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A B S T R A C T

Background: Parkinson's disease (PD) and progressive supranuclear palsy – Richardson's syndrome (PSP-RS) are
often represented by similar clinical symptoms, which may challenge diagnostic accuracy. The objective of this
study was to investigate and compare regional cerebral diffusion properties in PD and PSP-RS subjects and
evaluate the use of these metrics for an automatic classification framework.
Material and methods: Diffusion-tensor MRI datasets from 52 PD and 21 PSP-RS subjects were employed for this
study. Using an atlas-based approach, regional median values of mean diffusivity (MD), fractional anisotropy
(FA), radial diffusivity (RD), and axial diffusivity (AD) were measured and employed for feature selection using
RELIEFF and subsequent classification using a support vector machine.
Results: According to RELIEFF, the top 17 diffusion values consisting of deep gray matter structures, the
brainstem, and frontal cortex were found to be especially informative for an automatic classification. A
MANCOVA analysis performed on these diffusion values as dependent variables revealed that PSP-RS and PD
subjects differ significantly (p < .001). Generally, PSP-RS subjects exhibit reduced FA, and increased MD, RD,
and AD values in nearly all brain structures analyzed compared to PD subjects. The leave-one-out cross-vali-
dation of the support vector machine classifier revealed that the classifier can differentiate PD and PSP-RS
subjects with an accuracy of 87.7%. More precisely, six PD subjects were wrongly classified as PSP-RS and three
PSP-RS subjects were wrongly classified as PD.
Conclusion: The results of this study demonstrate that PSP-RS subjects exhibit widespread and more severe
diffusion alterations compared to PD patients, which appears valuable for an automatic computer-aided diag-
nosis approach.

1. Introduction

The primary cause of Parkinson's disease (PD) is typically accredited
to the accumulation of alpha-synuclein and progressive loss of dopa-
minergic cells within the substantia nigra (Sharma et al., 2013).
Moreover, PD is clinically characterized by a broad range of motor
symptoms including bradykinesia, asymmetric rigidity, rest tremor,
postural instability, as well as non-motor symptoms such as hyposmia,
depression, constipation, and sleep disorder (Singh et al., 2007). In
contrast, progressive supranuclear palsy (PSP), an atypical Parkinso-
nian syndrome, which belongs histo-pathologically to the tauopathies,

is distinguished by a vertical supranuclear gaze palsy or slow velocity of
vertical saccades, axial rigidity, and repeated unprovoked falls in the
early disease course. The clinical diagnosis of PD and PSP is primarily
based on medical examinations, response to levodopa, and clinical
ratings such as the unified PD rating scale (UPDRS) and others
(Hachinski et al., 2006; Hughes et al., 1992; Kalia and Lang, 2015; Se,
1993). However, due to significant overlap of clinical symptoms and
inadequate accuracy of bedside tests, differential diagnosis is often
challenging, particularly in the early disease course. Within this con-
text, failure rates of up to 24% are reported, even by movement dis-
orders specialists (Hughes et al., 1992). The correct diagnosis, however,
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is highly critical since disease course, prognosis, and treatment strate-
gies differ between both entities with a significant disadvantage in PSP
(Singh et al., 2007). One of the approaches to compensate for these
misclassifications are computer-aided diagnosis methods. These re-
cently emerging techniques utilize image and non-image-based in-
formation as input features in high level machine learning algorithms
for individual level classification of different parkinsonian syndromes
and other neurological disorders.

In this context, MRI has gained considerable attention due to its
ability to depict abnormalities in the substantia nigra and basal ganglia.
Structural T1-weighted MRI sequences can display the macrostructural
degeneration profile of different parkinsonian syndromes. In terms of
group-wise studies, morphological differences such as white/gray
matter volume loss, cortical thickness, and surface area changes have
been reported in PD vs. PSP (Duchesne et al., 2009; Price et al., 2004;
Worker et al., 2014). In recent studies, volumetric changes in the
midbrain, pons area, and cerebral peduncles were reported (Gama
et al., 2010; Price et al., 2004; Quattrone et al., 2008). Structural al-
terations in the cerebellum, thalamus, putamen, pallidum, hippo-
campus, and brain stem were also shown (Messina et al., 2011). In
terms of individual level classification of PD vs. PSP using volumetric
features, multiple studies achieved high classification accuracies
of> 90% (Focke et al., 2011; Salvatore et al., 2014; Sarica et al., 2013;
Scherfler et al., 2016). While morphological differences through the use
of structural T1-weighted MRI have been extensively employed in
group-wise and individual level (classification tasks) studies, other MRI
sequences have been less frequently investigated.

Within this context, information extracted from diffusion-tensor
MRI (DTI) has been found especially advantageous for examining white
matter integrity in various neurological diseases and may identify po-
tential differences at a microstructural level in Parkinsonian syndromes
(Hess et al., 2013). Consequently, as microstructural changes are typi-
cally expected to precede macrostructural (i.e. volumetric) changes,
DTI might indicate brain abnormalities at an earlier stage than struc-
tural T1-weighted images. The most relevant quantitative DTI para-
meters are mean diffusivity (MD), which measures the degree of tissue
water diffusivity, fractional anisotropy (FA), an indicator for axonal
integrity, radial diffusivity (RD), which is associated with white matter
myelin, and axial diffusivity (AD), which provides a metric for axonal
degeneration (Song et al., 2002). The typical fingerprint of degenerated
neuronal tissue is an increase of MD, RD, and AD but a decrease of FA
(Gattellaro et al., 2009; Rizzo et al., 2008).

Nicoletti et al. (2006) reported a significant increase of regional MD
values of the putamen, caudate, globus pallidus, thalamus, and the
precentral white matter in PSP compared to PD. In two other studies,
higher MD values were found in PSP subjects in the superior cerebellar
peduncle compared to PD and healthy controls (HC) (Nicoletti et al.,
2008; Rizzo et al., 2008). Moreover, the diffusion profile of the superior
cerebellar peduncles and corpus callosum have been found to be dis-
tinguishing factors in PSP and PD (Agosta et al., 2014; Ito et al., 2008).
In another study, higher MD values in globus pallidus and midbrain in
PSP compared to PD were reported (Tsukamoto et al., 2012). Further-
more, in line with previous studies, increased MD values in the pu-
tamen, globus pallidus, and caudate nucleus in PSP compared to PD
were identified (Seppi et al., 2003). Moreover, differences in putame-
nial longitudinal diffusivity and fractional anisotropy of substantia
nigra were reported (Prodoehl et al., 2013). Gattellaro et al. (2009)
found that MD values are increased in the substantia nigra, genu of the
corpus callosum, and in the superior fasciculus in PD with non-de-
mentia compared to HC. Furthermore, reduced FA values were found in
the supplementary motor area, pre-supplementary motor area, and
cingulum in PD compared to HC (Karagulle Kendi et al., 2008). Lower
FA values in PSP compared to HC in the frontol-orbital area, supple-
mentary motor area, and other areas have also been reported (Erbetta
et al., 2009). In addition, a recent study (Rolheiser et al., 2011), found
that FA values in the olfactory area are highly beneficial for the

differentiation of PD from HC. Furthermore, increased AD and RD va-
lues in the substantia nigra, midbrain, and thalamus in PD compared to
HC were previously shown (Zhang et al., 2016).

Despite the overwhelming evidence that quantitative DTI para-
meters have high informative value for differentiating PD from PSP, the
aforementioned studies mostly conducted group-wise analyses on a
limited number of brain structures while studies utilizing DTI para-
meters for classification on an individual basis are rather rare
(Cherubini et al., 2014; Nicoletti et al., 2006).

Therefore, the present study is focusing on two main objectives. The
first goal is to investigate the diffusion properties in a wide range of
white and gray matter brain regions in PD and PSP subjects and identify
potential differences between the two groups. The second aim is to
employ the value of these diffusion maps as input features for an au-
tomatic classification of PD and PSP subjects using high-level machine
learning techniques.

2. Methods

2.1. Subjects and MRI sequence specifications

The study cohort used for this work has previously been described
(Boelmans et al., 2012). Fifty-two PD and 21 PSP subjects were scanned
at the University Medical Center Hamburg-Eppendorf, Germany, using
a 3 T Siemens Skyra MR scanner. The clinical diagnosis of PD and PSP
was conducted according to the UK Brain Bank criteria (Hughes et al.,
1992; Tolosa et al., 2006) and the National Institute of Neurological
Disorders and Stroke and Society for PSP (NINDS-SPSP) (Litvan et al.,
1996), respectively. The inclusion criteria for the PSP group were
probable PSP subjects presenting as classical Richardson's syndrome
(PSP-RS) with vertical supranuclear gaze palsy or slow velocity of
vertical saccades, axial rigidity, and repeated unprovoked falls within
the first three years of the disease. PSP patients with progressive gait
freezing, Parkinsonism with tremor or asymmetry or cognitive dys-
function in language or behavioral presentation were excluded. Prior to
the study, informed consent was attained from all subjects. The study
was approved by the local ethics committee.

Among others, the imaging protocol contained a high-resolution T1-
weighted MPRAGE dataset and a DTI dataset. The high-resolution T1-
weighted MPRAGE dataset was acquired using TR=1900ms,
TE= 2.46ms, flip angle= 9°, TI= 900ms, image in-plane resolution
of 0.94mm2, and 0.94mm slice thickness. The DTI sequence was ac-
quired using a single-shot balanced echo-planar imaging sequence with
TR=4500ms, TE= 83ms, and flip angle= 90°. The DTI sequence
consists of 27 contiguous transverse slices with a slice thickness of
5mm and in-plane resolution of 1.875mm2 acquired without diffusion
gradients (b= 0 s/mm2) and with diffusion gradients (b= 1000s/
mm2) applied along 20 non-collinear directions, averaged over two
acquisitions.

2.2. Image processing

The automatic segmentation of anatomical brain regions was per-
formed by registration of the Montreal Neurological Institute (MNI 152)
brain atlas to each T1-weighted MPRAGE image. Afterwards, the DTI
sequence was also registered to the MPRAGE image. The image pro-
cessing pipeline for extraction of the regional MD, FA, RD, and AD
values, described in the following, is illustrated in Fig. 1.

In detail, the MNI atlas was registered to the patient-specific
MPRAGE images using a rigid followed by an affine transformation. The
resulting affine transformation was then used as an initialization for
non-linear registration, which was performed using a free-form de-
formation (Rueckert et al., 1999). The Harvard-Oxford cortical, Har-
vard-Oxford subcortical, and the Johns Hopkins University white
matter tractography atlas brain regions were transformed into the T1
space using the transformation obtained from the MNI to T1
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registration. Similarly, each patient-specific DTI dataset, after eddy
current distortion correction, was registered to the corresponding
MPRAGE dataset using another non-linear registration. This non-linear
registration was used to compensate for the inherent DTI-B0 distortion
effects. More precisely, the b= 0 s/mm2 DTI image was used as the
reference for this due to improved anatomical details and higher si-
milarity to the T1-weighted MPRAGE dataset. This registration also
consisted of a rigid followed by an affine transformation used for in-
itialization of the non-linear registration, which was performed using a
symmetric diffeomorphic image registration method (Avants et al.,
2008).

The DTI preprocess tool was used for DTI processing to generate the
diffusion parameter maps (MD, FA, RD, AD) (Jenkinson, 2003). The
diffusion parameter maps were transformed to the MPRAGE dataset
using the corresponding non-linear transformation. The transformed
brain atlas regions from the first registration step were then used to
determine median diffusion parameters so that 516 DTI features are
available for each patient. Median instead of average values were used
to account for potential non-normal DTI parameter value distribution
and partial volume effects at the border of brain structures.

2.3. Statistical analysis, feature selection and classification

A multivariate analysis of covariance (MANCOVA) was used for
group comparison using a subset of the median MD, FA, RD, and AD
values as dependent variables, age as a co-variate, and the class (PD vs.
PSP) as the fixed factor. The subset of values investigated here (see
below for details) were the top performing features obtained by the
RELIEFF feature selection method (Kononenko et al., 1997). Ad-
ditionally, a receiver operating characteristic (ROC) analysis was per-
formed for statistical evaluation of each diffusion parameter in the in-
vestigated subset. IBM SPSS Statistics (v22.0, IBM, Armonk, NY) was
used for all conventional statistical analyses. A p-value< .05

(Bonferroni corrected) was considered significant.
Apart from conventional statistical analyses, an individual level

differentiation between PD and PSP was also performed using the entire
feature set. The classification procedure used in this work starts with a
feature ranking routine. Feature selection is often employed to remove
redundant and non-informative features from the feature space where
they often decrease classification accuracy (Kwak and Choi, 2002). In
this work, the RELIEFF feature selection algorithm was used due to its
ability to detect conditional dependencies and overall noise robustness.

After feature ranking using the aforementioned method, a linear
kernel support vector machine classifier with the default parameter
value C= 1, which controls the trade-off between misclassification and
error-minimization, was trained based on the highest ranked features.
The linear kernel and the default parameter value C=1 were selected
to reduce the risk of overfitting. The support vector machine was
chosen due to its consistent strong performance in a wide range of
classification tasks in the past (Meyer et al., 2003).

After training, the leave-one-out cross validation routine was em-
ployed for classifier performance evaluation. Furthermore, to prevent
double dipping, a nested cross validation was employed, meaning that
the leave-one-out cross validation also included the feature ranking as
described above so that the optimal features used for the actual clas-
sification can vary in each iteration of the leave-one-out cross valida-
tion. The optimal number of highest ranked features used for training
and testing of the classifier was systematically optimized by iteratively
removing the lowest ranked feature from the training and testing.

To investigate the benefit of a full diffusion-tensor MR imaging se-
quence compared to a more simple and faster diffusion-weighted MRI
sequence acquired with just three different orthogonal directions with
one diffusion weighting, which can only generate MD parameter maps
but no FA, RD, and AD parameter maps, the same RELIEFF feature
selection, support vector machine classifier, and leave-one-out cross
validation procedure described above was also performed using only

Fig. 1. Schematic overview of the image processing phase.
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the MD values.

3. Results

The group-wise characteristics of the 73 subjects included in this
study together with the corresponding statistics are shown in Table 1.
Overall, the two groups differed significantly in disease duration,
UPDRS (ON condition), and mini mental state examination (MMSE)
test.

3.1. Statistical analysis of regional diffusion values

The MANCOVA analysis using the top performing median diffusion
values as dependent variables, age as a covariate, and the class as a
fixed factor revealed a statistical significant difference between PSP-RS
and PD subjects (p < .001). Table 2 shows the statistical analysis of the
top 17 brain regions, which were found to lead to the best classification
results (see below). Generally, PSP-RS subjects exhibited reduced FA,
and increased MD, RD, and AD values in nearly all brain structures
analyzed compared to PD subjects (full data for all 516 features is not
shown). The 17 brain regions shown in this table, including the cor-
responding p-values and ROC-AUC values, were determined using all
datasets, while the set and rank of features used for classification may
vary for each result of the training procedure of the cross validation.
Overall, the 17 best features selected for classification also show highly
discriminative statistical values.

3.2. PD vs. PSP-RS classification

The leave-one-out cross-validation revealed that the proposed au-
tomatic classification method using the diffusion properties as features
performs best if the top 17 highest ranked DTI features are used for

classification. With this setup, the classification method is capable of
differentiating PD from PSP-RS subjects with an overall accuracy of
87.7% (64/73 datasets were correctly classified). More precisely, 6/52
PD subjects were falsely classified as PSP-RS, and 3/21 PSP-RS subjects
were falsely classified as PD, which corresponds to a precision of 0.94
for the PD group and 0.75 for the PSP-RS group. The extended classi-
fication metrics for all three classification models including true posi-
tive rates, Matthews's correlation coefficient (MCC), F-measure, and
others are depicted in Table 3.

Overall, it becomes apparent that the most important brain regions
as determined by the RELIEFF algorithm include only the brainstem,
deep gray matter structures (putamen, pallidum, and thalamus) as well
as areas of the frontal cortex. FA values, although not selected by the
RELIEFF algorithm for the classification, were generally reduced in
PSP-RS subjects.

Compared to this finding, the highest classification accuracy
achieved using only the MD parameters was significantly lower with
only 79.5% achieved using the top 85 features as determined by the
RELIEFF algorithm. More precisely, 8/52 PD subjects were falsely
classified as PSP-RS and 7/21 PSP-RS subjects were falsely classified as
PD, which corresponds to a precision of 0.86 for the PD group and 0.64
for the PSP-RS group. The classification metrics for using only MD

Table 1
Demographic and clinical characteristics of study participants.

Parkinson's disease Progressive supranuclear palsy – Richardson's syndrome p-value

No. 52 21
Gender, F/M 17/37 11/10 p= .093
Age at examination, y, mean ± SD (range) 65.5 ± 8.6 (40–77) 71.1 ± 5.5 (59–79) p= .104
Disease duration, y, mean ± SD (range) 12.7 ± 6.8 (0.5–30.2) 5.9 ± 3.3 (1.2–12.6) p= .001
Hoehn&Yahr, mean ± SD (range) 2.5 ± 0.8 (1–4) 2.5 ± 0.8 (1–4) p= .823
UPDRS motor score (OFF condition), mean ± SD (range) 36.8 ± 13.1 (14–63) 32.7 ± 11.7 (9–52) p= .658
UPDRS motor score (ON condition), mean ± SD (range) 19.9 ± 10.2 (5–52) 28.7 ± 10.6 (6–48) p= .003
MMSE, mean ± SD (range) 28.1 ± 1.4 (23−30) 25.1 ± 2.7 (19–29) p= .032

Table 2
Results of the statistical evaluation of the regional diffusion values (STD= standard deviation, FA= fractional anisotropy (×103), MD= apparent diffusion coef-
ficient (measured in 10−6 mm2/s), RD= radial diffusivity (measured in 10−6 mm2/s), and AD= axial diffusivity (measured in 10−6 mm2/s)) of the top 17 ranked
features used for classification. Brain regions are sorted according to the feature ranking with decreasing importance.

Rank Brain Region Age-adjusted mean (± STD) in PD Age-adjusted mean (± STD) in PSP-RS ROC AUC 95% Confidence Limits p-value

1 AD Right Pallidum 1196.3 ± 10.9 1350.0 ± 17.5 0.923 0.856 0.991 <0.001
2 MD BrainStem 906.0 ± 9.2 1013.4 ± 14.9 0.882 0.794 0.970 <0.001
3 MD Right Pallidum 834.0 ± 8.2 913.6 ± 13.2 0.830 0.714 0.946 <0.001
4 RD BrainStem 717.8 ± 9.0 820.5 ± 14.6 0.850 0.747 0.952 <0.001
5 AD Right Putamen 981.6 ± 15.0 1073.5 ± 24.2 0.799 0.681 0.918 0.002
6 AD Left Putamen 1261.8 ± 13.0 1363.0 ± 20.9 0.840 0.748 0.931 <0.001
7 AD BrainStem 1367.5 ± 9.1 1460.3 ± 14.7 0.883 0.809 0.957 <0.001
8 RD Right Pallidum 683.8 ± 9.4 729.9 ± 15.2 0.736 0.587 0.886 0.14
9 AD Right Thalamus 1219.4 ± 14.0 1379.2 ± 22.6 0.857 0.758 0.956 <0.001
10 RD Right Superior Frontal Gyrus 754.2 ± 11.0 844.6 ± 17.8 0.840 0.745 0.934 <0.001
11 MD Right Thalamus 926.5 ± 13.9 1071.3 ± 22.4 0.822 0.713 0.932 <0.001
12 RD Right Thalamus 799.1 ± 13.5 930.1 ± 21.7 0.799 0.678 0.921 <0.001
13 MD Left Putamen 997.7 ± 13.3 1079.8 ± 21.4 0.814 0.718 0.910 0.002
14 AD Right Frontal Medial Cortex 1186.9 ± 15.8 1291.3 ± 25.5 0.801 0.689 0.914 0.001
15 MD Right Frontal Medial Cortex 1051.4 ± 15.3 1149.4 ± 24.6 0.801 0.688 0.914 0.001
16 MD Right Superior Frontal Gyrus 846.5 ± 10.4 926.6 ± 16.7 0.839 0.745 0.933 <0.001
17 MD Left Superior Frontal Gyrus 881.8 ± 12.1 981.8 ± 19.4 0.841 0.750 0.931 <0.001

Table 3
Extended classification performance by class (TP=True Positive, FP= False
Positive, MCC=Matthews correlation coefficient, ROC=Receiver operating
characteristic).

Class TP Rate FP Rate Precision Recall F-Measure MCC ROC Area

PD 0.885 0.143 0.939 0.885 0.911 0.715 0.913
PSP-RS 0.857 0.115 0.750 0.857 0.800
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values as features are shown in Table 4.
Permutation-based testing with 1000 iterations revealed that both

classification results are significant (p < .05).

4. Discussion

The finding that PSP-RS subjects exhibit reduced FA, and increased
MD, RD, and AD values in nearly all brain structures analyzed com-
pared to PD subjects is generally in line with previous studies (Chung
et al., 2009; Erbetta et al., 2009; Gattellaro et al., 2009; Karagulle Kendi
et al., 2008; Nicoletti et al., 2008, 2006; Rizzo et al., 2008; Rolheiser
et al., 2011; Schocke et al., 2002). However, instead of a localized
phenomenon as mostly suggested in previous studies, it rather appears
to be a general effect as nearly all brain regions analyzed, white as well
as gray matter, revealed reduced FA and increased MD, RD, and AD
values in PSP-RS compared to PD subjects. These findings point towards
more severe microstructural damages of the brain tissue in PSP-RS
compared to PD. This is an interesting finding, especially given the
aspect that the PD cohort in this study has a significantly longer disease
duration but less severe microstructural damages. The differences in
microstructural integrity found comparing PD and PSP-RS groups could
explain the increased atrophy rates often identified in PSP-RS compared
to PD patients. As microstructural changes are typically expected to
occur prior to measurable macrostructural changes, DTI parameters
might be more viable as early disease biomarkers to differentiate be-
tween PD and PSP-RS (Jolly et al., 2013; Zhang et al., 2013).

The 17 brain regions selected and used for classification included
the brainstem and deep gray matter structures such as thalamus, pu-
tamen and pallidum, all of which are known to be affected by PD and
have previously been identified as important brain regions in the vo-
lumetric differentiation of PD vs. PSP-RS (Focke et al., 2011; Gama
et al., 2010; Messina et al., 2011; Price et al., 2004; Quattrone et al.,
2008; Worker et al., 2014). This might further corroborate our propo-
sition that microstructural changes manifest earlier than or are at least
correlated with macrostructural changes, promoting the use of diffu-
sion-based sequences over the traditional volumetric T1-weighted
images for differential diagnosis of PD vs. PSP-RS. However, this
speculation needs to be investigated in more detail in future studies.
The other brain regions identified by the feature selection method are
part of the frontal cortex, namely the superior frontal gyrus and frontal
medial cortex, which could be related to previously reported differences
in the prefrontal dopaminergic system between PD and PSP-RS subjects
(Narayanan et al., 2013).

Individual level classification of 52 PD and 21 PSP-RS subjects was
performed using median regional MD, FA, AD, and RD values obtained
from DTI datasets. The leave-one-out cross validation revealed that the
proposed support vector machine classifier using these DTI metrics as
features can differentiate PD and PSP-RS subjects with an accuracy of
87.7%. The same classification setup using only MD features achieved a
significantly lower classification accuracy of 79.5%, which suggests
that the additional diffusion metrics that can be calculated from a full
DTI sequence have additional informative value compared to using only
the MD parameter even though no FA feature was selected by the
RELIEFF algorithm when using all diffusion parameters. It is worth
noting that RELIEFF does not depend on p-values to rank features and
follows a different multi-parametric approach. Therefore, features that

do not reach statistical significance in conventional statistics might still
be ranked highly as they might have a high informative value only in
combination with other parameters. For instance, the median radial
diffusivity of the right pallidum has a p-value of 0.14 in the group-wise
analysis. Nevertheless, it ranked highly according to RELIEFF feature
ranking.

It should be noted that this is not the first work to employ DTI
measurements for classification of PD and PSP-RS subjects. Haller et al.
(2012) presented an approach to classify PD subjects (n=17) and
subjects with atypical forms (n=23) of Parkinsonism using a support
vector machine classifier and voxel-wise FA values as features. A cor-
rect classification between PD subjects versus subjects with atypical
forms was achieved in up to 97.5 ± 7.5%. However, it should be noted
that the group of 23 subjects with atypical forms of Parkinsonism in-
cluded only one patient with PSP while the other subjects in this group
were, for example, diagnosed with multiple system atrophy, dementia
with Lewy bodies, vascular Parkinsonism, and even traumatic brain
injury. Thus, the results are not really comparable to those described
here. Furthermore, using voxel-wise features for classification always
bares the risk of overfitting (Kriegeskorte et al., 2009). Nevertheless, in
line with the findings of this study, Haller et al. found decreased FA and
increased RD and MD values in the 23 subjects with atypical forms in
the bilateral network predominantly in the right frontal white matter
compared to PD subjects. Deep gray matter structures were not ana-
lyzed in the study by Haller et al. so that no comparison can be made for
these brain structures.

The support vector machine is a very powerful machine learning
approach and is frequently used for the classification of neurological
diseases based on image-based features. Within this context, support
vector machines have also been used for the automatic differentiation
of PD and PSP patients using morphological features derived from T1-
weighted datasets (Focke et al., 2011; Salvatore et al., 2014; Sarica
et al., 2013), typically achieving classification accuracies of> 90%.
The classification accuracy of 87.7% achieved in this work using dif-
fusion measurements, thus, performs comparable to other support
vector machine classifiers using volumetric information but might be
able to classify patients earlier compared to classifiers relying on
macrostructural morphometric information.

It needs to be highlighted that the results of this study and pre-
viously presented classification methods are not directly comparable
since different databases were used for the development and classifier
evaluation. The 73 subjects used in this work, who were recruited
prospectively to set up a representative clinical cohort, denote a rather
large number of participants compared to most previous studies making
it more likely that the results of the proposed classifier are reproducible.
It is widely accepted that increasing the number of subjects will reduce
the generalization error of the classification model (Figueroa et al.,
2012). Classification accuracies obtained from a small number of da-
tasets are often too optimistic and do not necessarily represent the ac-
tual classification performance that would be expected in a clinical
setting. Thus, the utility of the proposed method needs to be evaluated
and validated using a prospective independent study cohort, especially
in the context of an early disease marker.

Two major limitations are present in this research. First, the study
cohort used in this work, while relatively large compared to similar
studies, is still not large enough to fully expand on the generalizability
of the proposed model. This limitation is further perpetuated by the
lower incidences for PSP-RS compared to PD. Second, an independent
validation dataset, preferably acquired in a different imaging center,
would be a more rigorous approach of model verification. However,
this separate dataset was not available for this present study to further
test the proposed model. Moreover, we opted to not separate our cur-
rent dataset into completely separate training and validation sub groups
as the training cohort would not have been sufficiently large enough to
train a generalized classifier, potentially resulting in an over-fitted
model. Extra precautions such as applying the leave-one-out cross

Table 4
Extended classification performance by class (using only MD values as features)
(TP=True Positive, FP=False Positive, MCC=Matthews correlation coeffi-
cient, ROC=Receiver operating characteristic).

Class TP Rate FP Rate Precision Recall F-Measure MCC ROC Area

PD 0.846 0.333 0.863 0.846 0.854 0.506 0.756
PSP-RS 0.667 0.154 0.636 0.667 0.651
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validation and the permutation testing were used to minimize the risk
that the results are biased by over-fitting as much as possible. It is worth
noting that studies employing separate validation datasets are rather
scarce in this context, so that cross validation methods are used most
frequently for classifier validation.

In light of the obtained classification accuracy of 87.7%, the pro-
posed method is in the top range of previously reported image-based
classification approaches to differentiate PD and PSP subjects using
features such as regional brain volumes (Focke et al., 2011), quantita-
tive T2′ values (Boelmans et al., 2012), and susceptibility-weighted MRI
parameter (Haller et al., 2013). Despite the favorable outcome of the
proposed method, further improvements might be achievable by in-
tegrating additional MRI features in the classification method such as
susceptibility-weighted imaging, regional brain volumes, or T2 prime
MR datasets. Moreover, the usage of DTI datasets with higher spatial
resolution as well as the integration of more advanced diffusion ima-
ging sequences, such as diffusion kurtosis imaging or NODDI-DTI,
might provide new interesting insights about microstructural differ-
ences between the cohorts and improve the differentiation between PD
and PSP-RS (Kamagata et al., 2014; Surova et al., 2018). Nevertheless,
considering the wide-spread availability of DTI sequences in conven-
tional MRI machines, the presented method portrays a promising new
avenue for the diagnosis of PD and PSP-RS. In addition to this, the
proposed machine learning model based on regional diffusion metrics
could be extended by other atypical Parkinsonian syndromes such as
multiple system atrophy, as well as a healthy control group to develop a
more comprehensive classification model. However, for this study, we
focused solely on the PSP-RS vs. PD classification due to the clinical
importance of this differentiation.

In summary, the results of this study demonstrate that regional
brain diffusion differences in PD and PSP-RS are present across a wide
spectrum of different brain regions, which also enables a high classifi-
cation accuracy. Moreover, as these micro-structural changes are ex-
pected to precede volumetric changes, the DTI sequence might be a
more viable tool for the differential diagnosis of PD and PSP-RS com-
pared to structural T1-weighted images.
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