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A large proportion of adult patients with sickle cell disease (SCD) develops kidney disease 
and is at a high risk of mortality. The contribution of advanced glycation end products 
and their receptor (AGE/RAGE) axis has been established in the pathogenesis of multiple 
kidney diseases. The aim of the present study was to determine the implication of RAGE 
in the development of SCD-related kidney complications in a mouse model of SCD, as 
this has never been investigated. 8-week-old AA (normal) and SS (homozygous SCD) 
Townes mice were treated with a specific RAGE antagonist (RAP) or vehicle (NaCl). After 
3 weeks of treatment, red blood cell count, hematocrit, and hemoglobin levels were 
significantly higher in RAP-treated SS mice. Reticulocyte count and sickle cell count were 
reduced in RAP-SS compared to their NaCl-treated littermates. The lower NADPH oxidase 
activity in the kidney of RAP-treated mice compared to NaCl-treated mice suggests limited 
ROS production. RAP-treated SS mice had decreased NF-κB protein expression and 
activation as well as reduced TNF-α mRNA expression in the kidney. Glomerular area, 
interstitial fibrosis, tubular iron deposits, and KIM-1 protein expression were significantly 
reduced after RAP treatment. In conclusion, this study provides evidence supporting the 
pathogenic role of RAGE in kidney injuries in sickle cell mice.
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INTRODUCTION

Sickle cell disease (SCD) is one of the most common severe monogenic disorders worldwide. 
Mutated intra-erythrocytic hemoglobin S results from the substitution of valine for glutamic 
acid on the sixth codon of the β-globin gene (HBB) and leads to the formation of sickle-
shaped red blood cells (RBCs) (Ballas and Mohandas, 1996). The homozygous disease is 
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characterized by increased RBC fragility, decreased RBC 
deformability, and increased endothelial adhesion, which 
promote chronic hemolytic anemia and painful vaso-occlusive 
crises (VOC) (Rees et  al., 2010; Connes et  al., 2018). An 
imbalanced redox state and chronic inflammation also 
participate in the development of vasculopathy and multiple 
organ damage (Wood et al., 2008; Sparkenbaugh and Pawlinski, 
2013; Conran and Belcher, 2018; van Beers and van Wijk, 
2018). Due to its high rate of oxygen consumption and 
functional features, the kidney is particularly vulnerable in 
SCD patients. It has been estimated that 16–18% of overall 
mortality in patients with SCD is attributed to chronic renal 
failure (Platt et  al., 1994). Renal manifestations of the disease 
include altered renal hemodynamics, renal and glomerular 
enlargement, and tubular deposits of iron that ultimately 
contribute to the development of chronic kidney disease  
(Nath and Hebbel, 2015).

Under oxidative conditions, advanced glycation end products 
(AGEs) are generated by non-enzymatic glycation and oxidation 
of proteins and lipids in the Maillard reaction (Singh et  al., 
2001). Beyond their valuable role as well-established markers 
of oxidative stress (Genuth et  al., 2005; Koyama et  al., 2007; 
Meerwaldt et  al., 2008), it has been demonstrated that AGEs 
contribute to the pathophysiology of organ complications in 
diabetes mellitus and other chronic inflammatory diseases 
(Miyata et  al., 1998; Huebschmann et  al., 2006; Guo et  al., 
2012), partially through oxidative stress mechanisms/pathways 
(Genuth et  al., 2005; Koyama et  al., 2007; Meerwaldt et  al., 
2008). The accumulation of AGEs has been shown to participate 
in renal filtration alteration and glomerulopathy (Ahmed, 
2005; Tan et al., 2007). The underlying molecular mechanisms 
involve enhanced production of pro-inflammatory cytokines, 
adhesion molecules, and oxidants following the activation of 
AGEs receptors (RAGEs) (Rojas et  al., 2000; Ahmed, 2005; 
Goldin et  al., 2006).

Although numerous SCD-related kidney complications are 
consistent with tissue damage induced by RAGE activation, 
such as albuminuria (Wendt et  al., 2003), focal segmental 
glomerulosclerosis (Tanji et  al., 2000; Wendt et  al., 2003), and 
fibrosis (Cooper, 2004), the possible role of this receptor in 
the pathogenesis of SCD has been poorly investigated. To date, 
only two studies have reported increased plasma AGEs 
concentrations in children and adults with homozygous SCD 
at steady state with no further increase during VOC (Somjee 
et  al., 2005; Nur et  al., 2010). More recently, a third study 
reported increased level of AGEs in the skin of SCD patients 
compared to controls but the authors found no association 
with the clinical status of the patients (Kashyap et  al., 2018). 
To test the hypothesis that RAGE may contribute to the 
development of kidney damage in SCD, we  investigated the 
effects of RAGE inhibition on the kidney of a transgenic mouse 
model of SCD (Townes) expressing exclusively human sickle 
hemoglobin. Histological sections of the kidney, pro-inflammatory 
molecule expression, oxidative stress markers, and hematological 
parameters were analyzed in SCD mice treated with a specific 
antagonist peptide of RAGE.

MATERIALS AND METHODS

Animals
We have established a colony of Townes sickle mice in our 
laboratory, originally purchased from the Jackson Laboratory 
(Bar Harbor, ME, USA). Mouse genotypes were confirmed by 
PCR. Townes mice have both human α- and β-globin genes 
knocked into the mouse locus, allowing the generation of 
littermates AA (healthy controls) and SS (homozygous SCD) 
mice (Wu et  al., 2006). A total of 44 mice (21 females and 
23 males) aged 8–9  weeks were used and maintained on a 
12-h light–dark cycle with food and water ad libitum. The 
guidelines from the French Ministry of Agriculture for 
experimental procedures and the Institute for Laboratory Animal 
Research (National Academy of Sciences, USA) were followed 
and the protocol was approved by the regional animal care 
committee (#DR2013-46, Rhône-Alpes, France).

Experimental Design
To determine the role of RAGE in SCD pathophysiology, RAGE 
antagonist peptide (RAP; 5  mg kg−1, #553031, Merck Millipore, 
Molsheim, France) was administered in 8- to 9-week-old AA 
and SS mice via intraperitoneal (IP) injection, 5  days per week 
for 3  weeks, as previously proposed (Arumugam et  al., 2012). 
Saline solution (NaCl 0.9%) IP injection was used as a control.

Tissue Sampling
The day after the last injection, mice were anesthetized with 
an IP injection of pentobarbital (50 mg/kg, Dolethal®, Vétoquinol, 
Lure, France) and blood was collected by a retro-orbital 
venipuncture into EDTA tubes for hematological analysis. Mice 
were euthanatized by exsanguination with a 0.9% NaCl 
transcardial perfusion for 70  s. One kidney was collected and 
immediately frozen in liquid nitrogen for oxidative stress and 
qRT-PCR analyses. The second kidney was conditioned for 
histology (vide infra).

Hematology
An ABX Micros 60 automat (Horiba, Montpellier, France) was 
used for the following hematological measurements: hematocrit 
(Hct); red blood cell (RBC) count; hemoglobin concentration; 
mean corpuscular volume (MCV); RBC distribution width 
(RDW); mean corpuscular hemoglobin concentration (MCHC); 
mean corpuscular hemoglobin (MCH); white blood cell (WBC) 
count; lymphocyte, monocyte, and granulocyte counts. The 
percentage of reticulocytes and sickle cells was blindly assessed 
on smears stained with brilliant cresyl blue (860867, Sigma-
Aldrich, St-Louis, MO, USA) by two investigators under a 
light microscope (BX43 Microscope, Olympus, Tokyo, Japan).

qRT-PCR for Cytokines mRNA Expression
Total mRNA from kidney was isolated using Tri Reagent LS 
(Euromedex, Souffelweyersheim, France) according to the 
manufacturer’s instructions, purified with DNase I  (EN0525, 
ThermoFisher scientific, Waltham, MA, USA), and concentrated 
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at 80  ng.μl−1. One thousand nanograms per sample of total 
mRNA were reverse transcribed to cDNA with the reverse 
transcriptase RNase Hminus (Promega, Madison, WI, USA) 
using oligo (T)15 (Eurogentec, Seraing, Belgium). RT calibration 
was done in the presence of 80  pg. of a synthetic external 
and non-homologous poly(A) Standard RNA (SmRNA) used 
to normalize the reverse transcription of mRNAs of biological 
samples (Morales and Bezin, patent WO2004.092414). Real-
time qPCR analysis was performed on a Rotor-Gene Q system 
(Qiagen, Venlo, Netherlands) by using the Rotor-Gene SYBR® 
green PCR kit (Qiagen, Venlo, Netherlands). The thermal 
profiles consisted of 15  min at 95°C for denaturing followed 
by 45  cycles of amplifications (15  s at 94°C for denaturation, 
30  s at 58°C for annealing and, 6  s at 72°C for extension). 
Results obtained for the targeted mRNAs were normalized 
against the SmRNA. The primer pair used was: Tumor necrosis 
factor-α (TNF-α; M13049.1) forward 5′ CTG TAG CCC ACG 
TCG TAG C 3′, reverse 5′ TTG AGA TCC ATG CCG TTG 
3′ (97  bp), Interleukine-1β (IL-1β; NM 008361.3) forward 5′ 
TTG ACG GAC CCC AAA AGA T 3′, reverse 5′ AGC 
TGG ATG CTC TCA TCA GG 3′ (73  bp); Interleukine-6 
(IL-6; M24221) forward 5′ GCT ACC AAA CTG GAT ATA 
ATC AGG A 3′, reverse 5′ CCA GGT AGC TAT GGT ACT 
CCA GAA 3′ (78  bp); Vascular cell adhesion molecule-1 
(VCAM-1; NM 011693.2) forward 5′ TGG TGA AAT GGA 
ATC TGA ACC 3′, reverse 5′ CCC AGA TGG TGG TTT 
CCT T 3′ (86  bp).

Oxidative Stress and Antioxidant 
Assessment
Kidney was homogenized (10%, w/v) in PBS 1X  +  EDTA 
0.5  mM in ice. After centrifugation at 12,000  g for 10  min 
at 4°C, the supernatant was collected for measurement of 
oxidative stress markers. Homogenate aliquots were stored 
at −80°C. Protein concentrations were determined using the 
BCA protein assays Kit (Novagen, Darmstadt, Germany) in 
accordance with the manufacturer’s instructions. All of the 
chemicals used for oxidative stress measurements were purchased 
from Sigma-Aldrich (St-Louis, MO, USA) and spectrophotometric 
measurements were performed on TECAN Infinite 2000 plate 
reader (Männedorf, Switzerland). Results were standardized per 
mg of total protein. Glutathione peroxidase (GPx) activity was 
determined by the modified method of Paglia and Valentine 
(Paglia and Valentine, 1967). GPx activity was determined by 
measuring the rate of NADPH extinction after addition of 
glutathione reductase, reduced glutathione and NADPH using 
hydrogen peroxide (H2O2) as substrate as previously described 
(Charrin et  al., 2015). NADPH oxidase activity was quantified 
as the formation rate of formazan blue from nitroblue tetrazolium 
and the superoxide radicals produced by NADPH oxidase in 
the presence of NADPH.

Histology
The kidneys were harvested and fixed in a 4% paraformaldehyde 
(Sigma-Aldrich, St Louis, MO, USA) in a 0.1  M phosphate 

buffer solution for 2  h. They were then incubated in 25% 
sucrose (Sigma-Aldrich, St Louis, MO, USA) for 24  h for 
cryopreservation and gently frozen in −40°C isopentane (VWR, 
West Chester, PA, USA) before storage at −80°C. Seven-
micrometer sections were cut and stained with hematoxylin–
eosin, Masson’s trichrome, and Perl’s Blue. All observations in 
light microscopy were performed using a light microscope 
Olympus BX43 (Olympus Corporation, Tokyo, Japan), images 
were captured with a video camera SC30 (Olympus Corporation, 
Tokyo, Japan) coupled to an image analysis system (AnalySIS® 
getIT! 5.1; Olympus Soft Imaging Solutions GmbH, Münster, 
Germany). The area of 50 glomeruli per mouse was measured 
using Image J.

Immunostaining
Briefly, antigen retrieval was performed by immersing frozen 
sections in 0.01 M citrate buffer (pH 6.0), at 95°C for 25 min. 
Slides were then incubated in blocking solution (TBS  +  3% 
donkey serum) at room temperature for 1  h 30  min. 
Endogenous biotin and peroxidase activity were blocked 
before staining, by using commercial avidin/biotin and 
peroxidase kits, respectively (Vector Lab, Burlingame, CA, 
USA). Slides were incubated overnight at 4°C with the 
following primary antibodies: rabbit polyclonal anti-NF-κB 
p65 (sc-372, dilution 1:200, Santa Cruz Biotechnology, CA), 
mouse monoclonal anti-phosphorylated NF-κB p65 Ser536 
(sc-136,548, dilution 1:200, Santa Cruz Biotechnology), or 
rat monoclonal anti-KIM1 (sc-53,769, dilution 1:50, Santa 
Cruz Biotechnology). After washing, sections were then 
incubated with a biotinylated donkey anti-rabbit (711-065-
152, dilution 1:2,000; Jackson Immuno-Research, Suffolk, 
UK), donkey anti-mouse (715-065-150, dilution 1:5,000; 
Jackson Immuno-Research), or donkey anti-rat antibody (712-
065-153, dilution 1:2,000; Jackson Immuno-Research). Exposure 
was performed with the avidin-biotin enzyme complex 
(Vectastain Elite ABC standard peroxidase Kit; Vector Lab, 
Burlingame, CA, USA) and the substrate 3,3′-diaminobenzidine 
(DAB Peroxidase Substrate Kit; Vector Lab, Burlingame, CA, 
USA). ImageJ® software with the “Immunoratio” plugin was 
used to semi-quantify NF-κB p65, phosphorylated NF-κB 
p65 Ser536, and KIM-1 expression in 30–50 randomly  
selected cortical areas. This score was measured by determining 
the total tissue area on the original picture while the 
DAB-positive area was defined using ImageJ’s automatic 
threshold on the DAB component, obtained as previously 
described (Tuominen et  al., 2010).

Statistics
Statistical analyses were performed using Statistica Software 
(Tulsa, OK, USA). All variables were tested for normality 
and variance homogeneity. Data were analyzed using two-way 
ANOVA followed by planned comparisons or Student’s  
t-test when appropriate. A “p-value” inferior to 0.05 was 
considered statistically significant. The data were expressed 
as means ± SD.
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FIGURE 1 | Histopathological analysis of changes in morphology of 11- to 12-week-old AA and SS mice kidneys after 3 weeks of treatment with RAGE antagonist 
peptide. Representative images with Masson’s trichrome staining (A,B) for determining glomerular area and interstitial fibrosis and Perl’s Blue staining (C) for 
determining iron deposits (D) representative images of KIM-1 stained kidney sections. Magnification: ×400. Quantification of glomerular area (E), interstitial fibrosis 
(F), tubular iron deposits (G), and KIM-1 expression (H). Values are means ± SD. NaCl-AA (n = 6; three females and three males), RAP-AA (n = 6; four females and 
two males), NaCl-SS (n = 7; three females and four males), RAP-SS (n = 7; three females and four males). Scale bar = 50 μm.
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RESULTS

Receptor for Advanced Glycation End 
Product Blockade Blunts Kidney Damage 
in SS mice
Renal histology as assessed by Masson’s trichrome staining 
revealed glomerular hypertrophy demonstrated by higher 
glomerular area (p < 0.05; Figures 1A,E) and higher interstitial 
fibrosis (p  <  0.05; Figures 1B,F) in SS compared to AA 
mice. Remarkably, RAGE inhibition lowered the glomerular 
area in SS mice (p  <  0.05; Figures 1A,E). In addition, an 
overall treatment effect on interstitial fibrosis was detectable 
in the RAP-treated group compared with the NaCl-treated 
group (p  <  0.05; Figures 1B,F). Marked accumulation of 
iron deposits was observed on kidney sections of SS mice 
stained by Perl’s Blue compared to their AA littermates 
(p  <  0.01; Figures 1C,G) but the number of iron-positive 
tubules was significantly decreased in RAP-SS compared to 
NaCl-SS mice (Figures  1C,G). Finally, while tubular and 
glomerular accumulation of KIM-1 was exacerbated in SS 
compared to AA mice, RAGE blockade blunted KIM-1 
immunostaining in SS when compared to NaCl-SS mice 
(Figures 1D,H). Results were similar between male and female 
mice (data not shown).

Receptor for Advanced Glycation End 
Product Inhibition Modulates NAPDH 
Oxidase and Glutathione Peroxidase 
Activity in SS mice
We next examined whether NADPH oxidase – which can 
be  activated by RAGE (Wautier et  al., 2001) – was modulated 
by RAGE antagonist peptide (RAP) treatment in the kidney 
of sickle cell mice. Both NADPH oxidase and GPx activities 
were reduced in the kidney of RAP-SS compared to NaCl-SS 
mice (p  <  0.05; Figure 2).

Blockade With Receptor for Advanced 
Glycation End Product Antagonist Peptide 
Decreases Kidney Inflammation
To further understand the role of RAGE on kidney 
pathophysiology in sickle cell mice, we assessed NF-κB protein 
expression and TNF-α genic expression, key pro-inflammatory 
molecule acting downstream of the RAGE pathway. After 
3  weeks of treatment, phosphorylated NF-κBp65 Ser536 
staining was lower (p < 0.05) in RAP-SS compared to NaCl-SS 
mice (Figures 3A,B). RAP treatment did not significantly 
change (p  =  0.06) total NF-κBp65 expression on SS mice 
kidney sections in comparison with their NaCl-treated 
littermates (Figures 3C,D). Finally, TNF-α mRNA expression 
was five times greater in the kidney of NaCl-SS (Table 1) 
than in NaCl-AA mice. In contrast, TNF-α mRNA was 
significantly reduced in RAP-SS kidney (p  <  0.05; Table 1) 
compared with that of NaCl-SS. The seemingly present increase 
in TNF-α mRNA after RAP is not significant in the AA 
group. No significant difference was detected for IL-1, IL-6, 

and VCAM-1 mRNA expression in SS group after RAP 
treatment (Table 1).

Receptor for Advanced Glycation End 
Product Inhibition Limits Anemia
Hematological changes are detailed in Figure 4. MCV, RDW, 
MCH, WBCs, and reticulocyte count were significantly higher 
in the SS group while MCHC, hematocrit, RBCs, and 
hemoglobin level were lower in SS mice than in their AA 
littermates (Table 2, Figure 4). In RAP-treated SS mice, there 
was no treatment effect on WBCs (Table 2). However, RBC 
count and hemoglobin level were increased (p  <  0.05; 
Figures 4A–C). Sickle cell percentage as well as reticulocyte 
count decreased in RAP-treated SS compared to NaCl-SS 
mice (p  <  0.05; Figures  4D,E).

A

B

FIGURE 2 | Oxidative stress marker (A) and antioxidant enzyme (B) 
activities after RAGE antagonist peptide treatment in the kidney of AA and 
SS mice. Values are means ± SD. GPx, Glutathione Peroxidase. NaCl-SS 
(n = 7; three females and four males), RAP-SS (n = 7; three females and  
four males).
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DISCUSSION

The current study aimed to investigate the effect of RAGE 
inhibition on markers of kidney damage as well as on markers 
of oxidative stress and inflammation in the kidney of homozygous 
sickle mice. In support of our hypothesis, the results of the 
present study demonstrated for the first time that a RAGE 
blockade (1) dampened kidney damage, as evidenced by reduced 
glomerular hypertrophy, interstitial fibrosis, iron deposition, 
and KIM-1 protein expression in SS mice; (2) reduced the 
activation of both NADPH oxidase and NF-κBp65 acting 
downstream of the AGE/RAGE signaling pathway; (3) increased 
hematocrit, RBC count, and hemoglobin level, and decreased 
reticulocyte count and sickle cell count in SS mice.

While SS mice displayed common renal manifestations of 
SCD, i.e., glomerular hypertrophy (Elfenbein et  al., 1974; 
Bhathena and Sondheimer, 1991), interstitial fibrosis (Walker 
et  al., 1971; Alhwiesh, 2014), iron overload (Walker et  al., 
1971; Buckalew and Someren, 1974), and KIM-1 overexpression 
(Sundaram et  al., 2011; Hamideh et  al., 2014) – a specific 
marker of tubular injuries – RAP treatment minimized kidney 
injuries in these mice. Our findings are in agreement with 
those of a previous study performed in diabetic mice where 
administration of soluble RAGE reduced glomerular area (Wendt 
et al., 2003). In nephropathies, it was reported that glomerular 
hypertrophy results from podocyte hypertrophy and extracellular 
matrix (ECM) accumulation (Li et  al., 2007), and RAGE 
activation was shown to contribute to both of these pathological 

A B

C D

FIGURE 3 | Effect of RAP treatment on protein and mRNA expression of molecules acting downstream of the RAGE signaling pathway. Kidney sections from 
NaCl-SS and RAP-SS mice were subjected to immunohistochemistry using anti-NF-κBp65 IgG (A) and anti-phosphorylated NF-κBp65 Ser 536 IgG (B), 
Magnification: ×400. Staining score (C,D) was determined using ImageJ plugin “Immunoratio”. Values are means ± SD. NaCl-SS (n = 7; three females and four 
males), RAP-SS (n = 7; three females and four males).

TABLE 1 | Renal mRNA expression of inflammatory and adhesion cell markers in NaCl- or RAP-treated AA and SS mice.

NaCl-AA RAP-AA NaCl-SS RAP-SS

TNF-α (No. of copies) 50.1 ± 49.5 110.4 ± 88.7 247.3 ± 187.2* 132.9 ± 105.4$

IL-1β (No. of copies) 261.0 ± 173.7 232.8 ± 89.6 578.9 ± 254.9 602.2 ± 299.9†

IL-6 (No. of copies) 93.3 ± 97.8 36.0 ± 25.6 113.6 ± 59.8 185.1 ± 191.0
VCAM-1 (No. of copies) 4905.5 ± 4601.6 7716.9 ± 2556.3 13790.8 ± 6839.5 25046.9 ± 19009.7†

IL-1β, Interleukin-1β; IL-6, Interleukin-6; VCAM-1, Vascular Cell Adhesion Molecule-1. 
*p < 0.01 vs. NaCl-AA; †p < 0.05 vs. RAP-AA; $p < 0.05 vs. NaCl-SS.
NaCl-AA (n = 6; three females and three males), RAP-AA (n = 6; four females and two males), NaCl-SS (n = 7; three females and four males), RAP-SS (n = 7; three females and  
four males).
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changes (Liebisch et  al., 2014; Zhao et  al., 2014). Through 
the inhibition of the expression of the protein NIPP1, AGE/
RAGE interaction induced cell cycle arrest and concomitant 
podocyte hypertrophy. Interestingly, the activation of this 
pathway was NF-κB/TNF-α dependent (Liebisch et  al., 2014). 
Similarly, ECM accumulation has been shown to be  mediated 

by the AGE/RAGE axis and the NF-κB signaling pathway, 
which are involved in ECM synthesis and myofibroblast 
differentiation (Zhao et  al., 2014). Thus, both glomerular 
hypertrophy and interstitial fibrosis – which also results from 
ECM accumulation in the interstitium and myofibroblast 
differentiation (Farris and Colvin, 2012) – may be  sustained 

A B 

C D 

E 

FIGURE 4 | Mean hematocrit (A), red blood cell count (B), hemoglobin levels (C), reticulocyte count (D), and sickle cell count (E) after treatment in AA and SS 
mice. Values are means ± SD. RBC: Red Blood Cell. NaCl-AA (n = 13; five females and eight males), RAP-AA (n = 12; seven females and five males), NaCl-SS 
(n = 10; five females and five males), RAP-SS (n = 9; four females and five males).
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by AGE/RAGE/NF-κB signaling in sickle cell mice. Nevertheless, 
additional quantitative measurements on the expression of 
fibrosis markers (i.e., Col1α1, α-SMA, Vimentin, Fibronectin) 
are required to confirm this assumption. Tubular iron deposition 
is a common feature of SCD, as free plasma HbS pass through 
the glomerular filtration barrier and are incorporated into 
renal tubules (Nath and Hebbel, 2015). As iron deposits in 
the cortex of SCD patients were associated with intravascular 
hemolysis, one could hypothesize that the decrease in tubular 
iron deposits measured in our SS mice might be  related to 
the reduced anemia we  observed after RAP treatment. 
Interestingly, we  observed an increase in hematocrit, RBC 
count, and hemoglobin level and a decrease in reticulocyte 
count in RAP-treated sickle mice that could suggest that RAGE 
may play a significant role in anemia. This finding could most 
likely be explained by decreased hemolysis rather than increased 
erythropoietic process, as a previous study reported a role of 
AGEs in the pathophysiology of chronic hemolysis-associated 
organ complications in SCD (Nur et  al., 2010). Nevertheless, 
further studies are required to elucidate the role of the AGE/
RAGE pathway on hemolytic processes. Finally, KIM-1 is 
commonly used to assess acute tubular injury as it is expressed 
specifically on damaged tubules but is undetectable in healthy 
ones (van Timmeren et  al., 2007). In a recent study, urinary 
KIM-1 levels were reduced in diabetic RAGE-KO mice compared 
to diabetic wildtype mice (Thallas-Bonke et  al., 2013), which 
is consistent with the results in the present study. Furthermore, 
KIM-1 has been shown to be  associated with renal fibrosis 
and inflammation (Humphreys et  al., 2013), which further 
supports the implication of the RAGE signaling pathway in 
SCD-related kidney disease.

Considerable evidence demonstrates increased oxidative 
stress in sickle cell disease (Chirico and Pialoux, 2012; Charrin 
et al., 2016). The primary mechanism by which RAGE generates 
oxidative stress is via the activation of NADPH oxidase (Gao 
et  al., 2008). The downward RAP treatment effect on renal 
NADPH oxidase activity could suggest blunted basal oxidative 
stress in mice treated with RAGE antagonist that may explain 
the lower GPx activity in RAP-SS compared to vehicle-SS mice. 

This hypothesis is supported by previous work showing 
reduced NADPH oxidase activity and nitrotyrosine levels in 
a glomerulosclerosis mouse model either knocked-out for 
RAGE or treated with soluble RAGEs (sRAGEs) (Guo et  al., 
2008). In these mice, RAGE blockade also improved 
albuminuria and limited glomerular sclerosis. Additionally, 
other studies reported decreased intracellular reactive oxygen 
species (ROS) after inhibition of RAGE with either RAGE-
shRNA in renal fibroblasts (Chen et  al., 2010) or RAGE 
antibody in renal mesangial cells (Ide et al., 2010). Collectively, 
our data strongly suggest that RAGE blockade is likely to 
ameliorate oxidative stress status in the kidney of sickle mice 
and may further support the hypothesis of a reduced anemia 
after RAP treatment.

As inflammation plays a key role in the pathophysiology 
of SCD (Hoppe, 2014) and is potentiated by RAGE activation 
(Goldin et  al., 2006), we  assessed protein expression of a 
key inflammatory molecule, i.e., NF-κBp65, and one of its 
target genes (i.e., TNF-α) at the mRNA level (Figure 3, 
Table 1). In the kidney of our vehicle-SS Townes mice, the 
high gene expression of pro-inflammatory cytokine TNF-α 
strengthens the assumption of a renal pro-inflammatory state 
in SCD (Akohoue et  al., 2007; Hebbel et  al., 2009; Krishnan 
et  al., 2010). Interestingly, RAP treatment dampened 
phosphorylated NF-κBp65 expression in our SS mice. Consistent 
with this, it was reported that blockade of RAGE with either 
soluble RAGE or FPS-ZM1 suppressed NF-κB pathway in a 
murine model of systolic overload-induced heart failure (Liu 
et  al., 2016). In addition, Flyvbjerg et  al. reported a decrease 
in renal NF-κB expression along with an overall improvement 
of kidney function after treatment with RAGE antibody in 
obese Type 2 diabetic mice (Flyvbjerg et  al., 2004). Thus, 
in the present study, inhibition of NF-κB in RAP-SS mice 
could explain the reduction of TNF-α mRNA levels to close 
to the levels observed in healthy mice. In line with this 
observation, recent studies showed decreased cardiac TNF-α 
mRNA expression in a mouse model of inflammatory heart 
disease knocked-out for RAGE (Bangert et  al., 2016) and 
lower hepatic TNF-α mRNA in RAGE−/− mice after ischemia/
reperfusion injury (Zeng et  al., 2009). A similar drop in 
aortic TNF-α mRNA occurred in sinoaortic denervated rats 
treated with sRAGEs, acting as a decoy for RAGE (Wu et  al., 
2013). In this context, our data suggest that RAGE inhibition 
could weaken pro-inflammatory processes in the kidney of 
sickle cell mice.

In conclusion, our data suggest that specific inhibition of 
RAGE could blunt anemia-related markers. Both RAP-mediated 
reduced oxidative stress markers and decreased pro-inflammatory 
molecule expression might take part in reducing the hemolytic 
process as well as the glomerular hypertrophy, interstitial fibrosis, 
and iron deposits in the kidney of sickle cell mice. Although 
further studies are warranted to elucidate the role of RAGE 
on kidney function in sickle cell disease, our data demonstrate 
that this receptor seems to be  an important pathogenic factor 
in the development of renal changes in SCD mice. Only one 
clinical grade antagonist of RAGE (Azeliragon: TTP488) has 
been tested in Alzheimer’s disease patients only, in Phase I, II 

TABLE 2 | Hematological indices in NaCl- or RAP-treated AA and SS mice.

NaCl-AA RAP-AA NaCl-SS RAP-SS

MCV (fl) 37.2 ± 2.5 37.2 ± 2.0 50.6 ± 4.1* 50.2 ± 2.2†

RDW (%) 15.3 ± 0.6 15.3 ± 1.1 23.0 ± 2.1* 22.4 ± 1.5†

MCHC (g dl−1) 31.3 ± 0.8 30.9 ± 1.7 25.3 ± 0.9* 25.2 ± 0.8†

MCH (pg) 12.0 ± 0.9 11.5 ± 0.5 12.8 ± 0.9* 12.7 ± 0.7†

WBC (103 μl−1) 4.8 ± 1.2 4.2 ± 1.9 43.2 ± 6.7* 47.7 ± 11.0†

Lymphocytes (103 μl−1) 3.6 ± 0.8 3.3 ± 1.5 38.1 ± 6.1* 42.9 ± 9.3†

Monocytes (103 μl−1) 0.4 ± 0.2 0.3 ± 0.2 2.2 ± 0.8* 1.9 ± 0.8†

Granulocytes (103 μl−1) 0.9 ± 0.4 0.6 ± 0.3 2.9 ± 1.4* 2.9 ± 1.9†

Values are presented as means ± SD. MCV, Mean corpuscular volume; RDW, Red 
blood cell distribution width; MCHC, Mean corpuscular hemoglobin concentration; 
MCH, Mean corpuscular hemoglobin; WBC, White blood cell.
*p < 0.001 vs. NaCl-AA; †p < 0.001 vs. RAP-AA.
NaCl-AA (n = 13; five females and eight males), RAP-AA (n = 12; seven females and five 
males), NaCl-SS (n = 10; five females and five males), RAP-SS (n = 9; four females and 
five males).
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(Burstein et  al., 2014, BMC Neurobiol.), and III clinical trials 
(NCT02080364, Clinicaltrial.gov). Results of Phase III are not 
available at this time.

Limitations
Our study has some limitations. The study was primarily 
designed to investigate acute effects of RAGE inhibition on 
sickle cell mice. Therefore, no functional nor mechanistic 
experiments were performed and thus no definitive conclusions 
about kidney function can be  drawn.
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