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Abstract Heart disease is a major cause of death worldwide with increasing prevalence, which urges the development of
new therapeutic strategies. Over the last few decades, numerous small animal models have been generated to
mimic various pathomechanisms contributing to heart failure (HF). Despite some limitations, these animal models
have greatly advanced our understanding of the pathogenesis of the different aetiologies of HF and paved the way
to understanding the underlying mechanisms and development of successful treatments. These models utilize surgi-
cal techniques, genetic modifications, and pharmacological approaches. The present review discusses the strengths
and limitations of commonly used small animal HF models, which continue to provide crucial insight and facilitate
the development of new treatment strategies for patients with HF.
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1. Introduction

Heart failure (HF) is the leading cause of death worldwide. The mortality
rate of HF is high, with about 50% of patients dying within 5 years after
the initial diagnosis, which exceeds most types of cancer (www.who.int).
Furthermore, the prevalence of HF in industrialized nations is increasing,
which results in an enormous economic burden. The increase is attribut-
able, at least in part, to the improved treatment following acute myocar-
dial infarction (MI), which has decreased the mortality rate, but not
morbidity, and is based on the number of surviving patients. Additional
factors comprise an increased prevalence of comorbidities, which pre-
dispose and accelerate the development of HF. Therefore, there is an ur-
gent need to modify these risk factors and to develop new therapeutic
strategies for HF patients.

Based on left ventricular (LV) ejection fraction (LVEF), HF can be cate-
gorized as heart failure with preserved ejection fraction (HFpEF; LVEF
>_50%), heart failure with mid-range ejection fraction (HFmrEF; LVEF 40–
49%), or heart failure with reduced ejection fraction (HFrEF; LVEF <
40%).1 About 50% of HF patients are afflicted with HFpEF and exhibit HF
symptoms, which include exercise intolerance, congestion, and oedema
that are associated with cardiac hypertrophy, increased fibrosis, and de-
creased capillary content. Common risk factors for the development of
HFpEF include arterial hypertension, obesity, diabetes mellitus, atrial fi-
brillation, and renal dysfunction (Figure 1). This implies that impaired car-
diac compliance and contractile dysfunction found in HFpEF can be
triggered by associated comorbidities. Importantly, the postulation that

diastolic dysfunction is equivalent to HFpEF is an oversimplification and
only partially correct. This emanates from the observation that diastolic
dysfunction has also been detected in normal subjects without clinical
HFpEF symptoms.2 In contrast, HFrEF is typically associated with loss of
cardiomyocytes, which can be a consequence of myocardial damage of
different aetiologies (Figure 1) and may increase wall stress, as reflected
by higher levels of natriuretic peptides compared to HFpEF.2

Small animal models, including mice, rats, and guinea pigs,3 continue to
improve our understanding of the various aspects and aetiologies of HF
and help to develop novel treatment strategies. Mice and rats are the
most commonly used animal models and share a high degree of homol-
ogy to the human genome, with �30 000 protein-coding genes each.
Major advantages of rodent models include relatively short breeding
cycles and low housing costs. Numerous small animal models have been
generated as tools to decipher HF aetiologies and develop new HF treat-
ment strategies. These models typically utilize genetic modifications,
pharmacological and surgical approaches, which can also be combined.
The pathogenesis of HFpEF and HFrEF is multifactorial. Thus, it is often
impossible to discern the underlying mechanisms, which can be overlap-
ping and interconnected. This provides a challenge to investigate co-
existing risk factors for HF development in a single model organism,4,5

especially in models of diabetic cardiomyopathy and HFpEF,6 necessitat-
ing the thoughtful selection of the best animal model for a given hypothe-
sis. However, small animal HF models enable the study of specific risk
factors without the confounding effect of comorbidities. Over the last
few decades, numerous small animal models have greatly advanced our
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..understanding of the pathogenesis of HFrEF and HFpEF, many of which
will be highlighted in this article and are summarized in Table 1.

2. Small animal models of HFrEF

The following sections discuss rodent models, which typically provoke
HFrEF (Figure 2). It is important to note that some of these models in-
duce HFpEF, which precedes the later onset of systolic dysfunction and
HFrEF.

2.1 Surgical models
2.1.1 LV pressure overload
Chronic LV pressure overload causes HF in mice7–16 and rats,7,17,18

which is accomplished by various surgical approaches to mimic the adap-
tations associated with hypertension and aortic valve stenosis in patients.
Transverse aortic constriction (TAC) in mice was first described by
Rockman et al.15 and has been subsequently used as a method for LV
pressure overload by numerous laboratories. TAC increases LV after-
load, which results in concentric cardiac hypertrophy and, ultimately,
HFrEF. Several surgical techniques for TAC have been developed, includ-
ing minimally invasive approaches by a small incision in the proximal

sternum7,9,10,14 and placement of surgical clips or sutures to impede
blood flow across the aortic arch. Recently, a novel method using o-rings
with fixed inner diameters has been described, which are placed around
the ascending aorta in mice.83 Measurement of the peak flow velocity dif-
ference of the right relative to the left carotid artery enables the quantifi-
cation of the pressure gradient post-surgery.7 Important parameters for
the hypertrophic response and progression of HF include sex, weight,
age, and the genetic background of the species used. Mice with the
C57BL/6J genetic background develop HF more rapidly post-TAC com-
pared to the 129S1/SvImJ strain11 and have similar gene expression pat-
terns of human dilated cardiomyopathy compared to 129S1/SvImJ
mice.85 The identified pathways contributing to accelerated HF in
C57BL/6J mice include periostin, angiotensin, and IGF1 signalling.
Different adaptations for the response to pressure overload have also
been reported for the different C57BL/6 substrains, i.e. C57BL/6NCrl
(maintained by the Charles River Laboratories), C57BL/6NTac
(maintained by the Taconic Laboratories), and C57BL/6J (maintained
by the Jackson Laboratory).84,86 C57BL/6J mice have a mutation in
the nicotinamide nucleotide transhydrogenase (Nnt) gene, which regen-
erates NADPH from NADH. This mutation protects C57BL/6J mice
from oxidative stress and HF post-TAC compared to the inbred
C57BL/6N strain.84

Figure 1 Schematic depicting selected risk factors for the development of heart failure with reduced ejection fraction (HFrEF) and heart failure with pre-
served ejection fraction (HFpEF). Note that some risk factors increase the risk of both HFrEF and HFpEF, and HFpEF may precede the later onset of HFrEF.
COPD, chronic obstructive pulmonary disease; LVEF, left ventricular ejection fraction.
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One important limitation of TAC is the immediate onset of pressure

overload, which is in contrast to the slow progression of hypertension
and aortic valve stenosis in patients. To overcome this potential draw-
back, constriction of the ascending aorta has been performed in 3- to 4-
week-old rats. In this model, LV hypertrophy is observed by 6 weeks and
overt HF by 18 weeks post-surgery.19,20 Aortic constriction in rats has
also been performed around the abdominal aorta both in the infrarenal
and suprarenal position, the latter of which induces renal hypoperfusion,
hypertension, and LV hypertrophy. Abdominal aortic constriction typi-
cally contributes to a slower progression of the HF phenotype.87

Recently, additional models have been developed that facilitate the study
of reverse cardiac remodelling. The models described use different surgi-
cal approaches to remove the TAC stenosis and subsequently decrease
cardiac workload.21–25

2.1.2 Ischaemic injury
Coronary artery ligation is a commonly used, small animal HF model88

that was initially established by Pfeffer et al.34 in rats and has been subse-
quently used by numerous groups.35–38 The Pfeffer group performed
groundbreaking studies and demonstrated that infarct size, post-MI LV
chamber dilatation and LV function are correlated. They subsequently
showed that treatment with the angiotensin-converting enzyme (ACE)
inhibitor captopril improves contractile function and survival following
MI in rats.39,40 The impact of ACE inhibition was subsequently tested in
large clinical trials in patients post-MI, which improved contractile func-
tion and survival.89 These studies established pharmacological ACE inhi-
bition for patients with MI, which is now a commonly used, standard
treatment. Coronary artery ligation has also been performed in mouse
models.26–33 Ligation of the left anterior descending (LAD) artery

Figure 2 Schematic depicting selected stressors to induce heart failure with reduced ejection fraction (HFrEF) in small animal models. Note that these
models may also induce heart failure with preserved ejection fraction (HFpEF), which precedes the later onset of HFrEF. Additional animal models with tem-
porary exposure to drugs and temporary genetic gain-of-function or loss-of-function modifications have been developed. DOX, doxorubicin; EtOH, etha-
nol; Hcy, homocysteine; I/R, ischaemia/reperfusion injury; ISO, isoproterenol; LAD, left anterior descending artery; LV, left ventriclular; MCT,
monocrotaline; RV, right ventriclular.
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typically results in HF 4 weeks post-surgery and strongly depends on the
genetic background of the mice used.32 One potential limitation of these
animal models with permanent coronary artery occlusion is the differen-
ces in their observed phenotypes relative to those observed in patients;
atherosclerosis of the coronary arteries in patients results in ischaemic
heart disease that slowly progresses and coronary artery blood flow can
eventually be re-established during coronary angiography performed af-
ter an acute MI. To overcome this limitation, ischaemia/reperfusion (I/R)
models have been established, which facilitate the investigation of molec-
ular mechanisms and tissue damage following temporary LAD occlu-
sion.41–45,90 The I/R model typically exhibits less tissue damage
compared to permanent LAD occlusion. Importantly, ischaemic injury is
typically induced in young rodent models. This is in contrast to the pa-
tient population, in which elderly and multimorbid patients exhibit the
greatest risk of coronary artery disease and acute MI.

MI has also been induced in neonatal mice to identify and characterize
pathways that are involved in cardiac regeneration. Ischaemic injury in
neonatal mice is provoked by LAD ligation and complete recovery is ob-
served by 3 weeks of age. The regenerative potential decreases as the
mice age and the abundance of proliferating cardiomyocytes
diminishes.46 Similar to TAC, the adaptations post-MI have been com-
pared across the most commonly used mouse strains and are dependent
on genetic background. While infarct rupture was most frequently ob-
served in 129S6 mice, cardiac dilatation was most prominent in Swiss
mice.32 Therefore, the genetic background should be an important con-
sideration in study designs.

2.1.3 Combined LV pressure overload/ischaemic injury
To explore the coexistence of clinically relevant morbidities of arterial
hypertension and coronary artery disease present in patients, recent sur-
gical HF models combine the techniques of TAC surgery and LAD liga-
tion. This combined surgical approach was first described in rats48 and
has since been modified for mouse models.47 Various models have been
published with different locations for the placement of the aortic steno-
sis, all of which exhibit adverse LV remodelling and rapid HF pro-
gression.49 Recently, a mouse model with combined MI and temporary
TAC was developed,91 which has enabled the elucidation of the impact
of mechanical unloading following ischaemic injury.

2.1.4 Right ventricular pressure overload
Similarly to TAC surgery, which increases LV afterload, pulmonary artery
banding increases right ventricular (RV) afterload, and mimics pulmonary
hypertension in mice50–52 and rats.53 Pulmonary artery banding results in
RV hypertrophy and pathological remodelling.50 As reported for TAC,
the severity of the pulmonary artery stenosis correlates with the pro-
gression of contractile dysfunction and mortality.51 Notably, the acute in-
crease in RV afterload does not reflect the gradual progression of
pulmonary hypertension in patients.

2.1.5 Volume overload
Chronic volume overload in small animal models reproduces the pathol-
ogies observed in patients with mitral valve regurgitation, which typically
increase diastolic wall stress and cause eccentric cardiac hypertrophy.12

Cardiac volume overload is accomplished in rodents by creating a surgi-
cal aorto-caval shunt and has been reported for rats54,55 and mice.12

Volume overload in rats initially decreases LV function. The subsequent
compensatory hypertrophy normalizes contractile function at one
month post-surgery,54 with the time course of HF development strongly

depending on the shunt volume and being less predictable compared to
TAC models. The shunt creates an artificial mix of arterial with venous
blood, which is in contrast to the clinical setting in patients with mitral
valve regurgitation. Volume overload in mice causes minimal apoptosis
in the absence of pathological remodelling, which is in contrast to the in-
creased afterload following TAC surgery. This indicates that increased
preload, i.e. aorto-caval shunt, and increased afterload, i.e. TAC, contrib-
ute to different morphological phenotypes, which is important for the
design of future HF therapies.

2.2 Toxic cardiomyopathy
The anthracycline compound Doxorubicin (DOX) is a standard anti-
cancer therapeutic agent. DOX causes dilated cardiomyopathy in a
dose-dependent manner92 that is typically irreversible and progressive.
DOX has been administered to numerous small animal models56–60 and
promotes the formation of free radicals and mitochondrial dys-
function.93,94 Juvenile DOX exposure in mice results in no immediate
contractile dysfunction, however, impairs the ability to adapt to angio-
tensin II-induced hypertension later in life, which is restored by co-
treatment with resveratrol.95 Notably, cancer cachexia increases the risk
of HF and decreases systemic insulin levels. Chronic insulin supplementa-
tion decreases glucose usage by the tumour, normalizes cancer-
mediated impairment in cardiac Akt signalling and attenuates contractile
dysfunction.96 Conversely, HF following MI increases tumour growth as
reported for APCMin mice that have a mutation in the tumour suppres-
sor gene Adenomatosis polyposis coli (Apc) and are prone to multiple intes-
tinal neoplasia (Min) and cancer development.97

Chronic stimulation of G-protein-coupled ß-adrenergic receptor sig-
nalling with isoproterenol provokes cardiomyocyte hypertrophy and fi-
brosis in mice8,61 and rats,62 which is similar to the progressive HF
development in mice with cardiac-specific overexpression of b1-adre-
nergic receptors.98 The mechanisms responsible include an imbalance
between the increased energy demand, which is based on the hypercon-
tractility of the myocardium relative to the oxygen and nutrients
provided.

Monocrotaline (MCT) is a pyrrolizidine alkaloid obtained from the
plant species Crotalaria spectabilis, which induces pulmonary hypertension
and RV hypertrophy. MCT is converted in the liver to MCT pyrrole and
circulates to the lung parenchyma to increase capillary permeability and
to trigger interstitial oedema and smooth muscle hypertrophy.99 These
alterations increase pulmonary vascular resistance, RV pressure over-
load, and RV failure. MCT has been used in rats63,64 and larger animal
models. Importantly, non-specific side effects for MCT have been
reported, such as lung and kidney injury,64,99 which are important to con-
sider when designing future studies.

As previously reviewed, high circulating homocysteine levels are a risk
factor for the future onset of HF.100 Similarly, dietary supplementation
with homocysteine increases inflammation, collagen remodelling, and
oxidative stress,65,66,100 and provokes contractile dysfunction in both
normotensive and spontaneously hypertensive rats.65–67 Chronic etha-
nol ingestion contributes to dilated cardiomyopathy in both rodent
models and humans.101 The underlying mechanisms comprise decreased
myocardial contractility as a consequence of altered myofibrillar Mg2þ-
ATPase activity and cardiomyocyte loss.68

2.3 Genetically engineered models
Numerous transgenic animal models of HF have been generated to in-
vestigate the impact of genetic modifications, typically gain-of-function or
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loss-of-function modifications, on cellular and molecular processes con-
tributing to clinically relevant phenotypes.102,103 The complex topic of
genetic modification for the generation of transgenic mouse models has
been reviewed in detail.104 Transgenic mice with whole body gene dele-
tions have been developed (constitutive knockouts). Confounders that
emanate from the deletion of a gene throughout the entire organism
resulted in the development of tools to generate conditional knockouts
with spatial and temporal gene deletion. Gene deletion can be facilitated
by Cre/loxP- or Flippase/FRT-mediated recombination, and tissue-
specific Cre and Flippase recombination are achieved by the use of a spe-
cific promoter (e.g. myosin heavy chain 6, Myh6). Recently, engineered
nucleases have been developed to modulate DNA sequences and to
generate transgenic mice. The nucleases used for genome editing include
transcription activator-like effector nuclease (TALEN), zinc-finger nucle-
ase (ZFN), and clustered regularly interspaced short palindromic repeat
(CRISPR)/-associated protein 9 (Cas9). Compared to other nucleases,
the CRISPR/Cas9 system is more efficient and the design of constructs
easier to perform.104 Important limitations of the CRISPR/Cas9 system
are non-specific off-target effects, which can affect the phenotype of the
model generated and necessitate whole-genome sequencing of the gen-
erated mouse model. Genetic modification can also be facilitated by
adeno-associated virus (AAV)-mediated delivery of DNA constructs,
which can be performed by the use of a combination of specific viral
serotypes and promotors (e.g. AAV9 and Myh6).105 Compared to the
generation of transgenic animals, virus-mediated approaches are usually
more time- and cost-efficient. Potential drawbacks include side effects in
other tissues following systemic injection and badge-to-badge variability
of the virus construct.

3. Small animal models of HFpEF

In the following sections, we will discuss the most common models to in-
vestigate classical risk factors for the development of HFpEF, which in-
clude hypertension, obesity, diabetes mellitus, and aging. Importantly,
systolic contractile dysfunction may also be present in these models,
which additionally enables their use as HFrEF models. Additional risk fac-
tors for the development of HFpEF in humans include renal dysfunction,
chronic obstructive pulmonary disease (COPD) and atrial fibrillation,
which have not been studied in detail in small animal models.

3.1 Hypertension
The Dahl salt-sensitive rat, which was generated by inbreeding Sprague-
Dawley rats,71 is one of the most commonly used HFpEF models. When
fed with a high-salt diet containing 8% NaCl, this model rapidly develops
hypertension, diastolic dysfunction, and HFrEF.72 Spontaneously hyper-
tensive rat is an inbred strain of Wistar-Kyoto rats with hypertension.73

Chronic infusion with angiotensin II causes hypertension and cardiomyo-
cyte hypertrophy in mice and rats.69,70 Major advantages of these models
are the slow progression of hypertension and HF, which is also observed
in patients with hypertension and is in contrast to the immediate increase
in LV workload following TAC surgery.

3.2 Obesity and diabetes mellitus
Numerous small animal models have been generated to investigate the
impact of Type 1 (T1D) and Type 2 diabetes (T2D) on the heart.6

A commonly used model for T1D is the Akita mouse (Ins2Akitaþ/-), which
exhibits a mutation in the Insulin2 encoding gene. This results in misfold-
ing of the insulin protein, endoplasmic reticulum stress, and b-cell

failure.74 Hearts from Akita mice show increased inflammation75 and dia-
stolic dysfunction in the presence of normal systolic function.76

The glucosamine-nitrosourea streptozotocin (STZ) is toxic to pancre-
atic b-cells and has been used to study both T1D and T2D. Because of
its structural similarity to glucose, STZ enters pancreatic b-cells via the
glucose transporter 2 (GLUT2), causing cellular damage, and impairing
insulin production. The STZ-mediated effects on b-cell destruction and
hyperglycaemia are dose-dependent. High-dose STZ treatment induces
T1D in rodents. In contrast, low-dose STZ protocols have been used to
overcome the low penetrance of some high-calorie dietary regimens
and to mimic b-cell failure and late stage T2D. Therefore, low-dose STZ
treatment has been added to the high-fat diet (HFD) protocols.6

Ob/ob77 and db/db79 mice are commonly used models of obesity and
T2D that are based on leptin resistance or deficiency, respectively.
Diastolic dysfunction has been reported for both models.78,80 Additional
models for T2D and insulin resistance include Zucker fatty (ZF) rats,
which express non-functional leptin receptors81 and Zucker diabetic
fatty rats, which are an inbred strain of ZF rats with high serum glucose
levels.82

Numerous dietary treatment regimens are used to induce insulin re-
sistance and T2D in rodents. HFD chow usually contains a total fat con-
tent of up to 60%. Rodent ‘Western’ diets typically contain a high
content in fat and sucrose, which makes them a useful tool to study pa-
thologies that have been described by the ‘Western’ dietary pattern in
humans.106 Depending on the total fat content and duration these die-
tary treatments may induce contractile dysfunction in rodents. The pro-
posed mechanisms have been recently discussed in detail.6,102

3.3 Aging
HFpEF is primarily found in elderly patients. Senescence-accelerated
prone (SAMP) mice have been generated by selective inbreeding of
AKR/mice with inherited senescence107 and have been subsequently
used to study various effects of aging. SAMP mice develop age-
dependent diastolic dysfunction, adverse remodelling, endothelial cell
dysfunction, and HFpEF when subjected to a high-salt, HFD. These stud-
ies suggest endothelial cell dysfunction as one potential mechanism con-
tributing to the age-dependent increase in HFpEF in patients.108,109

4. General advantages and
limitations using small animal
models

General advantages of small animal models include a lower housing cost
compared to large animals, shorter gestation times and reduced costs
for pharmacological treatments, which is typically administered propor-
tionally to body weight. The potential increase in sample size improves
statistical power. Recent advancements in magnetic resonance imaging,
high-resolution transthoracic echocardiography, and micromanometer
conductance catheters enable a detailed assessment of contractile func-
tion even in small rodents. Major advantages of mouse models compared
to rats are the availability of a variety of already existing transgenic strains
and readily available tools to generate novel transgenic lines. Therefore,
transgenic mouse models also facilitate the investigation of specific ge-
netic modifications in the context of superimposed stressors, for exam-
ple using a surgical model or dietary treatment. Genetic modifications
using viral vectors are typically easier to introduce into the genome of
small rodents compared to larger animals. This mainly results from the
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amount of virus required for sufficient transduction, which is typically
proportional to body weight. Intravenous delivery of AAV9, for example,
results in a very low transduction rate of cardiomyocytes in dogs.110

Based on the technical challenge to transduce myocardial tissue of large
animals, surgical and catheter-based approaches have been developed to
overcome this limitation. In contrast, AAVs that target the myocardium
of small rodents can easily be delivered by intravenous and intraperito-
neal injection. Using transgenic gain-of-function models, it is important
to consider that high levels of overexpression can cause HF per se, as
reported for transgenic overexpression of the biologically inactive green
fluorescent protein (GFP).111

Despite these advantages, several limitations using small animal mod-
els warrant attention. Rodents are typically on the same or very similar
genetic background, which does not reflect the genetic heterogeneity of
the patient population. Another limitation of small animal models, espe-
cially surgical models, is the rapid induction of the stressor, which is in
contrast to the typically slow disease progression in patients. HF and cor-
onary artery disease are often associated with atherosclerosis in patients,
which is difficult to induce in most small rodent models. Several differen-
ces comparing the murine and human heart exist that result from the dif-
ference in heart rate. In general, the heart rate and the size of the species
are inversely correlated, with about 500–600 beats per minute (b.p.m.)
in mice, 350 b.p.m. in rats, 60–80 b.p.m. in humans, 30 b.p.m. in elephants,
and 6 b.p.m. in blue whales.112,113 Human ventricular myocytes predomi-
nately express b-myosin heavy chain (MHC). Adult murine cardiomyo-
cytes mainly express a-MHC with rapid ATPase activity, which facilitates
a contraction rate of up to �600 b.p.m. Action potentials in murine car-
diomyocytes exhibit a rapid repolarization phase, lack a prominent pla-
teau phase and have a shorter total duration compared to human
cardiomyocytes. This facilitates faster contraction/relaxation compared
to larger mammals, which is required to sustain cardiac output (calcula-
tion: stroke volume � heart rate) at high heart rates. Based on these
contractile kinetics, the ability to increase heart rates in small animal
models is impaired relative to humans, which can typically increase by up
to approximately three-fold. In contrast, the heart rate of mice can in-
crease by about 30–40% under exercise conditions, which limits cardiac
reserve and is an important consideration in the design of exercise
studies.

In humans, HF is typically observed in older patients, in contrast to
most rodent models, in which HF is commonly induced by various stres-
sors starting at young ages to reduce experimental costs. Depending on
the extent and duration of the stressor, rodent models with HFpEF may
also develop HFrEF. In contrast, several disease conditions are associated
with HFpEF in humans, which typically do not progress to HFrEF, such as
hypertensive heart disease.

5. General considerations for the
use of small and large animal
models

Despite the specific limitations and differences outlined above, myocar-
dial energetics and contraction are overall relatively similar between
small rodents and humans. Consequently, numerous proteins share
functions across species, which makes small rodent models inevitable
tools to rapidly conduct proof-of-principle studies at a large scale and to
test for different druggable targets and genetic modifications over a rela-
tively short-time period. However, despite their widespread use and

acceptance, studies performed in small rodent models should be inter-
preted with caution. Different phenotypes for humans with genetic
mutations and transgenic mice recapitulating diseases were observed.
For example, patients with Duchenne Muscular Dystrophy, which lack
the expression of the dystrophin protein, have an average survival rate
of about 40 years, with about 10-20% of patients developing HF.
In contrast, dystrophin-deficient mice have a normal life span and
relatively mild cardiomyopathy (reviewed in Ref.114). Another example
is the nonsense T116G mutation in the phospholamban (PLB) gene in
patients with dilated cardiomyopathy, which results in severe HF.
Conversely, PLB deficient-mice exhibit enhanced cardiac contractility
and a normal life span.115 Several drugs have also been tested in small an-
imal models with beneficial effects observed, despite their failure in
humans.116 Examples include the phosphodiesterase (PDE) 5 inhibitor
Sildenafil, which attenuated the onset of HF post-TAC in mice117 but
showed no benefit in chronic HF patients in the RELAX trial.118 Relaxin
and the recombinant protein Serelaxin also attenuated adverse remodel-
ling post-MI in mice119 but showed no beneficial effects in humans with
acute HF in the RELAX-AHF-2 trial.120

These examples highlight different adaptations of small animal models
with genetic modifications and pharmacological treatments compared to
patients. As a result, results from small animal models should be validated
in large animals prior to Phase I trials in humans. Swine is a prototypical
pre-clinical large animal model. Advantages of swine are a similar expres-
sion pattern of MHC isoforms and a similar reserve in heart rate and car-
diac output compared to humans. Importantly, animal models are
typically subjected to an single-drug treatment in the context of a HF
stressor and beneficial effects for a specific drug tested might be
observed. However, these effects may not be observed in later clinical
trials, in which patients typically receive the drug in addition to the well-
established standard treatment for chronic HF. This also provides a po-
tential explanation for the successful bench-to-bedside translation of the
very early studies performed by the Pfeffer group using ACE inhibitors
and the failure of numerous later clinical studies, which showed efficacy
in animal models, but not in patients.

6. Summary and conclusion

Small animal models, especially mice and rats, mimic various aspects of
the pathogenesis of HF and help to decipher various underlying contrib-
uting mechanisms of the disease. Several limitations for small animal stud-
ies exist that warrant the interpretation of the results of the studies
performed with caution. Despite these specific limitations, small animal
models serve as invaluable tools that have greatly advanced our under-
standing of the pathogenesis of HF. Based on recent advancements in ge-
nome editing, numerous novel transgenic models are likely to be
generated in the near future. These models will continue to facilitate the
identification of new targets and to develop novel treatment strategies
for HF patients.
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