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Abstract
Tumor-associated macrophages (TAMs) play a crucial role in the immune response to many malignancies, but the signaling
pathways by which the glioma microenvironment cross-talk with TAMs are poorly understood. The aim of this study was to uncover
the potential signaling pathways of the regulation of TAMs and identify candidate targets for therapeutic intervention of glioma through
bioinformatics analysis.
Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) datasets were used to download RNA-Seq data

and microarray data of human glioma specimen. Differentially expressed genes (DEGs) between CD68-high samples and CD68-low
samples were sorted. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of
the DEGs was conducted. Protein-protein interaction (PPI) network were formed to identify the hub genes.
The prognostic value of TAMs in glioma patients was confirmed. A total of 477 specific DEGs were sorted. The signaling pathway

was identified in pathway enrichment and the DEGs showed prominent representations of immune response networks in glioma. The
hub genes including C3, IL6, ITGB2, PTAFR, TIMP1 and VAMP8 were identified form the PPI network and they were all correlated
positively with the expression of CD68 and showed the excellent prognostic value in glioma patients.
TAMs can be used as a good prognostic indicator in glioma patients. By analyzing comprehensive bioinformatics data, we

uncovered the underlying signaling pathway of the DEGs between glioma patients with high and low expression level of CD68.
Furthermore, the 6 hub genes identified were closely associated with TAMs in glioma microenvironment and need further
investigation.

Abbreviations: CGGA = Chinese Glioma Genome Atlas, DEGs = differentially expressed genes, GBM = glioblastoma, GO =
gene ontology, KEGG = Kyoto Encyclopedia of Genes and Genomes, LGG = low grade glioma, OS = overall survival, PPI = protein-
protein interaction, TAMs = tumor-associated macrophages, TCGA = The Cancer Genome Atlas, TME = tumor microenvironment.
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1. Introduction

Globally, there are about 100,000 people are diagnosed as having
diffuse gliomas every year.[1] Diffuse glioma contains glioblasto-
ma (GBM) and low grade glioma (LGG) and they are related to
substantial morbidity and mortality although it comprises <1%
of all newly diagnosed cancers.[2,3] GBM, the most common and
lethal primary brain tumor in adults, accounts for 70% to 75%of
all diffuse glioma diagnoses and has a median overall survival of
around 15 months despite aggressive treatment.[4,5] By several
mechanisms such as the induction of immunosuppression, fast
proliferation, the promotion of angiogenesis and its propensity to
infiltrate vital brain structures, glioma can achieve rapid growth
and dissemination within the brain.[6–9] Among these mecha-
nisms, escape from immune surveillance is gradually recognized
as a landmark event in glioma biology.[10,11] Similar to many
other solid malignancies, the tumor microenvironment (TME)
was supposed to play a critical role in the control of the immune
response to glioma.[12,13]

Inside the tumor, tumor-associated macrophages (TAMs) are a
key component of the local TME, and they can contribute greatly
to tumor immune system evasion, suppress T-cell activity, and
control cancer initiation, progression, metastasis in an array of
malignancies.[14–16] In GBM, TAMs constitute more than 30%of
infiltrating cells and TAMs infiltration is closely related to glioma
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Table 1

Main information of the datasets used in the present study.

Train set (1) Train set (2) Test set (1) Test set (2)

Data type RNA-Seq (CGGA) RNA-Seq (CGGA) Array (CGGA) RNA-Seq (TCGA)
Cases (n) 693 325 301 702
CD68 high 231 (top) 109 (top) 150 351
CD68 low 231 (last) 109 (last) 151 351
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progression and the outcome of glioma patients.[17–19] Even
though TAMs-induced immunosuppression was found in the
different phases of the anti-glioma immune response, the
signaling pathways by which glioma microenvironment controls
TAMs and glioma-specific immunity are not fully understood. In
some malignancies which including glioma, the acquisition of a
polarized phenotype resembling anti-inflammatory (M2) macro-
phage by TAMs has been associated with the suppression of
tumor-specific immunity and tumor progression in tumor
pathogenesis.[20,21] While the acquisition of a polarized pheno-
Figure 1. The prognostic value of TAMs in glioma. (A) Expression analysis of CD68 gene between glioma patients (including GBM patients (n=163) and LGG
patients (n=518)) and healthy people (n=207) using TCGA and GTEx datasets. (B) Kaplan–Meier graphs of patients with low (n=338, blue) and high (n=338, red)
CD68 expression using TCGA dataset. (C-E) Up: Expression analysis of CD68 gene among glioma patients of different grades using CGGA datasets including
RNA-seq (batch 1) (c), RNA-seq (batch 2) (d) and microarray date (e). Down: Kaplan–Meier graphs of patients with low (blue) and high (red) CD68 expression using
CGGA dataset of RNA-seq (batch 1) (c), RNA-seq (batch 2) (d) and microarray date (e). Log-rank Mantel–Cox test, P<0.0001.
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type resembling pro-inflammatory (M1) macrophage by TAMs
has been associated with the promotion of tumor-specific
immunity and tumor regression in tumor pathogenesis.[22,23]

However, the M1/M2 transition of TAMs is a dynamic process
and this model has its own drawbacks such as the intermediate
phenotypes of TAMs between M1 and M2 do not fit this model
although the intermediate states do exist.[24,25] In view of the
complicated biological function of TAMs in TME which may
contribute to their pathogenic activities, the identification of the
molecular mechanisms that control TAMs in glioma has crucial
basic and clinical significance.
Figure 2. Differential genes expression analysis. A-B Volcano plot of gene expressi
log2 in Train set 1 (a) and Train set 2 (b), with up-regulated genes are shown in red a
up-regulated genes (c) and down-regulated genes (d) between Train set 1 and Train
genes in dark blue.
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Here, using CD68, which is widely used as a cellular marker
for macrophages,[26,27] we confirmed the prognostic value of
TAMs in glioma patients at the level of gene. Through Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis of the differentially expressed genes (DEGs)
between glioma patients with the high and low expression levels
of CD68, we found that these DEGs showed prominent
representations of immune response networks in glioma. Then,
the protein-protein interaction (PPI) network analysis elaborated
the immune system process in which the DEGs are involved in.
Finally, the hub genes including C3, IL6, ITGB2, PTAFR,
on with P< .05 (fold change in the relative expression of genes as determined by
nd down-regulated genes in blue. C-D Venn diagram of differentially expressed
set 2, with 435 up-regulated DEGs are shown in brown and 42 down-regulated
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Figure 3. GO and KEGG enrichment analysis of DEGs. (A-C) The biological process aspect (A), the cellular component aspect (b) and the molecular function
aspect (c) of GO analysis. (D) KEGG enrichment analysis of DEGs. (E) The relationship between different enriched pathways from KEGG enrichment analysis. The
circle represents the gene and the rectangle represents the pathway.
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TIMP1 and VAMP8were identified from the PPI network. These
hub genes were correlated positively with the expression ofCD68
and showed their excellent prognostic value in glioma patients.
These findings uncovered the potential signaling pathways of the
regulation of TAMs and identified candidate targets for
therapeutic intervention of glioma.
2. Materials and methods

2.1. Collection and processing of data sets

The healthy tissue samples were obtained from Genotype-Tissue
Expression (GTEx) datasets. Two RNA-Seq data sets and clinical
information containing 693 (batch_1) and 325 (batch_2) glioma
samples were obtained from Chinese Glioma Genome Atlas
(CGGA, http://cgga.org.cn/download.jsp), whichwere assigned as
training sets (Train set 1 and Train set 2). After normalizing these
data,CD68high (top third) and low expression (last third) samples
were selected for each data set according to the expression of
CD68. Furthermore, a microarray data set including 301 glioma
sampleswas downloaded fromCGGAfor a test set (Test set 1), and
RNA-Seq data set including 702 gliomas was downloaded from
The Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov)
for another test set (Test set 2). After preprocessed, each test setwas
divided into two groups of CD68-high and -low by the median
expression of CD68. All these processes were conducted by R-
studio software (https://rstudio.com/). The information of these
data sets was shown in Table 1.

2.2. Screening of differential expression genes (DEGs)

In order to clarify the differences of expression profiles between
gliomas with high and low CD68 expression, Limma package
4

was used to screen the DEGs by comparing CD68-high samples
with CD68-low samples in Train set 1 or Train set 2, respectively.
All genes with a P value < .01 and jlog2fold changej > 2 were
selected as DEGs for further analysis.
2.3. Function enrichment analysis of DEGs

Then, for understanding the biological processes and pathways in
which DEGs involved, GO (Gene Ontology) and KEGG (Kyoto
Encyclopedia of Genes and Genomes) enrichment analysis was
performed on the DAVID database (https://david.ncifcrf.gov/
home.jsp). The cut-off value was set as gene count >10 and
P value< .05.
2.4. Construction and analysis of protein-protein
interaction (PPI) network

STRING database (http://www.string-db.org/) was used to
construct the PPI network of DEGs with high confidence
(confidence score > 0.70). Significant clusters were obtained
by MCODE plug-in with a score >10. Furthermore, the immune
process enrichment of the PPI network was performed by Clue-
Go plug-in with P< .01 and genes > 10%/ term. Additionally,
hub genes were calculated by CytoHubba plug-in using two
algorithms including Degree and Betweenness. All these data
were visualized by Cytoscape software (http://www.cytoscape.
org/) and R-studio software (https://rstudio.com/).
2.5. Statistical analysis

Two-tailed Student’s t test was used for analyzing the difference
between the two groups. Pearson Chi-square test was used to
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evaluate the correlation between genes. Overall survival (OS) was
analyzed using the Kaplan-Meier method and Log-rank test.
P< .05 was considered significantly different.
3. Results

3.1. The prognostic value of TAMs in glioma

Firstly, to investigate the prognostic significance of the infiltrating
level of TAMs in glioma, we queried a TAMs associated gene,
CD68, and compared its expression between glioma patients and
healthy people. We found that there was a significant increase in
CD68 expression in glioma including GBM and LGG, more so
than normal tissues (P< .01) (Fig. 1A). When we compared the
survival of glioma patients with the low or high expression level
of CD68 using the TCGA dataset, we found significantly worse
outcomes for patients that had higher expression of the CD68
gene (Fig. 1B). Similarly, we founded that the grades of glioma
were increased with the increment of CD68 expression and the
higher the expression of CD68 and worse outcome the glioma
patients end up with using another three datasets (Fig. 1C–E).
These results indicate that the role of TAMs in glioma is harmful
and the presence of TAMs is unfavorable for survival.

3.2. DEGs identification of gliomas with different
expression of CD68

To study the difference of the transcriptional program between
glioma with high expression of CD68 and low expression of
CD68, we first analyzed their DEGs using two different Train
sets. In Train set 1, there are 693 glioma patients, including 231
CD68-high cases and 231 CD68-low cases. In Train set 2, there
Figure 4. PPI network analysis of DEGs. (A) PPI network analysis of DEGs, with 2
cluster 1 (score=17.46) and cluster 2 (score=10.12).
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are 325 glioma patients, including 109 CD68-high cases and 109
CD68-low cases (Table 1). In Train set 1, we screened 976 up-
regulated genes (Fig. 2A) and 539 down-regulated genes, while in
Train set 2 (Fig. 2B), we enriched 93 up-regulated genes and 323
down-regulated genes. Then, by Venn analysis, we identified 435
up-regulated DEGs and 42 down-regulated DEGs that Train set 1
and Train set 2 shared (Fig. 2C-D). Thus, we finally selected a
total of 477 DEGs for further analysis.

3.3. GO and KEGG pathway enrichment analysis of DEGs

To further assess CD68-associated signaling pathway in glioma,
we conducted GO and KEGG analysis of the DEGs. Specifically,
in the biological process aspect of GO analysis, these DEGs
showed prominent representations of immune response net-
works, signal transduction, innate immune response signaling,
inflammatory response signaling and proteolysis (Fig. 3A). Of
note, among all the selected signaling pathway, most of them are
associated with immune response, suggesting the important role
of TAMs in regulating glioma immune microenvironment
(Fig. 3A). In the cellular component aspect, these DEGs showed
prominent representations of plasma membrane, integral
component of membrane, extracellular exosome, extracellular
space and extracellular region (Fig. 3B). In the molecular function
aspect, these DEGs showed prominent representations of serine-
type endopeptidase activity, receptor binding, receptor activity,
carbohydrate binding and cytokine activity (Fig. 3C). Specifical-
ly, in KEGG analysis, these DEGs showed prominent represen-
tations of staphylococcus aureus infection, tuberculosis,
cytokine-cytokine receptor interaction, phagosome and osteo-
clast differentiation (Fig. 3D). Moreover, the enriched pathways
showed a close relationship with each other (Fig. 3E). Together,
33 nodes and 1235 edges. (B-C) The two most significant modules, including
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these results suggested that the DEGs are mainly involved in the
immune response in glioma.

3.4. PPI network analysis of DEGs

To further determine the role of these DEGs in the molecular
processes of glioma, the PPI network with 233 nodes and 1235
edges was constructed (Fig. 4A). Then, we recognize the most
significant module of the network, cluster 1 (score=17.46) and
cluster 2 (score=10.12). In cluster 1, we identified 49 genes
(Fig. 4B) and in cluster 2, we identified 18 genes (Fig. 4C).

3.5. Immune system process enrichment analysis of genes
in PPI network

In view of the above results of GO analysis of the DEGs which
suggested that these genes are mainly involved in the immune
Figure 5. Significant immune immune system pro
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response in glioma.We further analyzed the immune system process
of the 233 genes form PPI network to elaborate how these DEGs
were took part in the regulation of the glioma immune response.
These enriched genes showed prominent representations of
lymphocyte proliferation (including T cell proliferation, regulation
of lymphocyte proliferation, regulation of T cell proliferation,
positive regulation of T cell proliferation and positive regulation of
lymphocyte proliferation), peptide antigen assembly with MHC
class II protein (including peptide antigen assembly with MHC
protein complex), macrophage activation (including microglial cell
activation and regulation of macrophage activation), granulocyte
activation (including neutrophil degranulation, neutrophil activa-
tion involved in immune response and neutrophil activation),
neutrophil chemotaxis (including granulocyte chemotaxis, granulo-
cyte migration and neutrophil migration), interferon-gamma-
mediated signaling pathway (including response to interferon-
cess was identified of all these 233 PPI genes.
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gamma, cellular response to interferon-gamma and granulocyte
migration), type II ahypersensitivity (including regulationof type II a
hypersensitivity, type II hypersensitivity and regulation of type II
hypersensitivity), antigen processing and presentation of exogenous
peptide antigen, positive regulation of leukocyte migration and
regulation of B cell proliferation (Fig. 5).

3.6. Identification and validation of hub genes

Given the important role for TAMs in glioma pathogenesis, we
determined to further detect the modulation mechanism of TAM
activity in glioma. Through Venn analysis, we identified six Hub
genes, namely C3, IL6, ITGB2, PTAFR, TIMP1 and VAMP8
(Fig. 6A). An analysis of CGGA data showed that there is higher
expression level of these six hub genes in glioma patients with
higher expression of CD68 (Fig. 6B). Moreover, a similar result
was obtained through the analysis of TCGA data (Fig. 6C). These
results suggested the potential role of these hub genes in TAMs
associated signaling pathway in glioma.

3.7. The prognostic value of hub genes in glioma patients

To further investigate whether there is positive correlation or
negative correlation between these hub genes and cd68, we
performed Pearson correlation analysis of the expression level of
Figure 6. Identification and characterization of hub genes. (A) Venn diagram of hub
IL6, ITGB2, PTAFR, TIMP1 and VAMP8. (B) Expression analysis of hub genes in Tes
hub genes in Test 2 (CD68-low, n=351; CD68-high, n=351; P< .05).
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CD68 and six hub genes in glioma patients using two datasets. In
Test set 1, there are 301 glioma patients, including 150 CD68-
high cases and 151 CD68-low cases. In Test set 2, there are 702
glioma patients, including 351 CD68-high cases and 351 CD68-
low cases (Table 1). As we can see, the expression level of all these
six hub genes are correlated positively with the expression of
CD68 with different correlation coefficient, namely C3 (R=
0.76), IL6 (R=0.40), ITGB2 (R=0.86), PTAFR (R=0.80),
TIMP1 (R=0.60) and VAMP8 (R=0.88) (Fig. 7A). Moreover,
when we compared the survival of glioma patients with the low
or high expression level of these hub genes, we found significantly
worse outcomes for patients that had higher expression of these
hub genes (Fig. 7B). Similarly, we validated these results using the
TCGA dataset. The expression level of all these six hub genes are
correlated positively with the expression of CD68 with different
correlation coefficient, with C3 (R=0.57), IL6 (R=0.25),
ITGB2 (R=0.89), PTAFR (R=0.83), TIMP1 (R=0.44) and
VAMP8 (R=0.73) (Fig. 7C). And again, these hub genes showed
excellent prognostic values in glioma patients (Fig. 7D), indicat-
ing their potential roles of therapeutic candidates in glioma.

4. Discussion

Recent studies demonstrated that the interplay between TME
components and cancer cells play critical roles in the maintenance
genes obtained by Degree and Betweenness algorithms, the hub genes areC3,
t 1(CD68-low, n=151; CD68-high, n=150; P< .05). (C) Expression analysis of
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Figure 7. The prognostic value of hub genes in glioma patients. (A) Pearson correlation analysis of the expression level of CD68 and 6 hub genes in glioma patients
using the data of Test set 1 (n=301), with C3, IL6, ITGB2, PTAFR, TIMP1 and VAMP8. (B) Kaplan–Meier graphs of patients with low (blue) and high (red) hub genes
expression using the data of Test set 1. (C) Pearson correlation analysis of the expression level of CD68 and six hub genes in glioma patients using the data of Test
set 2 (N=702), with C3, IL6, ITGB2, PTAFR, TIMP1 and VAMP8. (D) Kaplan–Meier graphs of patients with low (blue) and high (red) hub genes expression using the
data of Test set 2.
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of cancer characteristics, including treatment resistance, immune
sequestration and angiogenesis.[28,29] The TME can bemolded by
secreted factors such as different growth factors and cytokines
and cancer cell-intrinsic signaling pathways.[30–32] Besides tumor
cells, the infiltrating immune cells and stromal cells within TME
are dominant cell components that can influence the malignant
progression of tumors.[33] In the glioma microenvironment, the
most common non-neoplastic cells are TAMs, which include
macrophages of peripheral origin and brain-intrinsic microglia,
that create a supportive stroma for glioma cell proliferation
and invasion.[24] Through specific TAMs-glioma iterative
interactions, a particular glioma ecosystem is builded up, which
offers new strategies for glioma therapeutic targeting.[34]

Therefore, we set out to determine the role of TAMs in the
glioma microenvironment. First, we confirmed the prognostic
value of TAMs in glioma patients at the level of gene and
transcription using TCGA, CGGA and GTEx datasets. The
higher the expression of CD68 and worse outcome the glioma
patients end up with, which was consistent with previous studies,
suggesting the pivotal role of TAMs in glioma microenviron-
ment.[35,36] Then, to further determine the underlying molecular
difference between gliomawith high expression ofCD68 and low
expression of CD68, we performed DEGs analysis and detected
976 up-regulated genes and 539 down-regulated genes in the data
of Train set 1, and 93 up-regulated genes and 323 down-
regulated genes in the data of Train set 2. Through Venn analysis,
we identified 435 up-regulated DEGs and 42 down-regulated
DEGs that train set 1 and train set 2 share together, and we finally
selected total 477 DEGs for further investigation.
In support of an important role for TAMs in tumor

pathogenesis, recent studies which were about the modulation
of TAM activity in glioma have recognized some specific
molecules and signaling pathways which has beneficial effects
on GBM.[37–39] Thus, we performed GO and KEGG analysis of
the DEGs between glioma patients with high and low expression
level of CD68 to uncover the mechanisms behind these DEGs.
To identify the terms which contain more genes in different
categories, we define the interested terms as the terms which
constitute more genes. In the biological process aspect of GO
analysis, we identified 22 interested terms. Among all the selected
signaling pathways, most of them are associated with immune
response, such as innate immune response, inflammatory
response, complement activation, interferon-gamma-mediated
signaling pathway and T cell proliferation, suggesting the crucial
role of TAMs in regulating glioma immunemicroenvironment. In
the cellular component aspect of GO analysis, we identified 12
interested terms, most of them are associated with membrane and
extracellular functions, such as plasma membrane, integral
component of membrane, extracellular exosome and extra-
cellular space, indicating the function of these genes may be
implemented in membrane structures and extracellular space. In
the molecular function aspect of GO analysis, we identified
6 interested terms, namely serine-type endopeptidase activity,
receptor binding, receptor activity, carbohydrate binding,
cytokine activity and antigen binding. In the pathway category
of KEGG analysis, we identified 18 interested terms, most of them
are associated with pathogen infections, such as tuberculosis,
staphylococcus aureus infection, cytokine-cytokine receptor
interaction and phagosome, indicating the potential role of these
genes in the body’s resistance to microorganisms.
Then, to assess the immune system process of some key

molecules, we performed PPI network analysis. Most of the
9

enriched genes from PPI network were involved in the process of
adaptive immune response, such as peptide antigen assembly
with MHC class II protein, lymphocyte proliferation, antigen
processing and presentation of exogenous peptide antigen and
regulation of B cell proliferation. Through Venn analysis, we
identified six hub genes, namely C3, IL6, ITGB2, PTAFR,
TIMP1 and VAMP8. Previous studies have shown that along
with complement C3, T cells canmediate photodynamic therapy-
induced anti-glioma responses.[40] IL6 can contribute to glioma
progression through different signaling pathway such asNFAT1-
regulated IL6 pathway, p-STAT3-MIR155–3p-CREBRF path-
way, IL6/JAK/STAT3 Pathway.[41–43] What’s more, there were
also other studieswhich shown that ITGB2,PTAFR,TIMP1and
VAMP8 are involved in glioma evolution.[44–48] Even though,
these studies were only the initial exploration of the function of
these genes in glioma and the exact mechanisms behind are still
remain in a state of incomplete understood. Combined with our
results that the expression level of all these six hub genes are
correlated positively with the expression of CD68 and higher
expression of these hub genes signified worse outcomes for
glioma patients, we may conclude that these hub genes may be
potential candidate targets for therapeutic intervention of
glioma.

5. Conclusion

In conclusion, we confirmed the prognostic value of TAMs in
glioma patients. Through bioinformatics analysis, we uncovered
the underlying signaling pathway of the DEGs between glioma
patientswith high and low expression level ofCD68. Furthermore,
the six hub genes identified were closely associated with TAMs in
glioma microenvironment and need further investigation.
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