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Abstract: We present a methodology that enables dance tempo estimation through the acquisition
of 3D accelerometer signals using a single wearable inertial device positioned on the dancer’s
leg. Our tempo estimation method is based on enhanced multiple resonators, implemented with
comb feedback filters. To validate the methodology, we focus on the versatile solo jazz dance style.
Including a variety of dance moves, with different leg activation patterns and rhythmical variations,
solo jazz provides for a highly critical validation environment. We consider 15 different solo jazz
dance moves, with different leg activation patterns, assembled in a sequence of 5 repetitions of each,
giving 65 moves altogether. A professional and a recreational dancer performed this assembly in
a controlled environment, following eight dancing tempos, dictated by a metronome, and ranging
from 80 bpm to 220 bpm with 20 bpm increment steps. We show that with appropriate enhancements
and using single leg signals, the comb filter bank provides for accurate dance tempo estimates for
all moves and rhythmical variations considered. Dance tempo estimates for the overall assembles
match strongly the dictated tempo—the difference being at most 1 bpm for all measurement instances
is within the limits of the established beat onset stability of the used metronome. Results further
show that this accuracy is achievable for shorter dancing excerpts, comprising four dance moves,
corresponding to one music phrase, and as such enables real-time feedback. By providing for a
dancer’s tempo quality and consistency assessment, the presented methodology has the potential
of supporting the learning process, classifying individual level of experience, and assessing overall
performance. It is extendable to other dance styles and sport motion in general where cyclical
patterns occur.

Keywords: dance tempo; motion activation; motion analysis; inertial sensors; wearable devices; 3D
accelerometer; solo jazz

1. Introduction

Dancing requires high levels of physical skills and body motion control. It has already
been reported that dancers strongly benefit from various assistive technologies [1–5].
One of the essential dancing characteristics is the tempo of dancing, dictated by the
accompanied music. Investigating and obtaining information regarding the tempo of a
dancer’s motion execution can help beginners in the learning process and support dance
move timing improvement. It can also help classify individual level of experience and
assess overall performance.

A number of dance tempo and timing estimation methods, capitalizing on the devel-
opment and benefits of various sensing technologies, have been developed so far. Dancing
Coach [5], for example, is a generic system designed to support the dancing practice by
extracting dance steps using Kinect. In [6], another Kinect-based system is presented,
enabling extraction and alignment evaluation of motion beats. Given a dance video clip as
input, the system first extracts motion beats from the video and then measures how well
the motion beats correlate with the music beats. The authors report an average F-score of
about 80%.
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Keeping in mind that a dance assistive solution has to be practical and should not
interfere with the dance performance itself, we present a robust methodology for dance
tempo estimation that resides on a single 3D accelerometer sensor. Over the last years, it
has been consistently demonstrated that inertial sensors are an efficient tool in the general
research area of motion analysis [3,7–12]. Inertial sensors have become omnipresent and
indispensable in various motion analysis applications. Their characteristic light weight,
small size, low power consumption, portability, easiness of use, and low cost paved the
way for their current presence in dance motion analysis. One of the first wireless systems
with inertial sensors used for capturing dance gestures have been mounted on the toe and
heel [11,12].

The problem of dance tempo estimation falls into the broader and well-studied re-
search domain of fundamental frequency determination of quasi-periodic signals. The
simplest approaches are based on the investigation of the time domain waveform and
finding peaks or zero-crossings that are suitably apart, e.g., [3,5], and autocorrelation calcu-
lation, e.g., [13]. Since a periodic waveform is also characterised by regular grids of peaks
in the spectral domain, common approaches also reside on calculating and analysing the
spectral components, e.g., [14].

In a dance context in particular, estimating the step period by analysing the waveforms
in the time domain has been reported in [3,5]. In [3], the authors explore how a smartphone
accelerometer can be used to capture motion data while the user is using a prototype mobile
app. By detecting the local maximums of the acceleration signal, a dancer’s dance tempo is
estimated and compared to the reference tempo of the song. Saltate! [5], for example, is
a wireless system that acquires data from force sensors mounted under the dancers’ feet,
detects steps, and compares their timing to the timing of beats in the music playing. For
detected mistakes, the system emphasises the beats acoustically to help dancers stay in
sync with the music.

Our dance tempo estimation method avoids extracting steps in the time-domain.
The problem of feature extraction in the time-domain is that it is prone to noise and fails
for dancing styles that include other dance motion elements besides steps and are not
represented by nearly periodic acceleration signals maximums. An example of such a
dance style is solo jazz—a rhythmical and playful solo dance in which the dancer uses his
movement to depict jazz music. Due to its versatility, involving moves with different leg
motion and activation patterns, solo jazz fits perfectly into our tempo estimation setting.

To enable the dancer to follow the jazz song rhythmical structure, as a rule, a single
solo jazz move is performed following eight music beats. The music beat is considered
as the smallest time interval between two successive notes in the music rhythmic phrase.
In general, dance motion executed following the music beats differs with respect to leg
activation and motion elements. Leg activation patterns refer to changes in the dominantly
executing leg. In general, such as while walking, dance moves can be executed moving
the right and left leg alternately—after each step executed with one leg, the dominantly
executing leg changes. If such is the pattern, a single leg step is executed every two music
beats. In a vast number of dance styles, including solo jazz, more versatile leg activation
patterns are also possible, allowing the dominantly executing leg to change every second
or every fourth music beat. When compared to walking, we can imagine this as stepping
twice (or four times) with one leg and then doing the same with the other leg. In addition,
the dominant leg can be executing some other motion element, besides stepping, e.g., kicks,
taps, and more or less subtle jumps. The variability of the leg activation patterns and
motion elements, executed in between beats and consecutively assembled, brings forth a
diversity of predefined authentic solo jazz dance moves. In general, the more experienced
a dancer is, the more variability is present in her dancing. The most experienced dancers
include idiosyncratic moves and syncopations to the authentic solo jazz repertoire.

The speed of execution represents the dance tempo and is directly related to the music
tempo of the song to which the dancer is dancing. As a rule, solo jazz is danced to music
with tempo anywhere between 120 and 250 beats per minute (bpm). A hobbyist dancer
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is usually the most comfortable dancing at intermediate tempos. The more experienced a
dancer is, the more precise is her tempo, especially when dancing at tempos at the higher
end of the emphasized range.

To estimate the dance tempo, we chose to implement a solution based on comb filters.
The periodic magnitude response of the comb filter can be tuned to the fundamental fre-
quency of dancing and its harmonics, enabling efficient dance tempo estimation. Avoiding
spectrum calculation, the comb filter is widely employed because of its computational
efficiency [15–17]. In addition, a comb filter method has already been shown reliable for
estimating the tempo of dance music [17].

In dancing in general, due to inaccuracies in step execution, the signals are nearly
periodic. In addition, rhythmical variability in solo jazz dance moves introduces significant
additional changes of the frequency representation of the acquired signals and its funda-
mental frequency, exceeding the variability that can be accounted for by considering the
quasi-periodic model.

Improvements and performance enhancements to the original comb filter enable us
to accurately estimate the tempo of dancing even when the fundamental frequency of the
acquired signals, due to rhythmical variations, changes significantly.

This article is organised as follows. In Section 2, we present the materials and methods
implemented for dance tempo estimation. In Section 3, we present and discuss the experi-
mental validation results. In Section 4, we summarise our findings and draw conclusions,
implying further research directions.

2. Materials and Methods
2.1. Data Acquisition
2.1.1. Materials

We capture dance motion using an mbientlab MetaMotionR (MMR) wearable de-
vice [18], including a micro-electromechanical system (MEMS) 3D accelerometer. Aiming
to provide easiness of use, with the smallest amount of sensing equipment, we rely on a
single wearable unit. In such a setup, the optimal position for estimating the dance tempo
would be the torso of the dancer (or above). However, by positioning the sensor on the
dancer’s leg, we also provide for further possibilities of leg motion analysis.

The specific position of the device is just above the dancer’s right leg ankle, as illus-
trated in Figure 1. Naturally, to capture dance motion mainly executed with the left leg, an
additional sensor, attached to the left leg ankle, would also have to be used. Considering
the relatively low probability of such moves, we choose not to focus on these situations,
giving our attention to the simpler, single inertial device solution.
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Figure 1. Dance motion capture. We use a single wearable device, including a micro-electromechanical
system (MEMS) 3D accelerometer sensor, attached just above the dancer’s right leg ankle. The
microposition and orientation of the sensor are arbitrary.
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The microposition and orientation of the device are arbitrary as they proved not to
affect the results. We set the sampling frequency to 200 Hz, which proved to be sufficient
for the problem at hand using empirical evidence. In addition, a software metronome was
used to dictate the dance tempo and simulate a steady quarter note music tempo.

2.1.2. Measurements

Two female dancers participated in the study—one professional and one recreational
with 3 years of solo jazz dancing experience. The same measurement routine was performed
for each participant, during different measurement sessions.

Following the obtained instructions, the participant attached the wearable sensing
device to her right leg ankle, voluntarily setting the device’s microposition and orientation.
The participant then repeated a specified assemble of 65 consecutive dance moves for
8 different dance tempos, ranging from 80 bpm to 220 bpm with 20 bpm increment steps.
A dance tempo of 240 bpm proved to be too high for the recreational dancer to execute
with comfort and ease and was so not considered. It is necessary to note that the two
lowest tempos considered, i.e., 80 and 100 bpm, are, in general, too low for the solo jazz
dance context. However, their inclusion in the study enables a more robust validation and
generalization to other dance styles and motion contexts.

The specified assemble included 5 repetitions of 15 authentic solo jazz dance moves.
The following moves were included: (1) Tackie Annie; (2) Fall of the log; (3) Kicks;
(4) Half break; (5) Struttin’; (6) Savoy kick; (7) 20′s Charleston; (8) Knee slaps; (9) Fishtails;
(10) Apple Jacks; (11) Boogie back; (12) Boogie forward; (13) Crazy leg; (14) Cross step; and
(15) Shorty George. For an informative overview of how these moves are performed, the
reader is guided to various sources available online, e.g., [19]. Each of the 65 moves was
performed on an 8-beat basis.

Each move, as will be debated in more detail in the following subsection, has a unique
pattern of leg motion elements and activation, leading to rhythmical variability. Due to
this variability, while all moves are performed on an 8-beat basis, dictated by a consistent
tempo, their fundamental frequency can be different, having a significant effect on the
frequency representation of the acquired signals.

Capturing the execution of the specified assemble for each dance tempo gave us
a testing sequence of 3D acceleration signals. For the 8 considered dance tempos and
2 participants, we obtained 16 testing sequences in total.

Both dancers gave oral consent in participating in the study and reported dancing
with comfort to all considered tempos. All measurements were supplemented with video
recordings and labels.

2.2. Signal Processing
2.2.1. Signal Pre-Processing

Since the device itself does not provide outputs at exactly equidistant time samples,
we interpolated and decimated the acquired signals as necessary, considering the associ-
ated measurement timestamp values, to provide for uniform sampling at exactly 200 Hz.
Following the calibration procedure presented in [20], we compensated the signals for
sensor inaccuracies. To remove motion artefacts and noise, we applied a low-pass filter
with a cut-off frequency fco = 50 Hz and finally performed downsampling to fs = 100 Hz,
obtaining 3D acceleration at equidistant time samples, T = 1/fs = 0.01 s.

We normalized each of the three acceleration components to have a zero mean and
unit standard deviation. We denoted the three obtained components’ signals, each of
length N and given in the device-intrinsic coordinate system, as ax, ay, and az. The specific
orientation of the axes in a reference coordinate system is irrelevant.

2.2.2. Dance Tempo Estimation

With the assumption that dance tempo is roughly constant throughout the analysed
excerpt and that dance steps are, in general, nearly equidistant, with occasional inclusion
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of rhythmical improvisations and syncopations, estimating the dance tempo υ essentially
refers to estimating the smallest inter step-onset interval Tυ. In the most simplified scenario,
for each music beat, one dance step is executed. Measuring Tυ in seconds and υ in beats
per minute, we can write

Tυ =
1
fυ

=
60
υ

. (1)

In Equation (1), fυ denotes the fundamental dance frequency, related to step execution
and measured in Hz. Depending on step styling, a number of fυ harmonics are present, to
a varying extent. In the given context, we expect fυ to be dominant over its harmonics.

In general, such as while walking, dance moves are executed moving the right and
left leg alternately—after each step executed with one leg, the dominantly executing leg
changes. Since single leg steps are executed every two beats, in our single-leg sensor setup,
the smallest inter step-onset interval for a single leg is Tstep = 2Tυ, introducing fstep = f υ/2
as the fundamental frequency. We can write

Tstep =
1

fstep
=

Tυ

2
=

120
υ

. (2)

In Equation (2), fstep denotes the single leg step fundamental frequency, measured in
Hz. In addition, for each h component of the original signal, hfυ ± fstep are now present
to a various extent. In such a simplified scenario, by detecting steps, by means of feature
extraction in the time-domain, dance tempo can be estimated.

Further on, in a more realistic scenario, besides changing the dominantly executing
leg on every beat, dance moves can be executed with other leg activation patterns. In
particular, besides on every beat, in solo jazz the dominantly executing leg can change on
every second or every fourth beat. Every such variation introduces new components to
the spectral content of the signals. When leg change occurs every two beats, the spectral
content is enriched for components hf step ± fstep/2, making fstep/2 the fundamental frequency.
Likewise, when a leg change occurs every four beats, the spectral content is enriched
for components hf step ± fstep/4, making fstep/4 the fundamental spectral component. More
complex rhythmical variations, such that in one move, different leg activation patterns mix,
are also possible.

Simplified and schematised leg activation patterns, characteristic for solo jazz, are
illustrated in Figure 2. Example (a) illustrates the leg-change-on-every-beat pattern. Exam-
ples of solo jazz moves that follow such a pattern are (10) Apple Jacks; (11) Boggie back;
(13) Crazy legs; and (15) Shorty George. Example (b) illustrates the leg-change-on-every-
two-beats pattern, typical for (1) Tackie Annie; (3) Kicks; (9) Fish tails; and (12) Boggie
forward solo jazz moves. Example (c) illustrates the leg-change-on-every-four-beats pat-
tern, typical for (6) Savoy kick; (7) 20s Charleston; and (8) Knee slaps moves. Some solo jazz
dance moves have a more complex pattern, where the leg change occurs either on a beat or
on a two-beat basis, e.g., (2) Fall of the log; (4) Half break; (5) Struttin’; and (14) Cross step.
Example (d) depicts the execution of one (14) Cross step.

This brings us to the conclusion that the frequency spectrum of the acquired signals
varies, depending on the included moves. When danced at tempo υ, in a single sensor
measurement scenario, the fundamental frequency of the acquired signals can be fstep,
fstep/2, or fstep/4. Therefore, we can conclude that fstep is the lowest common component,
regardless of the performed assemble. Its intensity relative to other components varies. For
longer and diverse assembles of moves, we can expect fstep to be the maximum frequency
component. However, this is far from a straightforward conclusion for short dancing
excerpts or assembles with a repeating pattern of a small number of moves. For the
considered υ range 80–220 bpm, fstep is between 0.67 and 1.83 Hz.

To estimate fstep, we rely on multiple resonators implemented with IIR comb feedback
filters. Opting for the comb feedback filter is reasoned with the filter’s periodic frequency
response—a feedback comb filter resonates at fcomb and all its harmonics. Using dance
acceleration signals as filter inputs, a comb filter produces the highest energy of the output
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when the resonating frequencies match fstep and its harmonics. By analysing and comparing
outputs of multiple filters, each with a different resonating frequency, we can estimate the
most likely value of the step frequency and therefore the dance tempo. Such an approach
has already been proven to enable estimation of a song’s quarter note tempo [17], which is
essentially dictating the dancer’s dance tempo.
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In particular, to accommodate the considered dance tempo range, we implement a
filter bank consisting of 151 comb feedback filters with the filter’s delay k ranging from
kmin = 50 to kmax = 200 samples. Each k identifies the first peak of the magnitude response
of the filter:

fcomb = fs/k. (3)

For fs = 100 Hz and the set k range, fcomb is increasing non-uniformly from 0.5 to
2.00 Hz. This range translates to, considering fstep instead of fcomb in Equation (2), the
extended dance tempo υ range of interest, 60–240 bpm (with ever larger increment steps:
60.00, 60.30, 60.61, . . . , 235.29, 240.00 bpm). To note, the number of filters in the bank can
be adjusted with respect to the plausible dance tempo range. Lowering the number of
filters considered, by considering a limited tempo range can be particularly beneficial when
optimizing run-time execution.

We use the normalized 3D acceleration signals as filter bank inputs. For each acceler-
ation component signal, ax, ay, and az, and for each delay k, the respective filter outputs
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axf k, ayf k, and azf k for each time sample 1 ≤ n ≤ N is calculated according to the following
implementation equations:

ax f k[n] = ax[n] + αax f k[n− k]
ay f k[n] = ay[n] + αay f k[n− k]
az f k[n] = az[n] + αaz f k[n− k].

(4)

We assign a fixed gain α in Equation (4) to each filter in the bank. Overall best results
were obtained for α = 0.7.

For each filter in the bank, we compute the energy of the output cumulatively across
all three acceleration dimensions, for each delay k according to

e[k] =
N

∑
n=0

(
ax f k[n]

)2
+

N

∑
n=0

(
ay f k[n]

)2
+

N

∑
n=0

(
az f k[n]

)2
. (5)

Considering Equations (3) and (5) and after resampling, we obtain e[fcomb], i.e., the
energy of the output for equidistant values fcomb, corresponding to 60, 61, 62, . . . , 239, and
240 bpm dance tempos.

For a particular filter in the filter bank, tuned to the tempo of the analysed dancing
the most, the energy of the output should be the highest. Considering this, we find the
frequency fmax of the output energy maximum:

e[ fmax] = max{e[ fcomb]}. (6)

For longer dance assembles of various moves, fstep is the dominant frequency com-
ponent and should match the frequency of the filter with the maximum energy output.
By setting

fstep = fmax (7)

and inserting in Equation (2), the dance tempo estimate follows:

υest = 120 fmax. (8)

Note that the frequency range of the fundamental frequencies and higher harmonics
for different υ in the considered 60–240 bpm range overlap. In addition, and particularly
in the solo jazz dance context, for dance moves with leg change occurring every two
beats, the comb filter tends to resonate stronger for fstep/2 than for fstep. If fstep/2 falls into
the considered range for which e[fcomb] is calculated and the dance step frequencies are
plausible, considering Equation (8) leads to an underestimate of the dance tempo. Precisely,
for moves with fstep/2 as the fundamental frequency, performed at υ and those with fstep/4
as the fundamental frequency, performed at 2υ, the resulting comb filter responses are
very much alike and it is not possible to uniformly estimate fstep for both such cases, using
Equations (4)–(8) only. Further on, for solo jazz dance moves with a leg change occurring
every four beats, the comb filters tend to resonate stronger for fstep/4 than for fstep, leading
again to an underestimate of the dance tempo if fstep/4 falls into the considered comb filter
frequency range.

To account for the aforementioned particularities, we perform verification of the result
of Equation (8) and eventually its correction. We do this by investigating the relative
intensity of the fundamental dance frequency f υ, resulting from Equations (2) and (7), i.e.,
2fmax, to its harmonics. We expect f υ to be dominant.

First, for all fmax multiples that fall into the considered frequency range, we check
the significance of the associated value of the energy vector, relative to the significance
of e [fmax], by considering the difference between its value and the minimum value in its
neighbourhood, according to

max(e[ fcomb])−min(e[ fcomb]) < s · (e[m fmax]−min(e[m fmax − ∆ f : m fmax + ∆ f ])). (9)
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In Equation (9), m determines the multiple (and can, for the considered frequency
range of the comb filter and dancing tempos, be 2 or 4), s is the scaling factor set to 0.25,
determined empirically as the best suit, and ∆ f is set to 0.15 Hz, making the neighbourhood
width equal to 0.3 Hz, or a fifth of the entire fcomb range. If Equation (9) holds for any
multiple m, we consider the multiple that is closest to the upper limit of fcomb and denoted
with Mfmax, as the new fstep candidate, leading to a final Mυest dance tempo estimate. We
make the final decision between υest and Mυest by checking the associated fundamental
dance frequency components’, i.e., 2fmax and 2Mfmax, relative dominance. We applied two
IIR two poles resonators, one for each of the candidate frequencies, 2fmax and 2Mfmax, to
each component of the analysed acceleration signals:

axr k[n] = (1− λ)
√

1 + λ2 + 2λ(1− 2 cos2(2π
fc
fs
)) ax[n] + 2λ cos(2π

fc
fs
) axr k[n− 1]− λ2axr k[n− 2]

ayr k[n] = (1− λ)
√

1 + λ2 + 2λ(1− 2 cos2(2π
fc
fs
)) ay[n] + 2λ cos(2π

fc
fs
) ayr k[n− 1]− λ2ayr k[n− 2]

azr k[n] = (1− λ)
√

1 + λ2 + 2λ(1− 2 cos2(2π
fc
fs
)) az[n] + 2λ cos(2π

fc
fs
) azr k[n− 1]− λ2azr k[n− 2],

where fc = [2 fmax 2M fmax] and λ = 0.995.

(10)

We then calculate the energy output, by inserting the obtained filtered acceleration
components Equation (10) instead of ax f k, ay f k, and az f k into Equation (5), for both can-
didate frequencies. We denote the obtained energy outputs for 2fmax and 2Mfmax with
er[2fmax] and er[2Mfmax], respectively. If

er[2M fmax] > srer[2 fmax], (11)

where sr is the scaling factor again set to 0.25, determined empirically as the best suit, we
correct fstep by setting

fstep = M fmax. (12)

By inserting Equation (12) into Equation (2), the corrected dance tempo estimate follows:

υest = 120M fmax. (13)

2.3. Validation

We perform two sets of tests for methodology validation. For the first, we calculate
the overall dance tempo, using the entire testing sequences as inputs. For each of the
16 testing sequences, we calculate the output energy according to Equations (4) and (5),
find the location of its maximum and with respect to the conditions in Equations (9)–(11),
and use either Equation (8) or Equation (13) as the dance tempo estimate. We calculate the
absolute difference between the estimate and the dictated tempo as the final measure of
result validation.

The presented methodology is computationally reasonably light. With the aim of
establishing whether dance tempo can be accurately monitored and assessed in real time,
for the second set of tests we calculate the dance tempo using short excerpts of the testing
sequences as inputs. In particular, we consider the shortest excerpt length to be equal to
the duration of one dance move, performed at the slowest tempo considered. We further
assume that the tempo of dancing remains constant at least for a set of four dancing
moves, representing one music phrase. At the slowest tempo considered, i.e., 80 bpm, a
single move and an assemble of four consecutive dance moves are executed in 6 and 24 s,
respectively. Under these assumptions, we set the excerpt length ∆, for which we perform
tests, to be in the 6–24 s range, with 2 s increment steps. For fs = 100 Hz, these values
translate to 600–2400 samples.

For each of the 16 testing sequences, we extract all subsequences of a specific length ∆
and use them as short excerpts inputs for dance tempo estimation. Since our sequences are
on average 30× 103 samples long, we obtained, on average, slightly under 30 × 103 testing
excerpts for each dance tempo and approximately 480 × 103 excerpts altogether for all
16 sequences.
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For each excerpt, we can calculate the output energy according to Equations (4)–(13).
However, in order to reduce the computational complexity and accommodate for real-time
processing, we assume that, for short excerpts, a reference dance tempo υref is known
in advance. The reference tempo can be given either by the known tempo of the song
or the target dance tempo. Considering that the dance tempo does not change abruptly
and significantly, the reference tempo can also be estimated by analysing previous, longer
excerpts of assembled moves. If shorter dance excerpts are to be analysed offline, the
already established overall dance tempo can also be used.

Under the assumption of a known reference dance tempo, we can apply Equations (4)–(6)
for a limited range of comb filter delays and use Equation (8) as the final dance tempo
estimate. In particular, we set the limited range of the filters’ delays to be in between
kre f min = 120 fs

υre f +∆υ and kre f max = 120 fs
υre f−∆υ , where ∆υ is set to 15 bpm. The limited

dance tempo estimation range is so 30 bpm, representing a third of the initial range and is
sufficiently narrow to extract a single peak of the energy vector.

The aforementioned analysis in equivalent to establishing the local maximums of the
energy output Equation (5) and using the frequency of the peak closest to the reference
dance step frequency as the final estimate, without considering the entire initial k range.

As a final measure of result validation, we calculated the average absolute difference
between the estimates and the reference tempo for all excerpts of a particular length and
for a particular tempo, i.e., the testing sequence.

3. Results and Discussion
3.1. Overall Dance Tempo Estimation

Figure 3 illustrates dance tempo estimation, performed for two testing sequence as
presented in Section 2. For illustration purposes, we chose the testing sequences performed
by the recreational dancer dancing at 100 (first row) and 200 bpm (second row), for which
the single leg step frequencies are fstep = 0.83 Hz and 1.67 Hz, respectively. The left column
depicts the amplitude frequency spectrums of the analysed sequences, along with the
tuned comb filter’s magnitude response. All plots are normalized to fit into the [0,1] range.

For both analysed sequences, we can observe a spectral maximum at the respective
fstep, representing half of the dance tempo. Besides this frequency, various other components
are also distinguishable, including fstep/2, fstep/4. The presented frequency representation
reflects the variability of solo jazz moves and leg activation patterns and is aligned with
the reasoning and expectations presented in the previous section.

The right column presents the output energy, calculated for the entire fcomb range. For
both sequences, the maximum energy output is obtained for fmax = 0.83 Hz. Considering
fmax as the step frequency would result in a dance tempo estimate of 100 bpm. We can
further observe that for both sequences, the energy output has a significant peak at 2fmax,
giving the possibility of a 200 bpm estimate. From the presented signal frequency content
for the first analysed sequence, it is visible that the component 100 bpm is dominant
over the 200 bpm component. The resonator-based analysis performed according to
Equations (9)–(11) confirms this and discards 2fmax as the step fundamental frequency.

For the second sequence, it is visible that the 100 bpm component is not dominant
over the component 200 bpm. The analysis corrects the initial estimate and sets 2fmax as the
step frequency. In both cases, correct estimates are obtained, matching perfectly the tempo
dictated by the metronome.

Complete results, obtained for all 16 testing sequences, are presented in Table 1. For
all but one, the estimated tempo matches perfectly the tempo dictated by the metronome.
The only sequence for which the estimated tempo differs from the tempo dictated by the
metronome is the professional’s 120 bpm sequence. In an absolute sense, this difference is
1 bpm, which is in the range of the established beat onset stability of the used metronome.
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testing sequences, respectively. Images (a,c) depict in colour the 3D acceleration amplitude frequency spectrum. For both
examples, the spectrum has a clearly distinguishable peak at the respective step frequency, (a) 0.83 Hz for the 100 bpm
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comb filters frequencies together with step frequency estimates.
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Table 1. Overall dance tempo estimation results. For all but one sequence, the estimated tempo
matches perfectly the tempo dictated by the metronome. For the remaining sequence, i.e., the
professional’s 120 bpm sequence, the absolute difference is 1 bpm, which is in the range of metronome
beat onset stability.

Metronome
Tempo (bpm)

Estimated Tempo (bpm) Absolute Tempo
Difference (bpm)Professional Dancer Recreational Dancer

80 80 80
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These results confirm that (1) both dancers are dancing with an accurate tempo overall;
and (2) the presented methodology provides for accurate dance tempo estimation.

3.2. Dance Tempo Estimation for Short Excerpts

The results obtained for short excerpts of sequences are presented in Figure 4. For all se-
quences, the overall tempo results, as presented in Table 1, are used as the reference tempo.
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such duration, the results are at the level of 1 bpm accuracy for all tempos. For (b) the recreational dancer, this holds only
for the intermediate tempos, i.e., 100, 120, 140, and 160 bpm.
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The first column presents the results obtained for the professional dancer’s excerpts.
For the shortest excerpts’ duration considered, i.e., 6 s, the mean absolute difference
between the estimates and the reference tempo is between 1.5 and 3 bpm. We can speculate
that besides being a consequence of the methodology itself, in particular due to the inherent
time-frequency indetermination, such levels of deviations might also be a consequence of
the dancer’s execution. However, at the levels of duration of one music phrases, i.e., four
dance moves, which is additionally depicted in the image for each tempo, the difference
is below 1.5 bpm and as such is in the range of the overall tempo estimates accuracy and
metronome beat onset stability.

Again, the results confirm two things: at the level of duration of four dance moves
(1) the professional dancer is dancing with an accurate tempo; and (2) the presented
methodology provides for accurate dance tempo estimation. Enhancements to the original
comb filter performed enable us to accurately estimate the tempo of dancing even when
analysing short excerpts where the reasonable length of the excerpts corresponds to four
dance moves.

The second column presents the results for the recreational dancer’s excerpts. In-
stantly observable are considerable deteriorations in results, across all tempos and excerpt
durations, when compared to the results obtained for the professional dancer. For the
shortest excerpts, the mean absolute difference between the estimates and the reference
dance tempo is as high as 5 bpm.

Further on, for the recreational dancer’s excerpts comprising four moves, the results
are at the accuracy level of the overall dance tempo estimates only for tempos up to
160 bpm. This brings us to the conclusion that while dancing with an accurate tempo
overall, when dancing at higher tempos, the recreational dancer does not achieve the
same levels of dance tempo accuracy as the professional dancer and that the presented
methodology can help in assessing the quality of performance, online and on a short
excerpt basis.

To finally note, for both, the professional and the recreational dancer, the largest
errors for excerpts comprising four moves are obtained for the slowest and fastest tempos
considered (80 bpm for both dancers and 220 bpm for the professional and 200 and
220 bpm for the recreational), confirming that both dancers are more precise when dancing
at intermediate tempos.

4. Conclusions

Using a single 3D accelerometer positioned on the dancer’s leg and entailing enhanced
multiple resonators implemented with IIR comb feedback filters has proven to provide for
accurate dance tempo estimation. Enhancements to the original comb filter performed en-
able us to efficiently estimate the tempo of dancing despite the changes in the fundamental
frequency of the acquired signals, due to rhythmical variations.

The results obtained show that when analysing assembles of various moves, per-
formed at a constant tempo, for both the professional and the recreational dancer, the
difference between the estimate and the dictated tempo is at most 1 bpm, and as such is in
the range of the established beat onset stability of the used metronome.

Assuming that the tempo of dancing remains constant for an assemble of four consec-
utive dance moves, representing one musical phrase, it is reasonable to interpret real-time
feedback as providing online dancing tempo estimates referring to the last four moves,
approximately. The validation performed for excerpts of such a duration shows the result
accuracy is at the same level as the accuracy of overall dance tempo estimates.

When comparing how well the dancers maintain a steady dance tempo throughout
the dance sessions, the professional dancer clearly outperforms the recreational one, giving
the technology an applicative value of assessing the quality of performance in real time.

Levels of accuracy obtained open new topics for further research. Besides assessing
the dancer’s tempo quality and consistency, dance tempo estimates can support detecting
dance steps and other motion patterns. Relating these to the music beats, off-beat steps can
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be detected, and the dancer’s timing quality can be analysed. By analysing the rhythmical
patterns, the dancer’s response to music can be monitored. All of this together can provide
for a technology that would support estimating the crucial connection between dancing and
music. Additionally, using dance tempo estimates, dancing sequences can be temporally
normalized and segmented. Reference motion patterns can be created. By comparing the
analysed motion to the reference patterns, quality of execution can be established.

Residing on a single inertial sensing device and avoiding using video cameras or
IR imaging sensors, the presented solution is highly suitable for the abovementioned
challenges. Due to its computational efficiency and portability, it can be in a variety
of dancing situations—when the dancer is dancing alone, in the crowd, or in front of
an audience.

Further analysis is necessary to investigate the methodology performance in real-case
dancing scenarios, with various levels of dancing improvisation and syncopation that
would help investigate the individual style of the dancer and assess her levels of dancing
vocabulary and creativity.

Finally, since some parameters of the analysis are related to the testing tempo range
and the characteristics of solo jazz dancing, if the methodology is applied to other problems,
these should be fine-tuned.

Author Contributions: Conceptualization, S.S.; methodology, S.S.; software, S.S.; validation, S.S.;
formal analysis, S.S. and S.T.; investigation, S.S. and S.T.; resources, S.S.; writing, S.S.; visualization,
S.S.; project administration, S.S.; funding acquisition, S.T. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Slovenian Research Agency, grant number P2-0246
ICT4QoL—Information and communication technologies for quality of life.

Institutional Review Board Statement: This study was conducted during regular dance training
hours with the participants performing exactly their regular training activities. More than minimal
risks were not identified and ethical review and approval were waived.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Kyan, M.; Sun, G.; Li, H.; Zhong, L.; Muneesawang, P.; Dong, N.; Elder, B.; Guan, L. An Approach to Ballet Dance Training

through MS Kinect and Visualization in a CAVE Virtual Reality Environment. ACM Trans. Intell. Syst. Technol. 2015, 6, 1–37.
[CrossRef]

2. Aich, A.; Mallick, T.; Bhuyan, H.B.G.S.; Das, P.; Majumdar, A.K. NrityaGuru: A dance tutoring system for bharatanatyam
usingkinect. In Computer Vision, Pattern Recognition, Image Processing, and Graphics; Rameshan, R., Arora, C., Dutta Roy, S., Eds.;
Springer: Singapore, 2018; pp. 481–493. [CrossRef]

3. Dos Santos, A.D.P.; Yacef, K.; Martinez-Maldonado, R. Let’s dance: How to build a user model for dance students using wearable
technology. In Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization, Bratislava, Slovakia,
9–12 July 2017; pp. 183–191. [CrossRef]

4. Drobny, D.; Weiss, M.; Borchers, J. Saltate!: A sensor-based system to support dance beginners. In Proceedings of the the 27th
Annual CHI Conference on Human Factors in Computing Systems, Boston, MA, USA, 4–9 April 2009; pp. 3943–3948. [CrossRef]

5. Romano, G.; Schneider, J.; Drachsler, H. Dancing Salsa with Machines—Filling the Gap of Dancing Learning Solutions. Sensors
2019, 19, 3661. [CrossRef] [PubMed]

6. Ho, C.; Tsai, W.; Lin, K.; Chen, H.H. Extraction and alignment evaluation of motion beats for street dance. In Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013;
pp. 2429–2433. [CrossRef]

7. Cornacchia, M.; Ozcan, K.; Zheng, Y.; Velipasalar, S. A Survey on Activity Detection and Classification Using Wearable Sensors.
IEEE Sens. J. 2017, 17, 386–403. [CrossRef]

http://doi.org/10.1145/2735951
http://doi.org/10.1007/978-981-13-0020-2_42
http://doi.org/10.1145/3079628.3079673
http://doi.org/10.1145/1520340.1520598
http://doi.org/10.3390/s19173661
http://www.ncbi.nlm.nih.gov/pubmed/31443590
http://doi.org/10.1109/ICASSP.2013.6638091
http://doi.org/10.1109/JSEN.2016.2628346


Sensors 2021, 21, 8066 14 of 14

8. Lara, O.D.; Labrador, M.A. A Survey on Human Activity Recognition using Wearable Sensors. IEEE Commun. Surv. Tutor. 2013,
15, 1192–1209. [CrossRef]

9. Sousa Lima, W.; Souto, E.; El-Khatib, K.; Jalali, R.; Gama, J. Human Activity Recognition Using Inertial Sensors in a Smartphone:
An Overview. Sensors 2019, 19, 3213. [CrossRef] [PubMed]

10. Sprager, S.; Juric, M.B. Inertial Sensor-Based Gait Recognition: A Review. Sensors 2015, 15, 22089–22127. [CrossRef] [PubMed]
11. Paradiso, J.A.; Hsiao, K.; Benbasat, A.Y.; Teegarden, Z. Design and implementation of expressive footwear. IBM Syst. J. 2000, 39,

511–529. [CrossRef]
12. Aylward, R.; Lovell, S.D.; Paradiso, J.A. A Compact, Wireless, Wearable Sensor Network for Interactive Dance Ensembles.

In Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks, Cambridge, MA, USA,
3–5 April 2006. [CrossRef]

13. Hasan, M.; Shimamura, T.A. Fundamental Frequency Extraction Method Based on Windowless and Normalized Autocorrelation
Functions. In Proceedings of the 6th WSEAS International Conference on Computer Engineering and Applications, and
Proceedings of the 2012 American Conference on Applied Mathematics.

14. Liu, D.J.; Lin, C.T. Fundamental frequency estimation based on the joint time-frequency analysis of harmonic spectral structure.
IEEE Trans. Speech Audio Process. 2001, 9, 609–621. [CrossRef]

15. Ferreira, J.L.; Wu, Y.; Aarts, R.M. Enhancement of the Comb Filtering Selectivity Using Iterative Moving Average for Periodic
Waveform and Harmonic Elimination. J. Healthc. Eng. 2018, 7901502. [CrossRef] [PubMed]

16. Braun, S. The synchronous (time domain) average revisited. Mech. Syst. Signal Process. 2011, 25, 1087–1102. [CrossRef]
17. Eyben, F.; Schuller, B.; Reiter, S.; Rigoll, G. Wearable assistance for the ballroom-dance hobbyist holistic rhythm analyis and

dance-style classification. In Proceedings of the 2007 IEEE International Conference on Multimedia and Expo, Beijing, China,
2–5 July 2007; pp. 92–95. [CrossRef]

18. Mbientlab MMR. Available online: https://mbientlab.com/metamotionr/ (accessed on 21 September 2021).
19. Alphabetical Jazz Steps 3. Available online: https://www.youtube.com/watch?v=jAIwJd2tQo0&list=PLpLDojUPSMvcYMA7

jEFPidEbSD2-vNz8m (accessed on 5 April 2021).
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