioresistant lymphohemopoietic 
cells of host origin, further experiments were necessary to 
evaluate the possible involvement of the thymic epithelium 
for induction of clonal deletion. A conventional protocol 
would have been to generate fully aUogeneic or F1 "+ parent 
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Figure 1. LCMWH-2Db-specific ot/B TCR transgenic thymocytes de- 
veloping in the absence (uninfected; a and b) or presence (LCMV carriers; 
c and d) of the viral antigen. Unseparated thymocytes were stained with 
mAb B20.1 specific for the transgenic V~2 chain. Both H-2 b (c) and H-2d 
(d) bone marrow-reconstituted (C57BL/6 x BALB/c)F1 chimeras car- 
rying the l.CM-virus deleted transgenic V~2 + cells at an early stage of 
differentiation. Comparable histograms were obtained from stainings with 
KJ16 specific for the transgenic 3 chain (data not shown). Broken lines 
indicate control thymocytes stained with fluorescein-conjugated goat anti-rat 
antibodies alone. Comparable results were obtained from at least four in- 
dividual chimeras per group. We have been unable to explain the reprodu- 
cibly higher amount of TCR hi cells in group b as compared with a. 

bone marrow chimeras or the engraftment of thymectomized 
mice with parental thymus implants. However, positive se- 
lection of  the transgenic ot/3 T C R  depended on the expres- 
sion of H-2D b by the thymic epithelium, thus excluding the 
possibility to study negative selection in H-2Db-negative 
thymi. This experimental problem could be circumvented as 
follows. 

H-2 brat3 mice express a mutated H-2D b molecule with 
three amino acid changes at the bot tom of the peptide an- 
tigen binding groove (42). The P14 transgenic oe/3 T C R  
can be positively selected in the context of H-2D bmt3 prod- 

ucts (P. S. Ohasi and H, P. Pitcher, manuscript in prepara- 
tion). However, H-2D b~13 molecules are unable to present 
the viral epitope (LCMV glycoprotein aa 32-42) to the trans- 
genic TCR.  Furthermore, transgenic H-2 bin13 LCMV carrier 
mice are unable to clonally delete the transgenic T C R  (Table 
1) (unpublished results). Finally, H-2 bma4 mice, another 
H-2D b mutant mouse strain, neither promote positive nor 
negative selection of the P14 transgenic c~/3 TCR,  and were 
therefore ideally used as closely related controls. 

The unique property of H-2D bin13 molecules allowing 
positive but  not negative selection of  the transgenic T C R  
offered a new methodological approach to overcome the 
known problem of radioresistant or 2'-deoxyguanosine- 
resistant residual lymphohemopoietic cells "contaminating" 
the thymus of irradiation bone marrow chimeras or thymus- 
transplanted mice. To study the capacity of the thymic epi- 
thelium for clonal deletion, irradiation chimeras were gener- 
ated by injection of transgenic T cell-depleted bone marrow 
into either H-2 b • bin13 or H-2 bm13 • bm14 F1 hosts. When  ana- 
lyzed 8-12 wk later, uninfected control chimeras revealed high 
levels of transgenic Vol2 + and V38.1 + thymocytes (Table 2 
and Fig. 2, a, c, and e). Chimeric virus carriers donally 
ddeted transgenic T cells resulting in low levels of  both 
T C R  int/hi thymocytes as well as of mature cells in the pe- 
riphery (Table 2 and Fig. 2, b and f ) .  Interestingly, in H-2 b 

H.2bmt3 • bml4 virus carriers, a subpopulation of  thymo- 
cytes expressing the transgenic T C R  at low (TCR l~ den- 
sity was found (Fig. 2 d) that was absent in H-2b-expressing 
hosts (Figs. 1 d and 2 f ) .  In H-2 b --~ H-2 bin13 x bml4 carriers, 
clonal deletion was induced by lymphohemopoietic tissue, 
since the restriction dement  H-2D b capable of viral antigen 
presentation causing deletion was not expressed by host radio- 
resistant tissue. Thus, deletion induced by lymphohemopoietic 
cells occurred at a later stage o f T  call differentiation and was 
therefore distinguishable from deletion induced by host radio- 
resistant cells. Thymocytes from the various chimeras showed 
similar forward light scatters (not shown), indicating that 
they were of similar size. This permitted direct comparison 
of the T C R  expression levels measured. 

To assess the tolerance status of transgenic T cells from 

Table 1. Characteristics of (~/3 TCR Transgenic (tg) Mice Used in This Study 

H-2 compatible H-2 Negative selection 
nontransgenic Positive selection of the tg TCR 

tg mice mouse strain K I D of the tg TCR in LCMV carriers 

tg H-2 b C57BL/6 b b b + + 
tg H-2 bin13 B6.C-H2 b~13 b b bm13 + - 
tg H-2 bm14 B6.C-H2 bin14 b b bin14 - - 

tg H-2 d BALB/c d d d - - 

In uninfected mice, the P14 tg ot/3 TCR is positively selected in the context of both H-2D b and H-2D bml3 resulting in high TCR expression (~95% 
of T cells express the transgenes) and skewing to the CD8 lineage. In congenitally or neonatally infected LCMV carrier mice expressing the viral 
antigen in the thymus (39, 40), negative selection of the transgenic TCK is due to thymic clonal deletion occurring in association with H-2D b but 
not H-2D bin13 or H-2D b~14 (38, and P. S. Ohashi and H. P. Pitcher, manuscript in preparation). 
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Table 2. TCR Expression and Proliferative/Cytotoxic Responses of TCR tg Lymphocytes from Parent'-~F~ Chimeric Controls and Carriers 

tg H-2 b'~ tg  H-2 b''~ tg H-2  bmt3-'~ 
H .2  b x bml3 H.2bm13 x bin14 H_2 b x bm13 

LCMV LCMV LCMV 
Tissue Uninfected carrier Uninfected carrier Uninfected Carrier 

Percent cells positive for: 

Vc~2 to~, Thymus 43.0 _+ 8.1 6.0 _+ 0.3 49.5 +_ 2.4 33.3 +- 6.2 41.1 +_ 6.9 9.4 + 1.1 

VB8.1 ~~ Thymus 30.1 _+ 3.1 10.9 +_ 3.2 47.6 _+ 2.8 33.7 _ 8.9 43.3 _+ 7.9 11.8 _+ 2.9 
Vot2 i~'/h~ Thymus 43.4 _+ 6.9 2.7 _+ 1.1 35.4 _+ 5.6 3.3 -+ 0.6 41.3 _+ 12.3 3.2 _+ 1.4 
V/~8.1 int/hi Thymus 38.7 +_ 3.9 2.1 +_ 0.6 32.1 +_ 1.9 2.9 +- 0.3 40.3 _+ 11.2 1.9 +_ 0.7 

Va2*CD8 + Lymph node 49.3 _+ 4.3 1.2 _+ 0.2 61.0 _+ 3.1 1.7 -+ 0.2 42.0 _+ 4.9 0.8 _+ 0.1 

V38.1+CD8 § Lymph node 56.2 _+ 1.2 1.6 +_ 1.3 58.3 _+ 3.3 2.2 -+ 0.4 44.6 _+ 5.3 1.2 _+ 2.5 

Proliferative responses (cpm) 

to LCMV infected Spleen 37.0 x 103 0.9 x 103 72.7 x 103 0.2 x 103 42.8 x 103 1.0 x 103 

C57BL/6 stimulators 

Percent specific cytolysis of targets 

(E/T ratio 70:23:8:3) 

MC57G LCMV infected Spleen 

MC57G uninfected Spleen 
YAC-1 Spleen 

70:60:51:23 7:5:0:0 78:57:38:21 1:0:7:9 62:47:23:14 8:5:6:4 

5:3:3:3 2:1:5:3 7:2:0:0 9:5:6:5 3:5:6:2 3:8:0:3 
4:3:0:0 1:0:1:3 8:5:1:3 3:2:7:7 7:1:0:0 1:1:5:1 

Mean _+ SEM are from FACS | analyses of unseparated cell preparations of three to five chimeras per group. Examples of FACS | profiles from one 
chimera per group are shown in Fig. 2. The percentages for low or int/hi positive cells, respectively, refer to the regions given in Fig. 2. Percent 
Vot2 + CD8 + or percent V~8.1 + CD8 § indicate the percentages of lymph node cells expressing both the transgenic TCR variable regions and CD8. 
Proliferative responses were measured by [3H]thymidine uptake (10 h) after stimulation with LCMV-infected peritoneal macrophages (3 d). Cytotox- 
icity was analyzed 4 d after intravenous infection with 106 PFU LCMV-WE. Chimerism assessed with mAb K7-309 (K b specific, positively staining 
all lymph node cells) and mAb H141-31 (D b specific, staining H-2D b+ cells strongly but H-2D brat3+ lymphocytes only at low fluorescence intensi- 
ties; reference 47) showed that ~90% of lymph node cells were of donor type. 

the various chimeras, proliferation and cytotoxic T cell re- 
sponses were tested (Table 2). While noncarrier chimeras 
responded vigorously to LCMV-infected stimulator or target 
cells, both LCMV-specific proliferative responses and cyto- 
toxic T cell activities were low in the chimeric carrier mice 
(Table 2). Thus, all the noncarrier chimeras were T cell com- 
petent against LCMV and all the carriers were nonrespon- 
sive correlating with presence or absence of  mature trans- 
genic T cells in thymus and periphery. 

Discuss ion 

In the past, the technical difficulty to completely elimi- 
nate lymphohemopoietic cells from thymic tissue while 
preserving its capacity to promote T cell maturation has been 
a limiting factor to experimentally determine whether thymic 
epithelial cells can induce clonal deletion. Therefore, we studied 
negative selection in H - 2 D  b mutant mice. Since H-2 ~13 • ~ 4  
mice selected the transgenic TCtL positively but not nega- 
tively (P. S. Ohasi, manuscript submitted for publication), 
it was not essential that lymphohemopoietic cells were com- 
pletely eliminated by irradiation to assess the contribution 

of donor lymphohemopoietic cells to negative selection. In 
chimeric H-2 b ~ H-2 brat3 ~ bin14 virus carriers, clonal dele- 
tion induced by lymphohemopoietic cells was at the T C R  l~ 
stage of  thymocyte ontogeny. In contrast, only transgenic 
TCR-negative lymphocytes remained in virus carriers ex- 
pressing H-2D b on radiation-resistant thymic cells. There- 
fore, these cells probably including thymic epithelial cells are 
apparently capable to induce clonal deletion at an early stage 
of  ontogeny. 

An alternative explanation based on the assumption that 
deletion can only be induced by lymphohemopoietic cells can 
be postulated. The presence of T C R  l~ cells in H-2 b 
H_2bm13 • b~14 carrier chimeras could possibly be due to 
"delayed" deletion caused by insufficient repopulation of the 
thymic microenvironment by donor cells. However, this as- 
sumption would imply that deletion in H-2 d -,- H-2 b • d or 
H_2bm13 ..~ H_2 b ~ bm13 carriers was due to low amounts 
of remaining lymphohemopoietic cells. Accordingly, one 
would also expect a complete and early deletion in 
H_2 b __, H_2bm13 • b~14 carrier chimeras, where donor cells 
had repopulated the thymus (45). Thus, since we did not 
find early deletion in H-2 b ~ H-2 bin13 • bin14 carriers where 
deletion was induced by lymphohemopoietic cells, we con- 
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Figure 2. l.CMWH-2Db-specific ot//~ TCR transgenic thymocytes developing in the absence (uninfected; a, c, and e) or presence (LCMV carriers; 
b, d, and f )  of the viral antigen. The histograms represent examples from data given in Table 2. Unseparated thymocytes were double stained with 
transgenic Vc~2 or Vj88.1 chain-specific mAbs and a CDS-specific mAb. The histograms shown were software gated for the CD8 + cells (including 
CD8 + and CD4 + 8 +). In chimeric LCMV carriers, expression of H-2D b by radioresistant host tissue induced early deletion (b and f )  while H-2 bin13 • bm14 
recipients deleted thymocytes at a TCR l~ stage (d). The regions marked low or int/hi indicate low or intermediate/high TCR densities, respectively, 
and refer to the text and data given in Table 2. Additional results (not shown) were obtained from transgenic H-2 b ~ H-2 b or H-2 b -,- H-2 bm13 chimeras, 
respectively, revealing comparable results to Fig. 2, a and b or c and d, respectively. 

dude that the early deletion in H-2 a "-* H - 2  b • d or H-2  bm13 
_.,H.2 b • bin13 carriers was induced by radioresistant thymic 
host cells, presumably the thymic epithelium. 

The results imply that the thymic epithelium may be in- 
volved in both positive and negative selection. Subpopula- 
tion of the different epithelial cells within the thymic cortex 
and medulla may exhibit distinct self antigens and functions 
(24-27, 37, 46). Alternatively, different affinity thresholds 
may regulate positive or negative selection (5). One may argue 
that our transgenic T cells were deleted early due to presum- 
ably high avidity interactions with radioresistant thymic cells. 

It is also possible that the observed differences in deletion 
may be because thymocytes first encounter epithelial cells and 
only later interact with lymphohemopoietic cells. 

Our findings support the notion that T ceils may be sus- 
ceptible to donal deletion over an extended period of thymic 
differentiation. Furthermore, several of the various thymic 
cell components may induce negative selection. Thus, the 
immune system may have developed a variety of ways to in- 
crease the probability of self-specific lymphocytes encountering 
self-antigens in order to assure efficient induction and main- 
tenance of immunological tolerance. 
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