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ABSTRACT: The majority of large-scale proteomics quantification
methods yield long lists of quantified proteins that are often difficult to
interpret and poorly reproduced. Computational approaches are required
to analyze such intricate quantitative proteomics data sets. We propose a
statistical approach to computationally identify protein sets (e.g., Gene
Ontology (GO) terms) that are significantly enriched with abundant
proteins with reproducible quantification measurements across a set of
replicates. To this end, we developed PSEA-Quant, a protein set
enrichment analysis algorithm for label-free and label-based protein
quantification data sets. It offers an alternative approach to classic GO
analyses, models protein annotation biases, and allows the analysis of
samples originating from a single condition, unlike analogous approaches
such as GSEA and PSEA. We demonstrate that PSEA-Quant produces
results complementary to GO analyses. We also show that PSEA-Quant provides valuable information about the biological
processes involved in cystic fibrosis using label-free protein quantification of a cell line expressing a CFTR mutant. Finally, PSEA-
Quant highlights the differences in the mechanisms taking place in the human, rat, and mouse brain frontal cortices based on
tandem mass tag quantification. Our approach, which is available online, will thus improve the analysis of proteomics
quantification data sets by providing meaningful biological insights.
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■ INTRODUCTION

Like most large-scale biological experiments, the vast majority
of proteomics studies tend to produce long lists of candidate
proteins. Whether these consist of lists of interactors of a
protein, differentially expressed proteins, or simply proteome
characterization of a sample, such data sets are difficult to
analyze and interpret. No clear unifying theory consistently
explains the presence of all proteins or biological processes in a
given data set.1 The picture becomes even more intricate when
large-scale protein quantification is performed. Protein
abundance measurements performed using label-free or label-
based methods contain a certain amount of noise, which
contributes to the complexity of proteomics data sets.2 In
addition, reproducibility of both protein identification and
quantification across biological replicates still remains an
important challenge.3 While it is expected that future increases
in mass spectrometry peptide detection sensitivity will help
solve reproducibility issues, it will cause data sets to be even
larger and therefore more convoluted.
Computational approaches are required to extract bio-

logically meaningful information from these complex data
sets. Such tools are crucial in order to get a clear understanding
of the biological mechanisms taking place in a given sample and
are critical to guide further studies on subsets of proteins within

a data set. Multiple techniques were proposed to analyze large-
scale biological data sets, some of which were originally applied
to gene expression analysis but were then adapted to
proteomics studies.
A typical approach for the analysis of a large biological data

set is to investigate the presence of enriched gene or protein
sets (obtained from databases such as Gene Ontology (GO),4

Molecular Signature Database (MSigDB),5 or KEGG6) in a list
of proteins associated with a feature of interest (e.g.,
differentially expressed genes, proteins with high abundance,
etc.) provided by a proteomics experiment. Briefly, these
methods use hypergeometric or Fisher’s exact tests to compare
the proportion of genes or proteins having the feature of
interest and belonging to the protein set associated with an
annotation A (e.g., GO term) to that of A in the complete data
set of genes or proteins. These tools include, among others,
Ontologizer,7 FatiGO,8 GOstat,9 GOrilla,10 and GoMiner.11

Such techniques then assign a p-value representing the
probability that a greater or equal enrichment could be
observed by chance. Although useful to provide an overview
of the biological processes and molecular mechanisms present
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in a given data set, these methods suffer from several
limitations. Most approaches assume that gene or protein
expressions in an organism are independent of each other in
order to assign enrichment p-values. This is obviously
inaccurate as several genes are coregulated and coexpressed
in the vast majority of known organisms. In addition, especially
in the context of proteomics, these methods consider protein
membership in annotation protein sets as binary and do not
take into account protein quantification measurements, such as
spectral counts or relative abundances. Furthermore, arbitrary
thresholds based on the feature of interest are required (e.g.,
minimum protein spectral count) in order to determine which
proteins should be tested for annotation enrichment. This
causes two genes or proteins, where one has a value slightly
above the threshold and the other a shade lower, to be treated
strikingly differently although they behave extremely similarly.
An alternative approach utilizes the popular Gene Set

Enrichment Analysis (GSEA),1,12 a computational tool
originally intended for gene expression analysis using micro-
arrays. Unlike classic GO enrichment analyses, GSEA does not
require an arbitrary threshold to determine the subset of genes
with the feature of interest, but instead ranks all the genes in a
given data set based on a feature of interest, such as the level of
differential expression between two conditions. It then assigns a
weighted Enrichment Score ES to an annotation gene set
(derived from the MSigDB5) based on its clustering toward the
top or bottom of that ranked ordered gene list. Finally, GSEA
assesses the statistical significance of the ES and assigns it a p-
value. GSEA was implemented in various software packages
including GSEA-P13 and web-based tools such as GeneTrailEx-
press.14 While GSEA addresses several issues of the previously
presented GO enrichment analysis scheme, it still suffers from
important drawbacks. GSEA’s statistical assessment does not
assume gene expression independence. However, it requires the
contrast of two classes or conditions (e.g., disease vs normal or
mutant vs wild type) in the analyzed data set in order to be
executed. This feature is reasonable for the intended input of
GSEA (i.e., microarray gene expression), but is a major
limitation in the context of proteomics data sets because many
proteomics experiments are designed to characterize the
proteome of a single organism or to identify a set of protein
interactors without comparing the detected proteins to those
found in another condition.
Multiple GSEA-derived approaches have previously been

published. These include a dynamic programming algorithm to
calculate the exact statistical significance of a modified
unweighted ES.15 The same approach can be used to perform
an unweighted GSEA analysis on single class data sets, while
assuming gene expression independence.15 Jiang et al.
published an extension of GSEA that takes into account
annotation gene set overlaps.16 In addition, this extension
proposed different statistics to measure the level of association
between a gene set and the feature of interest.16 A user-friendly
stand-alone software tool ErmineJ17 also used a permutation
based procedure to evaluate gene set enrichments. Finally,
GSEA was applied to a proteomics data set related to dilated
cardiomyopathy.18

Since GSEA was originally introduced to analyze gene
expression data originating from microarrays, an adapted
version tailored to proteomics data sets called PSEA19 was
proposed by Cha et al. Like GSEA, it does not assume protein
expression independence, and still relies on the presence of two
conditions in the analyzed data set to identify annotation gene

sets for which the proteins are significantly differentially
expressed between the two classes. PSEA measures protein
differential expression using the spectral counting based
measure called Spectral Index (SpI).20 An important difference
between microarray gene expression data and mass spectrom-
etry protein abundance measurements, such as spectral counts,
resides in the technical variability of both approaches. This
variability is greater and more difficult to account for in protein
mass spectrometry.21 For example, equally abundant peptides
may not have the same likelihood of being detected using mass
spectrometry, and therefore yield different abundance measure-
ments. In the context of liquid chromatography coupled to
data-dependent mass spectrometry analysis, detection and
quantification of a given peptide is dependent on the
abundance of other coeluting peptides. However, this
phenomenon is generally not observed in gene expression
microarray experiments. Equally abundant RNA fragments are
equally likely to hybridize to their complementary strand on a
microarray if the corresponding probes are present. The SpI
attempts to capture this protein abundance variability in a
rather crude method by weighting a given protein spectral
count by the fraction of experiments in the condition in which
the protein was detected. A protein detected with high spectral
counts in all experiments and another detected with high
spectral counts in half of the experiments and low ones in the
other half would therefore be considered to have the same
variability according to the SpI. Furthermore, PSEA was only
designed to take spectral counts as input and cannot be used to
analyze data sets obtained with label-based techniques of
protein quantification (such as SILAC,22 iTRAQ,23 TMT,24

and 15N25,26). In addition to these limitations, there is currently
no user-friendly implementation of PSEA that is publicly
available.
In this paper, we propose a novel user-friendly, publicly

available, online protein set enrichment analysis tool (PSEA-
Quant) that allows the analysis of protein quantification data
sets with replicated experiments composed of samples derived
from a single or multiple conditions. PSEA-Quant statistically
assesses the enrichment of proteins with high abundance and
well reproduced abundance measurements across a set of
replicates in protein sets from GO and MSigDB. Such protein
sets are of interest because they represent proteins with highly
reliable abundance measurements of great amplitude that are
likely to be linked to the phenotype of the sample. PSEA-Quant
uses a permutation scheme, which models both protein
abundance dependencies and annotation biases. We show
that PSEA-Quant works with both label-free and label-based
protein quantification methods and yields complementary
results to classic GO enrichment analysis tools (GOrilla10 and
Ontologizer7). When PSEA-Quant was applied to a label-free
quantified cystic fibrosis data set and to a label-based quantified
human, mouse, and rat brain frontal cortex data set, our
approach highlighted several processes and mechanisms that
are of putative biological interest and are linked to observed
phenotypes.

■ METHODS
The goal of our approach is to identify protein sets, such as GO
terms4 or those available in the MSigDB,5 that are significantly
enriched for proteins with high abundance measurements and
that are reproducible across replicates in both label-free and
label-based quantification data sets. To this end, we present a
Protein Enrichment Score, PES, and assign one to all protein
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sets including at least two proteins in the analyzed data set. We
then assess the statistical significance of all PES using Monte
Carlo sampling procedures and evaluate a false discovery rate
using a permutated data set. A greedy algorithm is finally
applied to identify the core of all significantly enriched protein
sets.

Data Sets

We applied our algorithm to two data sets. The first one
consisted of label-free quantified samples using protein spectral
counting of lung epithelial cell lines stably expressing a CFTR
mutant (CFBE) or the wild type CFTR (Wild Type). Both
CFBE and Wild Type proteomics analyses were performed in
biological triplicates. The second data set is composed of two
separate tandem mass tag (TMT) labeled protein quantification
analyses of brain frontal cortices of human, mouse, and rat
(HMR) and of human and rat (HR). The HMR and HR data
sets consist of technical and biological replicates, respectively.
The details of the sample preparation and mass spectrometry
data acquisition for the above data sets are provided in the
Supporting Information.
Protein spectral counts were obtained for all proteins in both

the CFBE and Wild Type data sets. Spectral counts were
normalized for each replicate by the sum of all spectral counts
within the replicated experiment. We first applied PSEA-Quant
on the label-free quantified CFBE samples. We then show that
PSEA-Quant can be extended to analyze a label-free quantified
data set comprising two contrasting conditions using both

CFBE and Wild Type samples, even though it is not its primary
purpose.
For the HMR and HR data sets, protein relative abundances

were calculated by dividing the normalized intensity of a
protein for a TMT sixplex label in one condition (e.g., human)
by the normalized intensity of the same protein for a TMT
sixplex label in another condition (e.g., mouse) (see the
Supporting Information for protein normalized intensity
calculation). These protein normalized abundance ratios were
computed for all pairs of protein normalized intensities. For
example, in the context of the HR data set, all ratios
corresponding to the TMT sixplex labels 126/129, 126/130,
126/131, 127/129, 127/130, 127/131, 128/129, 128/130, and
128/131 were computed. These correspond to replicate
measurements of the expression of human proteins over rat
proteins. In this example, the inverse ratios can be taken as a
measure of the expression of rat proteins over human ones.
Unlike for label-free quantification where PSEA-Quant’s main
goal is to analyze single condition data sets, PSEA-Quant was
explicitly designed to handle label-based protein quantification
data sets containing multiple conditions and was therefore
applied to the HMR and HR data sets.

Computational Analysis

PSEA-Quant is composed of four main steps, which are
illustrated in Figure 1: (1) Protein Enrichment Score (PES)
computation for each protein set. (2) Statistical significance

Figure 1. PSEA-Quant workflow. PSEA-Quant computes a PES for each protein set and assesses the statistical significance of each PES by providing
a p-value. These p-values are then transformed to q-values to correct for multiple hypothesis testing. Finally, the core of each statistically significant
protein set is identified.
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assessment of PES. (3) False discovery rate estimation. (4)
Identification of significant protein set cores.
(1). Protein Enrichment Score (PES) Computation for

Each Protein Set. For each protein set, PSEA-Quant
computes an enrichment score, which reflects the abundance
and reproducibility of the abundance measurements of the
proteins in the protein set. If the data set under study is
quantified using a label-free approach, PSEA-Quant takes the
protein spectral counts as input and then normalizes them as
previously described. On the other hand, if the data set is
quantified with a label-based approach, such as iTRAQ, TMT,
SILAC, or 15N, PSEA-Quant uses the protein relative
abundances quantification values (protein normalized abun-
dance ratios). PSEA-Quant calculates the PES of a protein set
by considering the mean abundance and abundance coefficient
of variation across replicates for all proteins in the set. The
abundance coefficient of variation reflects the reproducibility of
abundance measurements for a given protein. It was chose since
it allows the comparison of sets of abundance values of proteins
that possess widely different means. Such sets of values are
extremely common in proteomics quantification studies. Figure
2 illustrates the PES calculation of a hypothetical protein set in
the context of the CFBE data set. The protein mean abundance
Ap = (Σi = 1

r Ap,i)/r corresponds to the mean normalized spectral
count of a protein p across all i = 1...r replicates (Ap,i) for label-
free quantification. On the other hand, for label-based
quantification, Ap is equal to the mean normalized abundance

ratio of p across all r replicates. Let CVp = σp/Ap be the
coefficient of variation of p, where σp = [(1/r)Σi = 1

r (Ap,i −
Ap)

2]1/2. To ease the PES calculation, coefficients of variation
are transformed to be on the same scale as abundance values
using the following equation:

=
∈

∈CV
CV

CV
A

max
maxp

T p

p P p
p P p

where P is the set of all proteins in the analyzed data set. This
scaling function preserves the ratios and relative differences
between all pairs of coefficient of variation values in the data
set. Both Ap and CVp

T values are then discretized appropriately
into integers. PSEA-Quant calculates the PES of a protein set S
by mapping proteins p according to their mean abundance Ap

(label-free or label-based) and their coefficient of variation of
the abundance CVp

T values onto a n by n enrichment score
weight matrix W, where

=
− + −

−
W

A CV n

n

1

2 2CV A
p p

T

,p
T

p

and n = maxp∈P Ap. The previous equation corresponds to filling
W with values from the bottom left corner (high CVp

T and low
Ap) to the top right corner (low CVp

T and high Ap) in a
diagonal fashion with values increasing from 0 to 1 with a
constant increment. Based on its position in W, a protein p is
assigned an enrichment score weight. Proteins with high
abundance mean and low coefficient of variation therefore
obtain high weights. Weights are then summed for all proteins
of a protein set S that are present in the analyzed data set to
provide S with a PES.

∑=
∈

PES W
p S

A CV,p p
T

All protein sets originating from either the GO or MSigDB
database containing at least two proteins that are observed in
the analyzed data set are assigned a PES. Unlike GSEA and

Figure 2. Graphical representation of the PES calculation for label-free quantification. (A) Heat map representations of log normalized spectral
counts log(SC) and normalized spectral count coefficients of variation (CV) for all proteins identified in the three biological replicates of the CFBE
data set. A fictitious example of an annotation protein set of seven proteins is illustrated on the heat maps. (B) Color-coded representation of the
enrichment score weight matrix W. Proteins p from the fictitious protein set in (A) are mapped onto W based on their respective protein mean
abundances Ap and abundance coefficients of variation CVp

T. The sum of the enrichment score weights corresponding to their position in the matrix
is then assigned as the PES of the fictitious protein set.
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PSEA, calculation of this score ignores proteins in the analyzed
data set that are not present in the protein set being evaluated.
This approach is similar to the one taken by Tian et al.27 and
Jiang and Gentleman.16 As an alternative to the PES, a t-statistic
could have been used to compare individual protein mean
abundance and standard deviation of abundance values to the
average mean abundance values and average standard deviation
of abundance values in the entire data set. We chose not to use
this approach since our goal was to equally weight the
reproducibility of abundance measurements and the average
abundance values. The GO database used in this study includes
17 214 protein sets containing on average 118.95 proteins
(December 19, 2013), while the MSigDB comprises 8841
protein sets (not including GO terms), with an average size of
132.43 proteins (March 11, 2014). The actual size of a protein
set being scored varies across the different data sets analyzed,
since only proteins observed in the experimental data set are
considered for the PES calculation. The average protein set
sizes tested for the CFBE data set and the Wild Type data set
were 53.40 (8255 tested protein sets) and 52.93 (8230 tested
protein sets), respectively, for the GO database and 51.30
(8519 tested protein sets) and 50.57 (8488 tested protein sets)
for the MSigDB. Similarly, the average protein set size was
42.23 (7919 tested protein sets) for the HMR data set and
42.86 (8061 tested protein sets) for the HR data set using the
GO database.
(2). Statistical Significance Assessment of PES. The

statistical significance of the PES of a protein set S is computed
using a Monte Carlo sampling procedure. Multiple alternative
sampling procedures can be employed for this computation,
each with their advantages and drawbacks.
(I). Uniform Sampling. The first Monte Carlo procedure

called “uniform sampling” repeatedly samples a subset of |S|
proteins in the analyzed data set, with each protein having an
equal probability of being randomly sampled, and computes the
PES for each of these random subsets to obtain an unbiased
estimate of the PES distribution for |S| proteins. From this
distribution, the p-value of a PES of a random subset can be
computed representing the probability that it is larger or equal
to the PES of S.
(II). Weighted Sampling. Although the uniform sampling

method is unbiased, it ignores that proteins of high abundances
are often those that have the most protein annotations and
therefore belong to more protein sets. This is in part caused by
the fact that these proteins are frequently those that are the
most discussed in the literature, and also simply because some
proteins perform more functions and are involved in more
biological processes than others. This protein annotation bias
could lead to an underestimation of protein set p-values, as
heavily annotated proteins of high abundance will not be
randomly selected as many times as they should. To correct this
issue, we introduced a Monte Carlo “weighted sampling”
procedure. This alternative method samples |S| proteins in the
data set with a probability proportional to their respective
number of occurrences in the ensemble of protein sets in the
database (GO or MSigDB) being tested for enrichment. This
approach models protein annotation biases and ensures more
accurate p-value estimations, but could be slightly slower for
large protein sets when the protein sampling probability
distribution deviates greatly from the uniform distribution.
(III). Weighted and Uniform Sampling with Reduced

Sample Space. These two sampling procedures implement a
random selection of proteins in order to obtain the null

distribution of PES. These methods assume among other
things, that the abundances of proteins within the same protein
set are independent. The validity of this assumption is
debatable. This differs from the approach used by GSEA and
PSEA, which avoids making such assumption and takes
advantage of class label permutation (disease vs normal
condition) in order to perform statistical assessments. As
mentioned earlier, since proteomics data sets are often
composed of experiments originating from a single condition,
such permutation scheme is not always applicable. We therefore
introduce a novel strategy, which consists of randomly selecting
proteins using either the weighted or uniform sampling method
in a reduced sample space. In an attempt to model protein
abundance dependencies, we repeatedly sample |S| proteins at
random and build the null distribution of PES using only
samples for which the coefficient of variation of the mean
abundances Ap of sampled proteins falls within a user-defined
range. This range is defined by applying a tolerance factor on
the coefficient of variation of the mean abundances Ap of the
proteins in the protein set S, which is being statistically
assessed. Specifically, Let C be the coefficient of variation of the
Ap’s of the protein set S being statistically assessed and let 0 < f
≤ 1.0 be the coefficient of variance tolerance factor (CV
tolerance). Let C′ be the coefficient of variation of the mean
abundances of a randomly sampled protein set S′. Then, if f C
≤ C′ ≤ (1 + f)C, sample S′ will be used to build the null
distribution of PES. Of note, this coefficient of variation C′ of
the mean abundances Ap of the proteins within a randomly
sampled protein set is different from the coefficient of variation
(CVp) computed in the PES, which calculates the variation of
the abundance measurements of a single protein across the
replicate experiments. The reasoning behind this approach is
that proteins in the same protein set are more likely to have
similar abundances than randomly selected proteins (e.g.,
proteins that are members of the same protein complex), and
therefore, protein abundances within such protein sets are more
likely to yield a small coefficient of variation than a random set
of proteins. While this approach does not model all protein
dependencies within a protein set, it tackles an important issue
and is likely to provide a more realistic estimate of the true
distribution of PES. It should be noted that the sample space
reduction by the CV tolerance can be applied to both the
uniform and weighted sampling procedures presented above.
Obviously, obtaining enough samples to produce a reliable null
distribution of PES under this sampling method may require a
longer running time depending on the CV tolerance that is
selected by the user.

(3). False Discovery Rate Estimation. Since databases
such as GO and MSigDB contain a large number of protein
sets, multiple hypothesis testing correction of the above
computed p-values is required. Because of the important
dependencies and overlaps between the various protein sets,
the computation of an empirical q-value (false discovery rate
adjusted p-value) for each p-value is more appropriate than a
too stringent Bonferroni correction. To estimate the empirical
q-value for each protein set p-value, we randomize all protein
sets and compute the protein set enrichment p-values of these
random protein sets using steps (1) and (2) (see Methods).
We propose three different randomization strategies in the
Supporting Information. Let N(p) be the number of non-
randomized protein sets that obtained a p-value of at most p
and R(p) be the number of randomized protein sets that are
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also associated with a p-value of at most p. We compute the
false discovery rate (FDR) for all protein sets with a p-value ≤ p
as FDR(p) = R(p)/N(p). FDR(p) may not be monotonic since
it independently computes a FDR for each p-value threshold.
We address this problem by setting FDR(p) = minp′≥pFDR(p′).
Such adjustment was proposed by Yekutieli and Benjamini to
adjust p-values that were corrected for multiple hypothesis
testing28 and was applied in similar contexts.29,30 Finally, for
each protein set S with a p-value ps, the empirical q-value is
equal to FDR(ps).
(4). Identification of Significant Protein Set Cores. A

protein set S for which the proteins are significantly abundant
and have a surprisingly small abundance coefficient of variation
will obtain a small p-value and q-value. It does not, however,
mean that all of the proteins in that protein set are abundant
and have a small abundance coefficient of variation, but simply
that a significant subset of S does. Let core(S) be such subset.
We designed a greedy algorithm to identify core(S). The
algorithm iteratively removes from S the protein for which the
removal improves the p-value the most (i.e., protein with the
minimum enrichment score weight) until no further p-value
improvements can be performed. This greedy algorithm does
not guarantee optimality but generally succeeds at identifying
the key component of S.

Availability and Implementation

The proposed computational tools are implemented in a
platform-independent Java program called PSEA-Quant. To
decrease running time, PSEA-Quant first performs a presam-
pling procedure where it estimates the p-value of a given
protein set using a small number of random samples (100). If
this p-value is less than 0.02, then the p-value estimation is
refined using the user defined number of random samples.
PSEA-Quant can be used on the web in a user-friendly fashion
at krusty.scripps.edu:8080/PSEA-Quant or downloaded and
used as a command-line tool at krusty.scripps.edu:8080/PSEA-
Quant/files. The CFBE and human vs rat frontal cortex (HR)
data sets are provided as sample input files at this address:
krusty.scripps.edu:8080/PSEA-Quant/files. PSEA-Quant sup-
ports both UniProt31 identifiers and gene names as input.

■ RESULTS

PSEA-Quant is an approach that identifies protein set
annotations that are enriched for proteins with high abundance
and low abundance measurement variation. In this paper, we
applied PSEA-Quant using GO and MSigDB protein sets to a
label-free quantified protein data set related to cystic fibrosis
(CFBE) and to an isobaric labeling-based TMT quantified
protein data sets of the frontal cortex of human and rat (HR)
and human, mouse, and rat (HMR) brain. While TMT was
used as an example of label-based quantification that can be
used in conjunction with PSEA-Quant, it could have been
replaced by any one of a number of other approaches such as
iTRAQ, SILAC, or 15N. PSEA-Quant uses a variety of
approaches to estimate the statistical significance of protein
sets in a given data set and assigns them p-values. We validated
these approaches by showing that the p-value distributions
obtained with all techniques are largely uniformly distributed
under the null hypothesis (see Supporting Information Figure
S1 and text for complete analysis).

False Discovery Rate Analysis

Since a large number of protein sets are being tested for their
enrichment (e.g., 8255 GO terms that were associated with at
least two proteins in the CFBE data set), PSEA-Quant
computes an empirical q-value for each protein set p-value.
The results presented in Supporting Information Figure S1
highlighted that the protein number randomization technique is
the most conservative randomization scheme and maintains
protein annotation biases. It was therefore selected to estimate
the false discovery rate and q-values in PSEA-Quant results.
Figure 3 shows the FDR for small GO protein set p-values (≤
0.01) obtained for the CFBE data set. There is a striking
difference between the FDRs obtained for the same p-values
between the uniform and weighted Monte Carlo sampling
approaches. However, with both uniform and weighted
sampling approaches, only the curves corresponding to a low
CV tolerance (0.1) seem to behave slightly differently from the
other ones obtained with the same sampling approach. Figure 3
demonstrates that for both sampling approaches, using a low

Figure 3. FDRs associated with enrichment p-values computed by PSEA-Quant for the CFBE data set. The p-values were computed using the
uniform and weighted Monte Carlo sampling procedures with mean abundance CV tolerance values of 1.0, 0.5, and 0.1 of the sampled protein sets
(as described in Methods). When no CV tolerance was applied, the data are labeled as “Protein Independence”. FDRs were estimated using the
“protein number randomization” strategy (as described in Methods).
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CV tolerance is the most conservative approach, since it yields
the highest FDR for the vast majority of p-values. The same
observations can be made on the FDR curves of the Wild Type
data set (Supporting Information Figure S2). Since we have
described that the weighted Monte Carlo sampling technique
models protein annotation biases and is therefore more likely to
yield biologically significant results, and that a low CV tolerance
(0.1) is the most conservative approach, these strategies are the
ones that we used for the remaining data analyses in this article.

PSEA-Quant Identifies Numerous GO Protein Sets Not
Found to Be Significant Using GO Enrichment Analysis
Tools

We compared the GO protein sets identified by PSEA-Quant in
the CFBE data set (see Supporting Information File S1 for
complete results) to those found to be enriched according to
the GO enrichment analysis tools GOrilla10 and Ontologizer.7

There are several methods to analyze GO protein set
enrichments. One could choose to test for the over-
representation of a GO protein set in the entire data set
based on what is expected in the Gene Ontology database.
Another option is to set abundance and abundance coefficient
of variation thresholds and test for the enrichment of GO
protein sets within the subset of proteins passing these
thresholds (proteins with the feature of interest), while using

the entire data set as background. We ran GOrilla using the
entire data set as a ranked protein list based on protein
abundance and abundance coefficient of variation across
replicates. We also executed GOrilla with thresholds on the
protein abundance and abundance coefficient of variation
across replicates so that the top 10% proteins were selected as
having the feature of interest and the complete data set was
considered as the background subset. The best p-value among
the two GOrilla runs was considered for the benchmarking
analysis (see Supporting Information Files S2 and S3 for
complete results). In addition, we executed Ontologizer using
the same top 10% protein subset and considering the complete
data set as background. We also performed an Ontologizer
analysis independently on each CFBE replicate using the entire
GO database as background. We then associated the best p-
value from all Ontologizer runs to each GO protein set (see
Supporting Information File S4 and S5 for complete results).
Table 1 shows the GO terms for which the protein sets were
found to be significant according to PSEA-Quant (q-value <
0.1), but not by using the GOrilla and Ontologizer analyses (p-
value ≥ 0.001). Interestingly, an important number of GO
terms found by PSEA-Quant and not by GOrilla and
Ontologizer are closely related to cystic fibrosis. Indeed,
among the GO terms of interest, we find that proteins

Table 1. Significant GO Terms Identified by PSEA-Quant (q-value < 0.1) and not Significant According to the GO Enrichment
Analysis of Both Ontologizer and GOrilla (p-value ≥ 0.001) for the CFBE Data Seta

GO term p-value q-value

best
Ontologizer
p-value

best GOrilla
p-value

GO term
total size

number of proteins with GO term
in CFBE data set

phosphopyruvate hydratase complex <10−5 <0.01 0.237 >0.001 4 3
RNA splicing, via transesterification reactions with
bulged adenosine as nucleophile

<10−5 <0.01 0.521 >0.001 218 148

UTP binding 3.0 × 10−5 0.01 0.009 >0.001 3 3
pyrimidine ribonucleoside binding 3.0 × 10−5 0.01 0.011 >0.001 3 3
nuclear envelope disassembly 4.0 × 10−5 0.01 0.057 >0.001 39 36
positive regulation of cell size 5.0 × 10−5 0.01 0.103 >0.001 8 3
protein binding involved in protein folding 6.0 × 10−5 0.01 0.020 >0.001 5 3
exopeptidase activity 7.0 × 10−5 0.01 0.016 >0.001 109 37
pyridoxal phosphate binding 8.0 × 10−5 0.01 0.015 >0.001 55 27
positive regulation of protein import into nucleus,
translocation

9.0 × 10−5 0.01 0.011 >0.001 11 6

cell cortex part 1.7 × 10−4 0.02 0.005 >0.001 101 53
glucose transport 2.0 × 10−4 0.02 0.958 >0.001 118 35
fatty-acyl-CoA metabolic process 2.0 × 10−4 0.02 0.316 >0.001 26 11
response to salt stress 2.3 × 10−4 0.03 0.528 >0.001 22 6
hexose transport 2.5 × 10−4 0.03 0.342 >0.001 119 35
adenylate cyclase-activating G-protein coupled
receptor signaling pathway

2.6 × 10−4 0.03 0.746 >0.001 52 6

NADP binding 2.9 × 10−4 0.03 0.053 >0.001 47 25
sarcoplasm 3.2 × 10−4 0.03 0.313 >0.001 61 3
transferase activity, transferring nitrogenous groups 3.2 × 10−4 0.03 0.052 >0.001 27 12
dATP binding 3.8 × 10−4 0.03 0.013 >0.001 4 4
cerebellar Purkinje cell layer development 4.7 × 10−4 0.03 0.030 >0.001 23 6
protein N-linked glycosylation via asparagine 4.7 × 10−4 0.03 0.052 >0.001 92 54
positive regulation of striated muscle contraction 5.0 × 10−4 0.03 0.034 >0.001 9 3
mRNA binding 6.1 × 10−4 0.05 0.031 >0.001 105 73
polypurine tract binding 6.2 × 10−4 0.06 0.044 >0.001 14 10
aminopeptidase activity 7.8 × 10−4 0.08 0.005 >0.001 36 19
GTPase inhibitor activity 8.0 × 10−4 0.08 0.017 >0.001 13 4
opsonin binding 9.2 × 10−4 0.09 0.348 >0.001 9 3
misfolded protein binding 9.9 × 10−4 0.09 0.283 >0.001 7 3
aRedundant GO terms were removed and p-values and q-values were rounded.
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annotated with “glucose transport” (p-value = 2.0 × 10−4 and q-
value = 0.02) and “hexose transport” (p-value = 2.5 × 10−4 and
q-value = 0.03) are significantly abundant and that their
abundance is measured with a surprisingly low coefficient of
variation. These two biological processes have been shown to
be disrupted in cystic fibrosis patients,32,33 and glucose
transport in particular is enhanced in various tissues of cystic
fibrosis patients.34,35 The leading cause of cystic fibrosis is the
misfolding of CFTR caused by a deletion of F508 of the CFTR
gene.36,37 It is therefore not without interest that we observe
that PSEA-Quant highlights GO terms, such as “protein
binding involved in protein folding” (p-value = 6.0 × 10−5

and q-value = 0.01) and “misfolded protein binding” (p-value =
9.9 × 10−4 and q-value = 0.09), to be significant. It is also well
described that sodium channels and chloride channels are

disrupted in cystic fibrosis;38,39 for instance, airway epithelia in
cystic fibrosis patients have a higher rate of sodium absorption
than normal.40 Hence, to find “response to salt stress” (p-value
= 2.3 × 10−4 and q-value = 0.03) among the GO protein sets
identified by PSEA-Quant is in accordance with the literature.
Evidently, PSEA-Quant finds some GO protein sets that do not
include a large number of proteins (see Table 1). However,
these proteins are more abundant and their abundance
measurements have a lower coefficient of variation than
expected by chance. Both GOrilla and Ontologizer find several
significantly enriched GO protein sets in our data that PSEA-
Quant does not. This is expected since a GO protein set may be
enriched in terms of number of occurrences in a data set, but
not enriched for proteins of high abundance with well
reproduced abundance measurements. The goal of PSEA-

Table 2. Top Significant GO Terms Identified by PSEA-Quant in the CFBE Data Set (q-value < 0.06) but Not Significant in the
Wild Type Data Set (q-value ≥ 0.1)a

GO term
CFBE
p-value

CFBE
q-value

Wild
Type
p-value

Wild
Type
q-value

GO term
total size

number of proteins with GO
term in CFBE data set

catalytic step 2 spliceosome <10−5 <0.01 0.002 0.16 80 73
regulation of apoptotic process <10−5 <0.01 0.030 0.65 1162 418
cytosolic part <10−5 <0.01 0.004 0.22 184 131
lyase activity <10−5 <0.01 0.002 0.13 387 64
COP9 signalosome 1.0 × 10−5 <0.01 0.003 0.19 35 26
response to interleukin-4 1.0 × 10−5 <0.01 0.008 0.30 29 13
nuclear pore 2.0 × 10−5 0.01 0.009 0.33 67 49
nitric-oxide synthase regulator activity 4.0 × 10−5 0.01 0.001 0.11 6 4
negative regulation of cell cycle phase transition 5.0 × 10−5 0.01 0.103 0.91 172 97
negative regulation of dephosphorylation 6.0 × 10−5 0.01 0.250 1.00 6 5
exopeptidase activity 7.0 × 10−5 0.01 0.027 0.55 109 37
positive regulation of protein insertion into mitochondrial
membrane involved in apoptotic signaling pathway

7.0 × 10−5 0.01 0.090 0.87 24 16

pyridoxal phosphate binding 8.0 × 10−5 0.01 0.050 0.76 55 27
antigen processing and presentation of peptide antigen 8.0 × 10−5 0.01 0.011 0.36 186 157
structural constituent of cytoskeleton 8.0 × 10−5 0.01 0.002 0.16 96 59
cell junction assembly 9.0 × 10−5 0.01 0.001 0.11 186 74
pyridine nucleotide metabolic process 1.2 × 10−4 0.01 0.017 0.44 52 28
pyrimidine nucleotide binding 1.4 × 10−4 0.02 0.020 0.48 8 5
fatty-acyl-CoA metabolic process 2.0 × 10−4 0.02 0.003 0.20 26 11
response to salt stress 2.3 × 10−4 0.03 0.030 0.65 22 6
signal sequence binding 2.3 × 10−4 0.03 0.022 0.50 21 12
positive regulation of protein modification process 2.5 × 10−4 0.03 0.030 0.65 803 273
adenyl deoxyribonucleotide binding 2.7 × 10−4 0.03 0.012 0.37 5 4
NADP binding 2.9 × 10−4 0.03 0.005 0.24 47 25
zona pellucida receptor complex 3.0 × 10−4 0.03 0.003 0.17 11 9
intracellular organelle part 3.1 × 10−4 0.03 0.007 0.28 6964 3132
response to endoplasmic reticulum stress 3.1 × 10−4 0.03 0.014 0.41 126 67
sarcoplasm 3.2 × 10−4 0.03 0.280 1.00 61 3
protein N-linked glycosylation 3.4 × 10−4 0.03 0.030 0.65 100 55
dATP binding 3.8 × 10−4 0.03 0.080 0.86 4 4
organic acid metabolic process 3.8 × 10−4 0.03 0.005 0.25 1042 382
ribosomal protein import into nucleus 4.2 × 10−4 0.03 0.009 0.33 4 4
positive regulation of cell cycle process 4.3 × 10−4 0.03 0.030 0.65 185 93
positive regulation of catalytic activity 4.3 × 10−4 0.03 0.015 0.43 1242 354
peptidyl-asparagine modification 4.4 × 10−4 0.03 0.050 0.76 93 55
cerebellar purkinje cell layer development 4.7 × 10−4 0.03 0.005 0.24 23 6
positive regulation of molecular function 4.7 × 10−4 0.03 0.030 0.65 1565 420
positive regulation of striated muscle contraction 5.0 × 10−4 0.03 0.002 0.15 9 3
oxoacid metabolic process 5.2 × 10−4 0.03 0.005 0.25 1026 378
calcium-dependent phospholipid binding 6.0 × 10−4 0.05 0.020 0.48 33 15
aRedundant GO terms were removed and p-values and q-values were rounded.
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Quant is not to outperform tools like GOrilla or Ontologizer
but rather to complement them. These differences in the results
highlight the complementarity of the two strategies, where one
analyzes the overrepresentation of a protein set in the data (GO
analysis), and the other (PSEA-Quant) focuses on features of
interest (e.g., abundance, abundance coefficient of variation,
etc.) of the proteins associated with a protein set.

PSEA-Quant Identifies Cystic Fibrosis Related GO Protein
Sets That Are Differentially Expressed between the CFBE
and Wild Type Data Set

As shown previously, PSEA-Quant found various significant
GO protein sets that were relevant to cystic fibrosis when
simply provided the CFBE data set as input. PSEA-Quant is
capable of handling such a label-free quantified data set
composed of a single condition, but it can also be extended to
use a data set that includes a contrasting condition to produce
biologically relevant results, even though it was not explicitly
designed for this task. Table 2 shows the most significant GO
protein sets using PSEA-Quant in the CFBE data set (q-value <
0.06) but not in the Wild Type data set (q-value ≥ 0.1). The
vast majority of the GO protein sets discussed above was found
to be significant in the CFBE data set (q-value < 0.1) and not in
the Wild Type, with the exception of “glucose and hexose
transport”, which was also significant in the Wild Type data set.
In addition, this analysis highlighted other GO protein sets of
interest. It should be noted that these supplementary GO
protein sets were also found to be significant by GOrilla or
Ontologizer. Among these we find the “COP9 signalosome” (p-
value = 1.0 × 10−5 and q-value < 0.01), which is very tightly
involved in the degradation of CFTR.41,42 “Cellular response to
interleukin-4” (p-value = 1.0 × 10−5 and q-value < 0.01) was
also found as significant only in the CFBE data set. This result
is consistent with the literature, which indicates that cystic
fibrosis patients have an increased sensitivity to the cytokine

interleukin-4.43 On the other hand, Supporting Information
Table S1 shows the most significant GO protein sets in the
Wild Type data set (q-value < 0.03) (see Supporting
Information File S6 for complete results) that are not in the
CFBE data set (q-value ≥ 0.1). Among the GO terms of
interest, we find “cell redox homeostasis” (p-value < 10−5 and q-
value < 0.01). Indeed, calcium homeostasis is known to be
abnormal in cystic fibrosis airway epithelial cells.44 The
presence of the GO term “actin cytoskeleton” is also
noteworthy since actin was reported to bind and potentially
affect the functional properties of CFTR.45 The results in Table
2 and Supporting Information Table S1 highlight that PSEA-
Quant identifies protein sets that are of putative biological
interest with regards to cystic fibrosis. Of note, it is not because
the relationship between certain GO terms listed in Table 2 and
Supporting Information Table S1 and cystic fibrosis is not
obvious that these terms are irrelevant. These protein sets
might prove themselves useful in order to understand the
differences in the proteome between the CFBE and Wild Type
samples. Further analyses could highlight the relevance of such
GO terms. Figure 4 shows representative examples of GO
terms and their protein sets that are related to cystic fibrosis for
which the protein sets were classified as significant according to
PSEA-Quant for the CFBE data set but not the Wild Type one.

PSEA-Quant Identifies Cystic Fibrosis Related MSigDB
Protein Sets That Are Differentially Expressed between the
CFBE and Wild Type Data Set

PSEA-Quant is not limited to the use of protein sets originating
from the GO database. Indeed, any type of protein set from
KEGG pathways6 to user-defined protein sets can be used as
input for PSEA-Quant. To demonstrate this feature of our tool,
we used PSEA-Quant to identify MSigDB protein sets that
were significant in the CFBE (q-value < 0.1) but not in the
Wild Type data set (q-value ≥ 0.1) (see Supporting

Figure 4. Scatter plot of the union of all proteins identified in all three replicates of the CFBE data set. The normalized spectral count coefficient of
variation across all three replicates of each protein is plotted against its mean normalized spectral count. Proteins annotated with representative
examples of GO terms related to cystic fibrosis identified as significant by PSEA-Quant in the CFBE data set, but not in the Wild Type one are color-
coded. HSPA1A and HSP90AB1 are respectively colored in brown and purple due to their presence in more than one protein sets. Protein names in
each protein set are listed. Protein names in bold correspond to proteins belonging to the core of a protein set.
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Information File S7). Among the protein sets identified by
PSEA-Quant, we find the curated protein set “CUI GLUCOSE
DEPRIVATION” (p-value = 9.6 × 10−4 and q-value = 0.07),
which contains genes that are up-regulated under glucose-
deprived conditions. This result is notable since, as discussed
earlier, glucose transport is disrupted in cystic fibrosis cases.
This analysis also allowed us to discover additional protein sets
of interest that are related to cystic fibrosis. For instance, the
curated protein set “PID HDAC CLASSII PATHWAY” (p-
value = 1.5 × 10−4 and q-value = 0.02) was found significant.
This protein set includes genes involved in signaling events
mediated by HDAC class II. Interestingly, HDAC7, a HDAC
class II protein, is known to play a role in the restoration of the
function of ΔF508CFTR.45 In addition, PSEA-Quant identified
the KEGG protein set: “GLUTATHIONE METABOLISM”
(p-value = 3.1 × 10−4 and q-value = 0.03). This observation is
noteworthy since cystic fibrosis patients are known to be
glutathione deficient.46 Finally, the protein set “CAMP UP.V1
UP” (p-value = 3.0 × 10−5 and q-value = 0.01), which contains
genes that are up-regulated in response to cAMP signaling
pathway activation, was also found to be significant in the
CFBE data set. This result is interesting since CFTR is a
cAMP-activated ATP-gated anion channel.40

PSEA-Quant Highlights GO Protein Set Enrichment
Differences between the Frontal Cortex of Human, Mouse,
and Rat

PSEA-Quant was applied to both the human-rat (HR) and
human-mouse-rat (HMR) TMT label-based quantification data
set. Mice and rats are commonly employed to mimic
neurological disorders due to the amazing conservation of the
brain across mammalian species. Differences, however, do exist
and understanding them can lead to improved animal models
of diseases. GO protein sets identified as significantly up-
regulated with a low coefficient of variation in human vs rat in
the HR data set are shown in Table 3 (q-value < 0.01, see
Supporting Information File S8 for complete results). Table 3
shows an important number of very significant GO terms
related to mitochondria such as “NADH dehydrogenase
activity”, “mitochondrion”, “mitochondrial ATP synthesis
coupled proton transport”, “mitochondrial membrane”, and
“mitochondrial electron transport, NADH to ubiquinone”.
Obviously, while some are mostly independent, not all the
protein sets associated with these GO terms are mutually
exclusive. However, an important number of proteins related to
mitochondria are significantly up-regulated in human vs the rat.
Mitochondria are the main source of ATP in the brain but also
possess other functions such as calcium homeostasis and

Table 3. Top Significant GO Terms Identified by PSEA-Quant As Enriched for Upregulated Proteins with Low Coefficient of
Variation in Human vs Rat in the Human and Rat (HR) Frontal Cortex TMT Protein Quantification Data Set (q-value < 0.01)a

GO term p-value q-value

number of proteins
with GO term in HR

data set

generation of precursor
metabolites and energy

<10−5 <0.01 162

NADH dehydrogenase
complex

<10−5 <0.01 33

single-organism
biosynthetic process

<10−5 <0.01 146

cellular response to
reactive oxygen species

<10−5 <0.01 35

response to hydrogen
peroxide

<10−5 <0.01 39

oxidoreductase activity <10−5 <0.01 291
mitochondrial part <10−5 <0.01 409
monocarboxylic acid
metabolic process

<10−5 <0.01 148

electron transport chain <10−5 <0.01 63
organelle membrane <10−5 <0.01 766
extracellular region <10−5 <0.01 195
mitochondrial respiratory
chain complex I

<10−5 <0.01 33

NADH dehydrogenase
(ubiquinone) activity

<10−5 <0.01 28

respiratory chain complex
I

<10−5 <0.01 33

response to wounding <10−5 <0.01 98
response to ionizing
radiation

<10−5 <0.01 21

cellular response to
hydrogen peroxide

<10−5 <0.01 25

mitochondrion <10−5 <0.01 649
antioxidant activity <10−5 <0.01 34
lysosomal lumen <10−5 <0.01 24
hydrogen ion
transmembrane
transporter activity

<10−5 <0.01 44

cellular modified amino
acid metabolic process

<10−5 <0.01 81

GO term p-value q-value

number of proteins
with GO term in HR

data set

mitochondrial ATP
synthesis coupled proton
transport

<10−5 <0.01 11

respiratory electron
transport chain

<10−5 <0.01 63

vacuolar lumen <10−5 <0.01 25
cytochrome c oxidase
activity

<10−5 <0.01 14

peroxidase activity <10−5 <0.01 18
mitochondrial membrane <10−5 <0.01 262
oxidation−reduction
process

<10−5 <0.01 245

mitochondrial electron
transport, NADH to
ubiquinone

<10−5 <0.01 26

bicarbonate transport 1.0 × 10−5 <0.01 6
cellular response to
oxidative stress

1.0 × 10−5 <0.01 49

regulation of blood vessel
size

1.0 × 10−5 <0.01 14

glutathione derivative
metabolic process

1.0 × 10−5 <0.01 13

sterol metabolic process 1.0 × 10−5 <0.01 40
fatty acid catabolic process 1.0 × 10−5 <0.01 33
carboxylic ester hydrolase
activity

2.0 × 10−5 <0.01 30

steroid metabolic process 2.0 × 10−5 <0.01 60
protein activation cascade 2.0 × 10−5 <0.01 13
lipid metabolic process 2.0 × 10−5 <0.01 321
organonitrogen compound
biosynthetic process

3.1 × 10−5 <0.01 185

response to axon injury 3.1 × 10−5 <0.01 18
aRedundant GO terms were removed and p-values and q-values were
rounded.
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regulation of apoptosis.47,48 The ATP powers synaptic activity,
ionic membrane gradients, propagation of action potentials, and
axonal transport.49,50 These results may potentially be explained
by the fact that even if the rodent brain was the same size of the
human, it would still possess only an eighth of the neurons in
the human cerebral cortex.51 Therefore, this would also argue
for a higher number of mitochondria in the human frontal
cortex compared to rat to support the greater neuronal activity
of the human brain. We observe a similar trend when analyzing
with PSEA-Quant protein sets significantly up-regulated with a
low coefficient of variation in human vs mouse in the HMR
data set (Table 4). Of note, the results are extremely similar
when performing the same analysis of human vs rat in the
HMR data set (data not shown). These results are potentially
interesting for many human specific neurological diseases, such
as Alzheimer’s disease, Parkinson’s disease, schizophrenia, and
depression, that are in part due to mitochondria dysfunc-
tion.52−54

In contrast, when looking for GO protein sets that are
significantly upregulated with low coefficient of variation in the
mouse and rat frontal cortices when compared to human, fewer
GO protein sets were identified by the PSEA-Quant analysis of
the HMR and HR TMT data sets (see Supporting Information

Tables S2 and S3). Interestingly, although not extremely
significant, both rodents when compared to human appear to
have an overexpression of synapse and dendrite related
proteins. It is worth noting that it is difficult to supply an
explanation for certain GO terms identified by PSEA-Quant in
this context since, to our knowledge, such protein quantifica-
tion experiments across closely related species have never been
performed. Variations in the expression of most biological
mechanisms remain unknown across these species. Hence,
some of the GO protein sets identified by PSEA-Quant in
Supporting Information Tables S2 and S3 could be of putative
biological interest. Also, as expected because of their evolu-
tionary conservation, the analysis did not reveal striking
differences in terms of GO protein set enrichments between
the mouse and rat frontal cortices (see Supporting Information
Tables S4 and S5), with the only major difference being that a
number of laminins and collagens appear up-regulated in rat vs
mouse. These cause some laminins and collagen related GO
protein sets to obtain significant p-values according to PSEA-
Quant.

Table 4. Top Significant GO Terms Identified by PSEA-Quant As Enriched for Upregulated Proteins with Low Coefficient of
Variation in Human vs Mouse in the Human, Mouse, and Rat (HMR) Frontal Cortex TMT protein quantification dataset (q-
value < 0.02)a

GO term p-value q-value

number of proteins with
GO term in HMR data

set

mitochondrial respiratory
chain complex I

<10−5 0.01 38

NADH dehydrogenase
(quinone) activity

<10−5 0.01 30

blood coagulation <10−5 0.01 90
protein folding <10−5 0.01 88
hydrogen ion
transmembrane
transporter activity

<10−5 0.01 48

mitochondrial electron
transport, NADH to
ubiquinone

<10−5 0.01 28

single-organism metabolic
process

<10−5 0.01 1014

respiratory electron
transport chain

<10−5 0.01 65

cofactor binding <10−5 0.01 138
cytoplasmic membrane-
bounded vesicle lumen

<10−5 0.01 25

catabolic process <10−5 0.01 640
oxidoreductase activity,
acting on NAD(P)H

<10−5 0.01 56

antioxidant activity <10−5 0.01 33
mitochondrial membrane
part

<10−5 0.01 105

extracellular matrix <10−5 0.01 69
mitochondrion <10−5 0.01 672
response to oxidative
stress

<10−5 0.01 95

hemostasis <10−5 0.01 92
cytosol <10−5 0.01 765
monocarboxylic acid
metabolic process

<10−5 0.01 147

organelle membrane <10−5 0.01 738
intracellular organelle
lumen

<10−5 0.01 178

GO term p-value q-value

number of proteins with
GO term in HMR data

set

platelet activation <10−5 0.01 48
cell activation <10−5 0.01 104
regulation of body fluid
levels

<10−5 0.01 113

protease binding <10−5 0.01 19
platelet degranulation <10−5 0.01 28
mitochondrial part <10−5 0.01 402
generation of precursor
metabolites and energy

<10−5 0.01 151

carboxylic acid metabolic
process

<10−5 0.01 336

oxoacid metabolic process <10−5 0.01 351
melanosome 1.0 × 10−5 0.01 52
organic acid catabolic
process

1.0 × 10−5 0.01 91

sulfur compound
metabolic process

1.0 × 10−5 0.01 78

cellular amino acid
metabolic process

1.0 × 10−5 0.01 186

lipid metabolic process 1.0 × 10−5 0.01 303
xenobiotic metabolic
process

2.0 × 10−5 0.01 30

small molecule catabolic
process

2.0 × 10−5 0.01 113

GTPase activity 2.0 × 10−5 0.01 113
organonitrogen
compound metabolic
process

2.0 × 10−5 0.01 558

cellular modified amino
acid metabolic process

3.0 × 10−5 0.01 82

cell junction assembly 3.0 × 10−5 0.01 54
aRedundant GO terms were removed and p-values and q-values were
rounded.
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■ DISCUSSION AND CONCLUSION

PSEA-Quant highlights protein sets of putative biological
relevance that are not identified using classic GO enrichment
analysis software packages. We believe that, when used in
conjunction with such tools, PSEA-Quant facilitates the analysis
of complex protein quantification data sets.
As mentioned previously, PSEA-Quant uses replicated

experiments in order to identify protein sets of interest. A
PSEA-Quant analysis requires a minimum of two replicates to
compute an abundance coefficient of variation for each protein.
Obviously, if more replicates are given as input to PSEA-Quant,
it improves its capacity to differentiate proteins with different
abundance variations. Our results show that three replicate
label-free experiments were sufficient to obtain results of
putative biological interest. As for isobaric labeled experiments,
when two conditions were labeled with , two isobaric labels
each (HMR data set), the resulting four abundance ratios, when
used as input to PSEA-Quant, led to interesting results.
Interestingly, the comparisons of the human and rat samples
obtained similar PSEA-Quant results whether two (HMR) or
three (HR) replicate samples for each species were labeled.
The nature of the replicates in a data set, biological or

technical, is important to consider and affects the interpretation
of the results of PSEA-Quant. When provided technical
replicates as input, the PES computation of PSEA-Quant
measures the mean abundance and the reliability of the
abundance measurements of a protein with the coefficient of
variation. Therefore, in this context PSEA-Quant identifies
protein sets enriched for proteins of high abundance values
measured with great reliability. When biological replicates are
used as input to PSEA-Quant the PES reflects both the
reliability of the abundance measurements and also the
biological variability. Therefore, PSEA-Quant highlights protein
sets containing proteins with surprisingly high and constant
abundance whose abundance values are measured reproducibly
across the biological replicates. In this scenario, one could
expect matrix proteins such as actins to be among the top
results. Even though this can be the case, our results clearly
demonstrate that our method is sensitive enough to detect
protein sets, which might be of greater biological interest.
Nevertheless, the identification of protein sets containing
proteins of high abundance with low abundance coefficient of
variation is crucial to try to understand the biological processes
taking place in a sample whether the sample is derived from an
affinity purification, a whole cell extract, or a bodily fluid. In
addition, the presence of matrix proteins among the top results
can only arise when a single condition label-free quantified data
set is given as input to PSEA-Quant. When samples that are
quantified using a label-based approach or when a data set
including two different conditions are given as input, matrix
proteins tend to not appear in the results due to a lack of
differential expression. Furthermore, this problem also occurs
for the vast majority of GO analysis software packages currently
available.
Although only spectral counts and TMT-labeled protein

abundance ratios were used as input for PSEA-Quant in this
paper, our approach can easily be applied to other protein
quantification techniques such as iTRAQ, SILAC, and 15N. All
of these methods perform a relative quantification of peptides
and, therefore, proteins. Protein abundances obtained by these
quantification approaches can be used to compute PES, the
same way TMT protein abundance ratios were used in the

present analysis. PSEA-Quant is also applicable to label-free and
label-based protein quantification of proteins obtained through
affinity purification coupled to mass spectrometry. Our software
package can be particularly useful in such context to
characterize the protein−protein interactions of a given protein.
Contaminants were not filtered from the data sets analyzed

in this paper. We chose not to remove them to keep the
analyzed data sets unbiased. In addition, we did not perform
extensive noise processing of the analyzed data sets based on
criteria such as number of peptides or spectra identified for a
given protein. We opted not to do so to highlight the
capabilities of PSEA-Quant, which can identify putative
biologically significant protein sets in large noisy proteomics
data sets. Nevertheless, PSEA-Quant might benefit from
contaminant filtering and other sophisticated data set
postprocessing techniques. Contaminant filtering may be
particularly helpful before a PSEA-Quant analysis of proteomics
experiments involving the use of antibodies such as affinity
purification coupled to mass spectrometry. Indeed, protein
nonspecific binding to antibodies could hinder the analytical
power of PSEA-Quant. There are several publically available
computational approaches that address this problem (SAINT,55

CompPASS,56 or Decontaminator57) that could be used
upstream of PSEA-Quant in the context of affinity purification
coupled to mass spectrometry experiments. On the other hand,
PSEA-Quant may in some cases be helpful to detect
contaminants (see the Supporting Information).
Among the significant protein sets outputted by PSEA-

Quant, some may share a number of proteins and therefore
seem redundant. This problem would be important if the list of
significant protein sets outputted by PSEA-Quant would be
very long and tedious to analyze. This does not appear to be the
case in the context of our present study. Nevertheless, in the
future, we will propose methods to merge protein sets that
share an important subset of proteins. Several methods that
have been proposed to measure the distance or the semantic
similarity between gene sets, such as the one from GO, will be
explored.58−60

PSEA-Quant p-value estimation accuracy is limited by the
number of samplings performed by the Monte Carlo
procedure. To obtain an extremely high accuracy, a very large
number of samplings is required, which in turn necessitates a
considerable computational running time. Therefore, in the
near future we will explore computational strategies, such as
genetic algorithms, to accelerate PSEA-Quant and provide an
even more accurate p-value estimator.
This paper focused on finding protein sets that were

significantly enriched for proteins that are quantified with a
low coefficient of variation and have a high abundance.
However, one may not be interested in protein sets involving
abundant proteins, but rather protein sets enriched for proteins
with low abundance variance among a set of replicates. PSEA-
Quant can easily be adapted to compute the significance of
such protein sets by modifying the enrichment score weight
matrix to only account for quantification reproducibility.
Furthermore, the enrichment score weight matrix can be
modified to consider additional features besides abundance and
abundance coefficient of variation, such as the number of
unique peptides detected or spectra intensities.
The ability to identify protein sets enriched for proteins with

high abundance and reproduced quantification yields useful
information about the proteome of a given sample. We firmly
believe that methods such as PSEA-Quant will significantly
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improve our understanding of large quantification proteomics
data sets. It will also provide helpful guidance to help formulate
hypotheses about the biological mechanisms and processes
taking place in a given sample.
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(57) Lavalleé-Adam, M.; Cloutier, P.; Coulombe, B.; Blanchette, M.
Modeling contaminants in AP-MS/MS experiments. J. Proteome Res.
2010, 10, 886−895.
(58) Del Pozo, A.; Pazos, F.; Valencia, A. Defining functional
distances over Gene Ontology. BMC Bioinf. 2008, 9, 50.
(59) Jain, S.; Bader, G. D. An improved method for scoring protein-
protein interactions using semantic similarity within the gene
ontology. BMC Bioinf. 2010, 11, 562.
(60) Couto, F. M.; Silva, M. J.; Coutinho, P. M. Measuring semantic
similarity between Gene Ontology terms. Data Knowl. Eng. 2007, 61,
137−152.

Journal of Proteome Research Article

dx.doi.org/10.1021/pr500473n | J. Proteome Res. 2014, 13, 5496−55095509


