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Abstract: Antimicrobial resistance, the so-called silent pandemic, is pushing industry and academia
to find novel antimicrobial agents with new mechanisms of action in order to be active against
susceptible and drug-resistant microorganisms. In the case of tuberculosis, the need of novel anti-
tuberculosis drugs is specially challenging because of the intricate biology of its causative agent,
Mycobacterium tuberculosis. The repurposing of medicines has arisen in recent years as a fast, low-
cost, and efficient strategy to identify novel biomedical applications for already approved drugs.
This review is focused on anti-parasitic drugs that have additionally demonstrated certain levels
of anti-tuberculosis activity; along with this, natural products with a dual activity against parasites
and against M. tuberculosis are discussed. A few clinical trials have tested antiparasitic drugs in
tuberculosis patients, and have revealed effective dose and toxicity issues, which is consistent with
the natural differences between tuberculosis and parasitic infections. However, through medicinal
chemistry approaches, derivatives of drugs with anti-parasitic activity have become successful drugs
for use in tuberculosis therapy. In summary, even when the repurposing of anti-parasitic drugs for
tuberculosis treatment does not seem to be an easy job, it deserves attention as a potential contributor
to fuel the anti-tuberculosis drug pipeline.

Keywords: antituberculosis drugs; antiparasitic drugs; drug resistance; repurposing; drug discovery

1. Introduction

Emergent and re-emergent infectious diseases caused by antimicrobial resistant mi-
croorganisms have increased drastically in recent years [1–4], being responsible for about
700,000 deaths per year worldwide. It is estimated that ~10 million deaths are caused
annually, and an economic cost of $100 trillion could occur by 2050 [5,6].

Paradoxically, the development and introduction of new antimicrobials have de-
creased [7]. In fact, to have a strong pipeline of candidate molecules with antimicrobial
activity is a huge challenge, and over the last decades, pharmaceutical companies have
been progressively moving away from participating in the development of this class of
drugs [8]. Indeed, the discovery and development of new antimicrobials is time consuming
(it can take more than ten years) and very expensive (estimated costs range between USD
800M and USD 2Bn) [9–11].

In addition of requiring a huge investment, the prospect of reduced profit is another
factor discouraging large companies from developing antimicrobials [10,12,13]. Several
facts point in this direction: first, unlike medications used for the treatment of chronic
diseases such as diabetes or hypertension, which need to be prescribed for life, most
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antimicrobial treatments are prescribed for a short period of time (5–14 days); second, new
antimicrobials often become agents of last resort, and their use is commonly restricted; and
third, the development of resistance against newly introduced antimicrobials may be fast,
and hence, can compromise their use in the long term.

The lack of effective antimicrobial agents is aggravated in the case of neglected diseases
such as tuberculosis (TB), caused by the bacterial pathogen Mycobacterium tuberculosis. TB
is an age-old disease and a global public health concern at present, with about 30,000 new
cases and over 4100 deaths per day worldwide [14]. Current TB treatment, consisting of a
combination of several antimicrobials, is highly effective, although it is long (at least six
months in the case of drug-susceptible TB) and drug-related side effects are frequent; these
reasons contribute to reduced treatment adherence by patients, which ultimately may result
in the selection of drug-resistant strains. Although a few new anti-TB drugs were recently
introduced into the therapeutic arsenal, there is still a huge need to shorten the length of
treatment, improve compatibility with anti-HIV drugs, reduce treatment-associated toxicity,
and expand activity against latent and persistent bacteria. In particular, new anti-TB drugs
are expected to be active for treatment of TB cases that are resistant to current anti-TB drugs,
such as rifampicin-resistant TB (RR-TB), multidrug-resistant TB (MDR-TB), pre-XDR-TB
(MDR-TB plus resistance to any fluoroquinolone), and XDR-TB (MDR-TB or RR-TB plus
resistance to any fluoroquinolone and at least one additional Group A drug (levofloxacin,
moxifloxacin, bedaquiline and linezolid)) [15,16].

In recent years, the repurposing of drugs has emerged as a reliable alternative for
developing new therapies; it is estimated that around 4000 drugs that are already approved
to treat several diseases are being repurposed for other therapeutic applications [17]. Re-
purposing an already licensed drug for a new medical application considerably saves time
and capital investment in comparison with the process of developing a new drug. Drug
repurposing relies on two basic concepts, one is that many drugs could have secondary
biological activities that could be used for new therapeutic purposes, and the second is
that different diseases could have an underlying highly similar molecular mechanism, and
hence, could be targeted by the same drug [18].

In the field of infectious diseases, repurposing has been met with great expectations
given the difficulties involved in developing novel antimicrobial drugs, particularly in the
case of neglected diseases such as TB. Several studies have evaluated not-for-TB-approved
medicines, and have identified anti-TB activity in some of them; the rationale would
be to reduce time and cost to progress them as new anti-TB drugs for use in novel TB
treatments [19,20].

Traditionally, the biochemical and structural differences between prokaryotic and
eukaryotic cells have been widely exploited for the development of antibacterial drugs
in order to increase specificity and reduce toxicity. This may have led to the conception
that drugs developed for either Prokaryotes or Eukaryotes could have very limited (if
any) usefulness in the other domain. However, repurposing studies are breaking down
this dogma as well; for example, many medicines considered only-for-humans are finding
a new role as antibacterials, and vice versa. For example, novel antimicrobial activity
is being reported for ibuprofen and related drugs [21], whereas the macrolide antibiotic
azithromycin is gaining use in medicine because of its wide range of biological activity [22]
and the fluoroquinolone ciprofloxacin demonstrated inhibitory activity in liver cancer and
other tumoral diseases [23]. In this sense, several reports of antiparasitic drugs (developed
for the treatment of infections caused by protozoa or invertebrates) that demonstrated
antibacterial activity captured our attention, specifically those showing anti-TB activity.
Herein, we will present the state-of-the-art regarding the main antiparasitic drugs that are
being considered for repurposing for TB treatment, as well as other molecules that have
been reported to have both antiparasitic and anti-TB activity.
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2. Classical Antiparasitic Drugs for Potential Anti-TB Treatment

Over the last decades, anti-TB activity has been discovered for a number of classical
antiparasitic drugs. This section will describe differences in the mechanisms of action for
their new potential uses in TB treatment, which are summarized in Table 1.

Table 1. Main antiparasitic drugs that are being studied to be repurposed for TB treatment.

Drug Name, Class and
Structure 1 Current Use Rationale for TB

Repurposing
Possible TB Target/
Mode of Action

Avermectins (Ivermectin B1a)

Prevention of onchocerciasis
and lymphatic filariasis

Active against
M. tuberculosis, including
M/XDR isolates
(MIC = 3–6 µg/mL)

Not yet determined

Mefloquine

Chloroquine-resistant malaria
Active against
M. tuberculosis
(MIC = 20–40 µM)

MmpL3

Niclosamide

Tapeworm infections
Active against
M. tuberculosis H37R
A(MIC = 0.5–1 µM)

Ionophore

Nitazoxanide
Infections caused by Giardia
intestinalis, Cryptosporidium
parvum, Ascaris lumbricoides,
Ancylostoma duodenale and
Trichuris trichiura

Active against replicating and
nonreplicating M. tuberculosis

Disruption of membrane
potential and pH homeostasis.
Inhibition of signaling
pathways

Nitroimidazoles
(Metronidazole)

Helminth infections
(benzimidazoles)

Active against
M. tuberculosis in in vitro and
ex vivo assays.
Benzimidazoles show activity
in murine models

FtsZ (benzimidazoles);
mycolic acid biosynthesis
(delamanid and pretomanid)

Pyronaridine

Malaria

Active against
M. tuberculosis in in vitro
(MIC = 5 µg/mL) and ex vivo
(MIC = 12.5 µg/mL) assays

Interference with nucleic acid
metabolism

Auranofin

Amebiasis
Active against
M. tuberculosis
(MIC = 0.5 µg/mL)

Thioredoxin reductase TrxR

1 The structures of the compounds were obtained by ChemDraw using Computed Descriptors: Canonical or Isomeric SMILES deposited in
PubChem.
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2.1. Avermectins

The avermectins are 16-membered macrocyclic lactones with broad-spectrum an-
thelmintic activity [24]. Their discovery was the result of a collaboration between the
Kitasato Institute (led by Dr. Satoshi Õmura) and the Merck, Sharpe and Dohme Research
Laboratories (led by Dr. William C. Campbell). Both researchers were awarded the Nobel
Prize in Physiology or Medicine in 2015. Streptomyces avermitilis produces eight different
avermectins (named after the word averminous to reflect the nature of their activity) that
have subtle differences in their chemical structures but are significant in their potency [25].
Chemical modification of natural avermectins yielded ivermectin, a semi-synthetic deriva-
tive comprising no less than 80% 22,23-dihydroavermectin B1a and no more than 20% of
22,23-dihydroavermectin B1b [26,27]. Ivermectin is active against nematodes and several
arthropods by oral, parenteral or topical routes, and is able to kill parasites either inside or
outside the body. Because of its potent activity—25 times greater than all anthelmintics
available at the time of their discovery—and high safety margin, it has been used in mass
dosage administration campaigns to prevent onchocerciasis and lymphatic filariasis for
more than three decades [28–31].

Recently, new pharmacological effects of avermectins have been identified: ivermectin
has been shown to regulate glucose and cholesterol levels in diabetic mice, to suppress
malignant cell proliferation in various cancer cell lines, and to inhibit viral replication in
several flaviviruses. Another potential application of avermectins is as a vector control
tool to prevent the transmission of protozoa that are the etiological agents of malaria,
trypanosomiasis and leishmaniasis [32,33].

Among these potential applications, it was found that ivermectin and other aver-
mectins (doramectin, moxidectin and selamectin) are active against M. tuberculosis, includ-
ing drug-susceptible and MDR strains, a surprising finding given their lack of activity
against some Gram-positive and Gram-negative bacteria [34]. However, in a posterior
study, the antimicrobial activity of ivermectin against 13 members of the M. tuberculo-
sis complex was not confirmed [35]. In order to sort out this discrepancy, more studies
should be performed to determine the potential in vitro and/or in vivo anti-TB activity of
ivermectin, either alone or in combination with other drugs used in TB treatment.

Concerning the mechanism of action, avermectins target glutamate-gated chloride
channels of the ABC transporter family, increasing permeability to chloride ions and
causing parasite paralysis and death [36]. Given that M. tuberculosis contains 14 importers
and 13 exporters of the ABC transporter family [37] it was tempting to speculate on the
existence of a common mechanism of action for avermectins in both bacterial and parasitic
cells. However, none of the ABC transporters in M. tuberculosis are homologous to any
of the six Caenorhabditis elegans glutamate-gated chloride channels [36], suggesting that
the actual target of avermectins in M. tuberculosis is different from the target in at least
this nematode, which would be consistent with the obvious differences between such
organisms.

Avermectins are also active against Mycobacterium ulcerans, the aetiologic agent of
Buruli ulcer, a necrotizing disease of the skin, subcutaneous tissue and bone. Buruli
ulcer is presently the third most common mycobacterial disease in humans, after TB and
leprosy [38–40]. More recently, it was shown that avermectins are active against a variety of
non-tuberculous mycobacteria of increasing relevance in pulmonary infections concomitant
with cystic fibrosis [41].

2.2. Mefloquine

The quinoline mefloquine has been used to treat and prevent chloroquine-resistant
malaria for several decades. [42,43]. Subsequent studies demonstrated that mefloquine is
active against Mycobacterium avium [44], and M. tuberculosis [45] in a range of concentra-
tions between 20 and 40 µM, whereas in Plasmodium falciparum, mefloquine targets the 80S
ribosomes [46], one of the targets for mefloquine in bacteria is the F0 complex of the F0F1
H+-ATPase, which was validated in Streptococcus pneumoniae [47]. This target was not exper-
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imentally validated for mycobacteria, in which early findings suggested that the target was
presumably related with the cell wall structure and components [48]. In fact, a recent report
identified mefloquine as an inhibitor of the MmpL3 lipid transporter in Mycobacteroides
(Mycobacterium) abscessus, hence interfering with normal cell wall composition [49]; most
probably, MmpL3 could also be the target of mefloquine in M. tuberculosis.

Further modifications of mefloquine have yielded scaffolds with improved potency
against mycobacteria. Mefloquine-oxazolidine derivatives slightly improved the activity
against pan-susceptible and MDR M. tuberculosis strains [50,51]. In another study on meflo-
quine derivatives with hybridization between the mefloquine nucleus and ethambutol, the
majority of compounds showed activity against the M. tuberculosis pan-susceptible and
MDR strains [52].

2.3. Niclosamide

Discovered by Bayer in 1953, niclosamide was originally developed as a drug for
treating schistosomiasis. In 1982, niclosamide was approved for use in humans to treat
tapeworm infection and included in the World Health Organization’s list of essential
medicines [53].

The mode of action of niclosamide is not completely understood yet; it was tradi-
tionally believed that it inhibited oxidative phosphorylation in mitochondria and this
resulted in anthelmintic activity [54]. In recent years, evidence that this drug has additional
biological activities has emerged. This multifunctional drug was found to interact with
different signaling pathways and biological processes. This diverse activity of niclosamide
has driven several studies on its off-label use in cancer and metabolic diseases [55], also
including its potential repurposing for several antiviral and antibacterial diseases [56–59].

Regarding antituberculosis activity, niclosamide inhibits the growth of the laboratory-
attenuated M. tuberculosis strain H37Ra with a minimum inhibitory concentration (MIC) of
0.5–1 µM [60], most probably by acting as an ionophore [61]. However, at these concentra-
tions, potential toxicity to mammalian cells was reported, thus limiting its potential as an
anti-TB drug [62].

Coinfection between HIV and M. tuberculosis represents about 10% of all cases of active
TB worldwide and the treatment of both infections requires therapy with multiple and
compatible antibacterial and antiviral drugs. Interestingly, it was shown that niclosamide
inhibits the replication of HIV, and thus, this drug could inhibit both microorganisms [63].

2.4. Nitazoxanide

Nitazoxanide (nitrothiazolyl) is a pro-drug that is deacetylated to tizoxanide (TIZ)
in the gastrointestinal tract. Nitazoxanide is used for the treatment of infections caused
by Giardia intestinalis, Cryptosporidium parvum, Ascaris lumbricoides, Ancylostoma duodenale
and Trichuris trichiura. This drug also shows antibacterial activity against Clostridium
difficile and Helicobacter pylori, and inhibits the replication of a broad range of viruses
including respiratory syncytial virus, rotavirus, norovirus, hepatitis B, hepatitis C, dengue
and yellow fever [64–66]. Recently, nitazoxanide was proposed for the therapy of Middle
East respiratory syndrome (MERS-CoV) and Coronavirus disease 2019 (COVID-19) [67,68].

Tizoxanide was proposed to act via different mechanisms in each of the target or-
ganisms. It acts as a noncompetitive inhibitor of the pyruvate:ferredoxin oxidoreductase
of protozoa and anaerobic bacteria [69]. Additional proposed targets include protozoan
protein disulphide isomerases [70] and a Giardia nitroreductase [71]. In C. elegans, the target
of tizoxanide is the avr-14 subunit of a glutamate-gated chloride channel [72]. Antiviral
activity of tizoxanide mostly consists of the stimulation of innate immune response (for
example, by stimulating the production of interferon), and/or the interference with par-
ticular proteins in each of the viral species (for example, inhibition of hemagglutinin in
influenza A virus) [73].

The antimycobacterial activity of nitazoxanide was reported against replicating and
nonreplicating M. tuberculosis strains, affecting equally the drug-susceptible and drug-
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resistant strains [74,75]. This occurs through numerous mechanistic pathways, which
include the disruption of M. tuberculosis membrane potential and pH homeostasis [64] and
the inhibition of signaling pathways [76]. Interestingly, in a model mimicking caseous
granuloma, nitazoxanide showed synergistic activity with rifampin, killing dormant cells
in 28 to 35 days [77].

Recently, a randomized prospective phase II clinical trial in 30 adults with pulmonary
drug-sensitive TB (ClinicalTrials.gov; Identifier: NCT02684240) showed that the admin-
istration of 1000 mg orally twice daily for 14 days lacked bactericidal activity against M.
tuberculosis. Low plasma concentrations of nitazoxanide, below the MIC for M. tuberculosis,
and negligible concentrations of nitazoxanide in pulmonary secretions could explain this
absence of bactericidal activity [78].

2.5. Nitroimidazoles

Azole compounds are a large family of chemicals, some of them are being used as
antifungal and antiparasitic drugs, which, in addition, have antimicrobial activity against
diverse bacterial pathogens. The first active nitroimidazole described was azomycin (a
2- nitroimidazole), an antibiotic obtained from Nocardia mesenterica [79,80]. Different azole
compound subfamilies differ in both their biological activity and mechanism of action.

Metronidazole (5-nitroimidazole) was synthetized from the scaffold of azomycin; this
drug is typically used in the treatment of protozoan parasitic diseases caused by Trichomonas
vaginalis, Entamoeba histolytica, and Giardia lamblia. Furthermore, metronidazole showed
antibacterial activity against Helicobacter pylori and anaerobic bacteria [81]. Almost 30 years
ago, when studying an in vitro model of dormancy, metronidazole showed antimicrobial
activity against dormant M. tuberculosis cells [82], and the anti-TB activity of metronidazole
has been confirmed in recent in vitro and ex vivo studies [83–85]. However, metronidazole
failed to show any antimycobacterial activity in vivo, with no reduction in the bacillary
burden, and, in at least one study, it even worsened lesion inflammation [86]. In addition,
in other in vivo studies focusing on granuloma as a model of M. tuberculosis latency,
metronidazole showed no anti-TB activity [87].

The benzimidazoles are another family of azole compound derivatives of benzene
and imidazole; they are used in helminth infections [88], and showed antimicrobial activity
against M. tuberculosis H37Rv as well as clinical isolates. A lead compound from this series
(Figure 1) exhibited an MIC of 0.16 mg/mL and demonstrated an in vitro efficacy in the TB
murine acute model of infection [89].

The target proposed for the antibacterial activity of benzimidazoles derivatives was
the FtsZ protein, which was recently proposed as a target for antimicrobials [89]. Indeed,
FtsZ is an important GTPase that is fundamental in bacterial cell division; in the presence
of guanosine triphosphate (GTP), FtsZ polymerizes bidirectionally at the center of the
bacterial cell on the inner membrane to form a highly dynamic helical structure, known
as the Z-ring, which marks the future cell division site. The recruitment of several other
cell-division proteins leads to contraction of the Z-ring, resulting in septum formation and
cell division.

In M. tuberculosis, the benzimidazoles caused an enhancement of the GTPase activity
of the FtsZ protein, which destabilized FtsZ assembly, leading to the efficient inhibition of
FtsZ polymerization; as a consequence, cell division was arrested, but cells continued to
grow, forming filaments that ultimately resulted in bacterial cell death [90].

Indeed, there are two azole compounds of the benzimidazole class that are already
in clinical use in the treatment of drug-resistant TB (Figure 1): delamanid (nitro-dihydro-
imidazooxazole), formerly OPC-67683, and pretomanid (nitroimidazooxazine), formerly
PA-824 [14]. The proposed mechanisms of action of pretomanid and delamanid consist of
the disruption of the cell wall biosynthetic machinery and inhibition of the biosynthesis of
methoxy- and ketomycolates, respectively [91].

ClinicalTrials.gov
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Figure 1. Benzimidazoles: a representative compound of this class of nitroimidazoles [89] along with delamanid and
pretomanid, two drugs in clinical use against drug-resistant TB.

2.6. Pyronaridine

Pyronaridine is a potent antimalarial with chemical similarity to the aminoquino-
lines, a class of heterocyclic scaffolds with an amino group that is frequently found in
diverse bioactive compounds, which has been widely used in China [92,93]. Pyronari-
dine is currently used in combination with artesunate against P. falciparum and P. vivax
infections [94].

Pyronaridine showed in vitro activity (MIC = 5 µg/mL) against M. tuberculosis, while,
in ex vivo approaches, it displayed an MIC of 12.5 µg/mL. Interestingly, it was reported
that pyronaridine shows synergy with the potent anti-TB drug rifampicin, and that efflux
does not play a major role in susceptibility to this drug. Further, it was proposed that
interference with the metabolism of nucleic acids could be the main mechanism of M.
tuberculosis inhibition [95].

2.7. Auranofin

Auranofin is a gold-containing drug, that is widely used for the treatment of rheuma-
toid arthritis, and was revealed to be active against E. histolytica at 0.5 µM after a high-
throughput screening, being 10 times more active than metronidazole, the recommended
treatment for amebiasis. Auranofin was effective in reducing parasite numbers in in vivo
models of amebic colitis and liver abscess. Investigation of the mechanism of action of
auranofin in E. histolytica suggested thioredoxin reductase (TrxR) as the potential target
of auranofin; it was found that drug-mediated inhibition of TrxR would result in the pre-
vention of the reduction in thioredoxin, and as a consequence, increased susceptibility



Microorganisms 2021, 9, 2335 8 of 16

of amebic trophozoites to reactive oxygen species. Interestingly, other parasites are also
susceptible to auranofin killing, such as Schistosoma mansoni, Trypanosoma cruzi, Trypanosoma
brucei, Echinococcus granulosus, P. falciparum, G. lamblia, Leishmania infantum, Toxoplasma
gondii, and many others [96–98].

The antibacterial activity of auranofin was revealed when this drug was identified
as being potently active against multidrug-resistant clinical isolates of S. pneumoniae and
Staphylococcus aureus, both in vitro and in vivo. Auranofin was also active against other
Gram-positive pathogens such as Enterococcus faecalis, Enterococcus faecium, Enterococcus
casseliflavus, Nocardia otitidiscaviarum, Streptococcus agalactiae, and Streptococcus pyogenes;
however, auranofin was found to have poor antimicrobial activity against Gram-negative
pathogens [99]. Simultaneously, another group reported strong anti-TB activity of aura-
nofin, with an MIC of 0.5 µg/mL against a reference strain of M. tuberculosis H37Rv [100],
and confirmed TrxR as the target of auranofin in the tubercle bacillus.

Several clinical trials have been conducted with auranofin in recent years. First,
given that auranofin PK/PD data were originated in the 1980s (when it was approved for
treatment of rheumatoid arthritis), a new clinical trial studied the safety of auranofin in 15
healthy volunteers who received 6 mg/day (the standard dose for rheumatoid arthritis)
during 7 days (NCT02089048; [101]). Under these conditions, auranofin was well tolerated,
which supported the use of these drugs for the treatment of E. histolytica and Giardia
infections, a clinical trial that is still ongoing (NCT02736968). Second, given the anti-
inflammatory activity of auranofin, this drug was assayed at the same dose in a clinical
trial (NCT02968927) as a host-directed adjuvant (along with standard anti-TB treatment)
in TB patients; however, in this case, the treatment lasted for 112 days, and under these
conditions, auranofin was not well tolerated by TB patients and showed no clinical anti-TB
activity [102].

3. Plants as a Source of Natural Products Used in Traditional Medicine

There are some examples of natural products isolated from plants that have a wide
range of biological activity, encompassing antiparasitic and anti-TB activity. Among them,
we can highlight the following cases. The herb Artemisia annua was used for centuries
as an ancient remedy for treating malaria. It contains artemisinin as a biologically ac-
tive compound, which, along with its semi-synthetic derivative, artesunate, was recently
described as having potential anti-TB activity [103]. Further, artemisinin showed syn-
ergistic activity with rifampicin against M. bovis BCG and M. tuberculosis H37Ra, and
peroxide production increased in cells treated with both drugs [104]. Persea americana
seeds are usually used in traditional Mexican medicine to treat several chronic, infectious
diseases, and dysentery caused by helminths and amoebas. The trichloromethane extract
was active against drug-susceptible and resistant strains of M. tuberculosis. Interestingly,
ethanolic extracts were active only against M. smegmatis, and streptomycin and ethambutol
mono-resistant strains [105]. Cnidoscolus chayamansa, known as Chaya, is a plant used
in traditional Mexican medicine as antiprotozoal and antibacterial agent. Chloroform-
methanolic (CHCl3:MeOH; 1:1) extracts from leaves showed antimycobacterial activity
with an MIC 50 µg/mL, and hence, were used to identify the active compounds. Chemical
detection of isolated compounds was performed using 1H- and 13C NMR spectra data,
and moretenol and moretenyl were identified acetate as the major (but not the sole) active
compounds. These had an MIC = 25 µg/mL against M. tuberculosis H37Rv and against
four monoresistant strains of M. tuberculosis H37Rv, and had moderate activity against E.
histolytica and G. lamblia [106].

4. A Special Case: The Dual Antiparasitic and Anti-TB Activity of Bacteriocin AS-48

Bacteriocins are antimicrobial peptides produced by selected bacterial species, and
among them, bacteriocin AS-48, produced by E. faecalis, has interesting properties [107].
Bacteriocin AS-48 is a 70-amino-acid circular cationic peptide, and this unusual structure
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provides AS-48 with an extraordinary stability against denaturation agents such as pH and
temperature, as well as a strong resistance to protease degradation [108].

Several reports described the activity of AS-48 against Leishmania spp [109], T. bru-
cei [110], T. cruzi [111,112], and M. tuberculosis [113] and characterized its mode of action
against those pathogens.

Commonly, antimicrobial peptides interact with bacterial membranes where they
form pores, alter the influx and efflux of metabolites, and deplete energy; such disruptions
provoke the loss of the permeability barrier. In fact, the anti-TB activity of AS-48 was clearly
due to its activity on the M. tuberculosis membrane [113]. Interestingly, in M. tuberculosis,
the bacteriocin AS-48 presented a clear synergism with ethambutol, one of the first-line
drugs in use in the treatment of TB. Ethambutol inhibits the synthesis of arabinogalactan,
thereby altering the integrity of the mycobacterial envelope, which eventually facilitates
the access of AS-48 to its target, the mycobacterial membrane. The synergism between
bacteriocin AS-48 and ethambutol was also observed in intracellular bacteria, which makes
it interesting to consider the use of AS-48 as an adjuvant for TB treatment [113].

However, in the case of protozoan cells, although bacteriocin AS-48 may produce a
certain level of depolarization in their cell membranes, its effect against other cell organelles
plays a major role in the mechanism of action of AS-48.

In Leishmania, bacteriocin AS-48 was found to be lethal to promastigotes and, to a
lesser extent, to axenic and intracellular amastigotes at low micromolar concentrations [109].
Given that only partial permeabilization of the cell membrane was observed, further inves-
tigation of additional cell targets revealed the depolarization of the single mitochondrion
of Leishmania (hence causing a fast and dramatic energetic collapse) and the production of
reactive oxygen species (ROS).

Bacteriocin AS-48 also targets the mitochondrion in T. cruzi, the causative agent of
Chagas disease, and it is active in the low micromolecular range. In fact, it is faster in killing
the trypanosomal cells and less cytotoxic than benznidazole, a drug in use against T. cruzi
infections [112]. Given the promising results on the activity of bacteriocin AS-48 in vitro,
its efficacy in vivo was tested in a mouse model of Chagas disease [111]. Bacteriocin AS-48
at 1 mg/kg was as effective as the reference drug benznidazole at 100 mg/kg in reducing
the parasitaemia levels in acute T. cruzi infections; it also prevented immunosuppression-
mediated reactivation of nested parasite cells in chronic infection, and it considerably
reduced splenomegaly. This extraordinary anti-trypanosomal activity was confirmed by
PCR, which indicated that 55% of organs in AS-48-treated mice were parasite free.

The protozoan T. brucei, the causative agent of sleeping sickness in humans and nagana
in cattle, is extremely susceptible to nanomolar concentrations of AS-48, even lower than
those required to kill the most susceptible bacteria L. monocytogenes; moreover, AS-48 was
more active against T. brucei than other antimicrobial peptides that killed this protozoan at
micromolar concentrations. The high activity of AS-48, together with the low toxicity to
eukaryotic cell lines, resulted in a large selectivity index (>104) for this bacteriocin. The
mode of action of bacteriocin AS-48 in T. brucei is notably different from those described
above. In this species, AS-48 targets cellular compartments rather than affecting the plasma
membrane or the mitochondrion [110]. Upon its interaction with a highly abundant protein
on the surface of T. brucei, bacteriocin AS-48 is internalized through clathrin-mediated
endocytosis. Once inside the cells, it provokes major changes in the ultrastructure of the
parasite, due to the appearance of myelin-like structures and double-membrane autophagic
vacuoles that ultimately result in the induction of autophagy and cell death.

5. Discussion

Despite major structural differences between eukaryotic and prokaryotic cells, which
have been widely exploited for the sake of the selectivity of antibacterial agents, in recent
years, we have witnessed a number of examples of molecules having significant activity
against bacterial cells and also against specific types of eukaryotic cells, notably those of
protozoa and helminths. Our interest has focused on those products with activity against
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M. tuberculosis, which was responsible for the highest number of deaths per year in the
world due to a single pathogen until the COVID-19 pandemic, starting in 2020, broke this
deadly record [14].

Even though it is extremely urgent to find new drugs for treating TB, the success has
been very limited, with only three novel drugs (bedaquiline, delamanid and pretomanid)
being approved in the last fifty years. The scarcity of chemical scaffolds that are active
against mycobacteria is one of the reasons behind this poor outcome. However, the
findings reported in this review open a promising alternative. The development of new
anti-TB drugs through the re-utilization (repurposing or repositioning) of drugs active
against parasites can increase the portfolio of therapeutic alternatives for TB. Several
antiparasitic drugs, classic or in pre-clinical steps of development, have shown activity
in vitro and ex vivo against M. tuberculosis, although very few clinical trials have explored
this possibility yet.

Antiparasitic drugs with activity against M. tuberculosis, even when their anti-TB
activity may not be sufficient or achievable in therapy of humans, may still be the starting
point for the development of new derivatives with greater efficacy and less toxicity. In
fact, we can find a clear example of this scenario in the case of metronidazole: as we
mentioned above, in an in vitro dormancy model, metronidazole and other azoles such
as benzimidazole derivatives showed activity against M. tuberculosis, although, in in vivo
infection models, metronidazole completely lacked anti-TB activity. Hopefully, this knowl-
edge opened the door to the development of novel azole derivatives (delamanid and
pretomanid) that were recently approved for the treatment of TB.

Discovery of a novel scaffold through such promising repurposing approaches is
just a first step in the broadening of our armamentarium against M. tuberculosis and other
neglected pathogens. However, this strategy comes with various limitations that must
be assessed. First, and most importantly, the mode of action of the candidate molecules
must be determined against M. tuberculosis. Given the differences between M. tuberculosis
and the variety of organisms encompassed within the term parasite, it can be expected that
the new activity is based upon the promiscuity of the molecule to different targets rather
than on both species sharing a common target [18]. We reviewed three examples of this
scenario: the avermectins target an ABC type of glutamate-gated chloride channel in the
nematode cells, whereas, in M. tuberculosis, we speculate on the possibility of a different
mechanism of action given that no clear homologue of such an ABC transporter could
be identified; second, mefloquine, which targets the 80S ribosomes in P. falciparum and
targets the MmpL3 lipid transporter in mycobacteria; and third, the bacteriocin AS-48,
which targets the membrane in bacterial cells, whereas, in protozoa such as Leishmania and
T. cruzi, it depolarizes the membrane of the mitochondrion. In the latter case, we could
argue that targeting the mitochondrion could be considered as having a similar mechanism
of action as in bacterial cells, given the proven prokaryotic origin of this organelle.

Adjusting therapeutic doses for such naturally different pathogens and infections is
another limitation behind the repurposing strategies of anti-infective compounds. In this
way, the presence of the bacterial cell wall hinders the interaction between antimicrobials
and their targets. M. tuberculosis possesses a highly complex cell wall, which comprises the
inner membrane, a core of covalently linked peptidoglycan, arabinogalactan and mycolic
acids, a leaflet of extractable lipids, and a capsule [114]. Such a structure, combined with
the expression of multidrug efflux pumps, renders M. tuberculosis virtually impermeable
to any molecule. Hence, relevant anti-TB activity is generally observed at concentrations
of compounds higher than those needed for killing protozoans. In some cases, those
therapeutic concentrations needed for killing TB with an antiparasitic drug are impossible
to achieve in vivo. The case of nitazoxanide illustrates this situation. Previous studies
reported MICs of nitazoxanide of 12.3 µg/mL for M. tuberculosis, and this was expected to
be reached after twice daily administrations of 1000 mg of nitazoxanide. However, due
to its high binding to plasma proteins, the average nitazoxanide concentration in plasma
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was around 10.2 µg/mL, which is clearly below the concentration needed for inhibiting
the growth of M. tuberculosis [78].

As long as higher doses are needed to achieve therapeutic effects, the risk of drug-
associated toxicity and side effects increases. This is particularly relevant in the case of
M. tuberculosis infections, because the WHO-recommended treatment for drug-susceptible
cases of TB lasts for six months, which excludes potential active drugs having tolerable side
effects upon short-term treatment, but this was unfortunately found not to be appropriate
for such long treatments. Unfortunately, this was the case of auranofin, a drug with
a promising anti-TB activity, targeting a new pathway in M. tuberculosis, and with a
record of safety for its use in rheumatoid arthritis, which was, however, not well tolerated
after a four months of treatment in TB patients. In the case of niclosamide, this drug is
generally well tolerated for the treatment of tapeworm, possibly because it does not need
to be absorbed to be effective since this parasite lives in the human gut; however, since
toxicity was reported in mammalian cell lines, it is probable that a long-lasting systemic or
pulmonary delivery of niclosamide for treating TB could result in serious side effects [62].
The potential toxicity of avermectins has been well documented and although these drugs
are generally considered as highly safe for humans, with only transient and mild to
moderate side effects, more severe toxic effects could be expected from their use at higher
concentrations or for long periods of time [115]. When toxicity becomes a relevant issue,
two alternatives can be explored. First, such hypothetical new active but toxic scaffolds
identified through repurposing approaches could enter medicinal chemistry programs to
improve their selectivity towards M. tuberculosis and new validated druggable targets, and
this would result in reduced doses and, consequently, reduced potential toxicity. A second
alternative comes from synergistic combinations; as was discussed in the case of bacteriocin
AS-48, its synergy with ethambutol allows a 32-fold reduction in the dose required to kill M.
tuberculosis [113] and, consequently, to minimize any potential toxic effect on mammalian
cells.

Finally, we can foresee some positive aspects for a future use of common drugs for
the treatment of TB and other infectious diseases. Co-existing infections among bacteria,
viruses and parasites are common, and the epidemiological impact, as well as the clinical
evolution of a given infectious disease, is related to other concomitant infections. Further-
more, treating two or more diseases at the same time in a given patient involves several
pharmacokinetic, pharmacodynamic and pharmacogenetic challenges [116]. Parasitic infec-
tions are highly prevalent in the developing world, with a high rate of geographic overlap
with regions that have a high prevalence of TB [117]. Although the relationship between TB
and parasitic infections is still poorly understood, intestinal infections with helminths and
protozoa were shown to have a negative association with clinical outcomes for TB [117].
Treatment with anti-TB drugs that also act as antiparasitics could improve the clinical
outcomes of TB while reducing the burden of parasitic infections.

6. Conclusions and Future Perspectives

Several reports have demonstrated that some antiparasitic drugs have secondary
biological activities, and this property can be exploited for potential repurposing for other
medical applications. In particular, for the drugs discussed in this review, their additional
biological activity has melted away the barrier between drugs for eukaryotes and drugs for
prokaryotes, and has positioned them in the challenging field of potential anti-TB drugs.
Although the provision of new molecular scaffolds for TB therapy through repurposing
approaches is a shortcut in drug development, there are still many issues to be solved,
such as adjusting the therapeutic dose, avoiding toxicity, and elucidating the mechanism
of action, among others. Natural differences between parasites and M. tuberculosis, and
between infections caused by either pathogen, are clearly behind this. Hopefully, this
study reported cases in which, for example, medicinal chemistry was decisive in terms of
sorting out such difficulties by producing derivatives of original antiparasitic drugs with
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improved properties for TB therapy. In the future, it is expected that other disciplines such
as nanotechnology and pharmacogenomics will also contribute in this direction.
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