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Abstract  The accurate annotation of an unknown protein sequence depends 
on extant data of template sequences. This could be empirical or sets of reference 
sequences, and provides an exhaustive pool of probable functions. Individual meth-
ods of predicting dominant function possess shortcomings such as varying degrees 
of inter-sequence redundancy, arbitrary domain inclusion thresholds, heterogeneous 
parameterization protocols, and ill-conditioned input channels. Here, I present a rig-
orous theoretical derivation of various steps of a generic algorithm that integrates 
and utilizes several statistical methods to predict the dominant function in unknown 
protein sequences. The accompanying mathematical proofs, interval definitions, 
analysis, and numerical computations presented are meant to offer insights not only 
into the specificity and accuracy of predictions, but also provide details of the oper-
atic mechanisms involved in the integration and its ensuing rigor. The algorithm uses 
numerically modified raw hidden markov model scores of well defined sets of train-
ing sequences and clusters them on the basis of known function. The results are then 
fed into an artificial neural network, the predictions of which can be refined using 
the available data. This pipeline is trained recursively and can be used to discern the 
dominant principal function, and thereby, annotate an unknown protein sequence. 
Whilst, the approach is complex, the specificity of the final predictions can benefit 
laboratory workers design their experiments with greater confidence.
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1 � Background

The reliable annotation of genomic data is dependent on the assignment of func-
tion to protein sequences. Much of this information is gleaned from the clustering 
of these with existing functional groups. The presence of experimentally avail-
able data is invaluable to this effort, and in its absence the same has to be inferred 
from sequence data. This decomposition, into a superset of distinct functions of its 
constituent members (superfamily, family), is the most critical step of any cluster-
ing schema. A superfamily, by definition consists of sequences with poor, if any, 
sequence identity, with the simultaneous presence of one or more common fold(s). 
Consider the enzymes that belong to the iron 

(
Fe2+

)
 and 2-oxoglutarate (2OG) or 

�-ketoglutarate (AKG) dependent dioxygenases (EC 1.14.11.x). The average inter-
sequence identity of these enzymes (< 25%) , notwithstanding, the unifying fea-
tures of these enzymes are the presence of a jelly-roll motif (Double strand �-helix; 
DSBH), and the substrate hydroxylating triad of residues 

(
HX[DE]XnH

)
 (Clifton 

et al. 2006; Hausinger 2004; Koehntop et al. 2005). However, the chemical nature of 
the cognate substrate(s) of these enzymes and/or the reactions differs substantially, 
and can form smaller clusters (Kundu 2012, 2015). Similarly, whilst the glycoside 
hydrolases (GHs 1-130; EC 3.2.1.x), comprise the larger set, plant GH9 endoglu-
canases can be further stratified into classes A, B, and C (Libertini et al. 2004; Lom-
bard et al. 2014; Molhoj et al. 2002; Urbanowicz et al. 2007).

Whilst, the spatial arrangement of atoms of members of a superfamily dictates 
their biological role, differential function in a family of sequences can be attributed 
to the presence (native, acquired) or absence (native, excised) of specific sequence 
segments (classes A, B, and C of the plant GH9 endoglucanase family) and/or a 
limited number of amino acid residues (desaturases, demethylases, and chlorin-
ating enzymes of the 2OG dependent dioxygenase superfamily). These regions 
are rarely silent, and can influence the behavior of the protein product(s) in vivo. 
Thus, while enzyme catalysis is dependent on conserved amino acids that form its 
active site geometry, generic proteins possess protein–protein, DNA/RNA–protein, 
transmembrane (TM), localization signals, and protein anchor-membrane domains 
that can influence its function. Despite the significant reduction in the dimensions 
of the superset to these smaller clusters, the unambiguous assertion of dominant 
function, remains challenging. For example, prevailing literature suggests that 
class B GH9 endoglucanases are the dominant forms of this family, far exceeding 
class C enzymes; a finding that is based on similarity to a few reference sequences 
(Buchanan et al. 2012; Montanier et al. 2010; Xie et al. 2013). Quantitative anal-
yses of the differences between catalytically relevant segments of these enzymes, 
however, suggests that putative class C enzymes may approximate those of class B 
members (Kundu and Sharma 2016).

Sequence based classifiers of protein function can either be direct and deploy 
hidden markov models (HMMs), support vector machines (SVMs), and artificial 
neural networks (ANNs). Indirect indices of function range from domain com-
parison against existing databases such as the conserved domain database (CDD) 
of the national center for biotechnology information (NCBI), and the prediction of 
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secondary structural elements (Cao et al. 2016; Frishman and Argos 1995; Kabsch 
and Sander 1983; Marchler-Bauer et al. 2015; Martin et al. 2005). SVMs, although 
exhaustive, mandates the presence of training sets with highly similar sequences 
(Cao et  al. 2016; Frishman and Argos 1995; Martin et  al. 2005). Profile HMMs 
(pHMMs), are global representations of a multiple sequence alignment (MSA), 
and encompass modular information using a system of threshold values. A major 
finding in work done previously, however, highlighted the insensitivity of the inclu-
sion thresholds, despite, log-orders of difference in the E-values used (Kundu and 
Sharma 2016). ANNs, are weighted approximations of multiple inputs to a function, 
and introduce bias in their computations as a means of achieving convergence. The 
reduction, to a single output channel, implies that this value is intrinsically ill-condi-
tioned with the final prediction depending on the quality of the input. The arguments 
vide supra, justify the use of multiple statistical methods to assign dominant func-
tion to a protein of uncertain function. A specific instance (prediction of enzyme 
catalysis) of this pipeline has been tested on available sequence data in sequenced 
green plants (Kundu and Sharma 2016).

The work presented here is a detailed exposition of the mathematics that under-
lies the observed specificity and accuracy of a generic HMM–ANN algorithm in 
predicting dominant probable function in an unknown protein sequence. Detailed 
proofs for all the steps and the derivation of the unique intervals both, theoretical 
and observed that encompass the ANN predictions are presented and are meant to 
offer mechanistic insights into the process of integrating several statistical meth-
ods as well as the rigor that may ensue. In addition, the definition, analysis, and 
the numerical computation of bounds of the participating sets and intervals are dis-
cussed in context of selecting suitable datasets and dictating the architecture of the 
ANN deployed. Additionally, interesting mathematical results based on the Leb-
esgue outer measure are discussed along with its biological relevance.

2 � Algorithm and Results

Step 0	� Data collation, pre-processing, and computational tools. Protein 
sequences with detailed and specific biochemical data (kinetics, struc-
ture, mutagenesis) are preferred for training the HMMs and the ANN, 
while the test dataset can comprise sequences with expression data, unan-
notated coding segments of sequenced genomes (open reading frames, 
ORFs), or sequences with putative function. An alignment generating tool 
(Structural Alignment of Proteins, STRAP; Clustal suite), and HMMER 
(downloadable or server-based) may be used for model building, analy-
sis, database construction, and similarity studies (Finn et al. 2015; Gille 
et al. 2014; Sievers and Higgins 2014). A scripting language (R, PERL, 
Python, AWK) may be utilized to analyze the data and perform miscel-
laneous tasks such as tabulation and formatting. The specialized R-pack-
ages needed to implement the unsupervised (clustering; cluster, fpc) and 
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supervised (ANN; nnet, neuralnet) machine learning tools utilized by this 
algorithm can be easily downloaded.

Step 1	� Define and delineate the functions (1 ≤ min (n) ≤ n;n ∈ ℕ) that an arbi-
trary protein sequence may be partitioned into. Utilize the clustering 
schema, i.e., primary (A) , secondary (B) , and tertiary (D) , to group the 
raw HMM-scores 

(
�;� ∈ ℝ+, (0, 1)

)
 . Whilst, the lower bounds of these 

(min (n) = min|A| = min|B| = min|D| = 3) are axiomatic (Defs. 1–3), the 
upper bounds may be inferred (Eqs. 1–4) (Table 1, Fig. 1b, c, d) (Kundu 
2017). Briefly,

(Def. 1)A =
{
𝛼i|𝛼 ∈ ℝ+, (0, 1);1 < i ≤ min (n); i, n ∈ ℕ

}

(Def. 2)B =
{(

𝛼i, 𝛼j
)|𝛼 ∈ ℝ+, (0, 1);1 < i, j ≤ min (n); i ≠ j, j, n ∈ ℕ

}

(Def. 3)
D =

{((
𝛼i, 𝛼j

)
, (𝛼j, 𝛼k)

)|𝛼 ∈ ℝ+, (0, 1);1 < i, j, k ≤ min (n); i ≠ j ≠ k; i, j, k, n ∈ ℕ
}

Table 1   Role of inputs in 
defining ANN architecture

A: Set of raw HMM scores of a protein sequence
B: Set of pairs of raw HMM scores of a protein sequence
D: Set of pairs-of-pairs of raw HMM scores of a protein sequence
H1: 0.5 ∗ (�D� + 1) +

√�D�
H2: 2 ∗

√�D� + 1

H3: 2 ∗ (|D| + 1)∕3

|A| |B| |D| H1 H2 H3

3 3 3 4 4 3
4 6 15 12 8 11
5 10 45 30 14 31
6 15 105 63 21 71
7 21 210 120 29 141
8 28 378 209 39 253
9 36 630 341 50 421
10 45 990 527 63 661
11 55 1485 782 77 991
12 66 2145 1119 93 1431
13 78 3003 1557 110 2003
14 91 4095 2112 128 2731
15 105 5460 2804 148 3641
16 120 7140 3655 169 4761
17 136 9180 4686 192 6121
18 153 11,628 5922 216 7753
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Step 2	� Define and enumerate the list of full length sequences that best represents 
each of these functions. These sequences {m ∈ G|m ∈ ℕ} , then consti-
tute the training dataset for each predicted function (1 ≤ min (n) ≤ n) and 
must necessarily possess the recommended sequence suitability index 
(SSI > 1.00) (Kundu 2017). These could also be complemented with extant 
empirical data.

(1)yB = (0.5)
(
x2
A

)
− (0.25)

(
xA
)
+ 2E − 13; R2 = 1.00

(2)yB = (0.298)
(
x2.1704
A

)
; R2 = 0.9994

(3)
yD = (0.125)

(
x4
A

)
− (0.25)

(
x3
A

)
− (0.125)

(
x2
A

)
+ (0.25)

(
xA
)
− 2E − 08; R2 = 1.00

(4)yD = (0.0293)
(
x4.4996
A

)
; R2 = 0.9978

Fig. 1   Generic algorithm for predicting dominant function in a protein sequence. a Steps needed to con-
struct and validate the HMM–ANN algorithm on a well characterized training set. The datasets may be 
repeatedly sampled for parameter definition and model refinement. The final output is a set of high confi-
dence bounds that is mapped and specific for each predicted function, b analysis of cardinality of various 
sets used in parameterization, c scatter plot between the number of predicted function and the pairs-of-
pairs of modified HMM scores, and d relevance of cardinality of the superset of probable functions to the 
architecture of the ANN. Abbreviations: HMM, hidden markov model; ANN, artificial neural network; 
A, B, D, Sets of raw HMM scores; H1, H2, H3, Methods to compute number of nodes in the hidden layer 
of a 1:1:1 ANN
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Step 3	� Estimate the �-value 
�∑l=�D�

l=1
�nml

�
 for each sequence 

(
�nm;1 ≤ min (n) ≤ n, 1 ≤ m ≤ |G|) (Fig.  1a) (Kundu 2017; Kundu and 

Sharma 2016).

� , Computed value of pairs-of-pairs of raw HMM scores of the mth sequence of the nth 
function; D , Composite set of pairs-of-pairs of raw HMM scores of the mth sequence 
of the nth function; n, mth member of nth function; m, mth member of nth function; l, 
lth member of D.

Lemma  The computed value 
(
�nml

)
 of a pair-of-pairs (POP) of raw HMM scores is 

numerically equivalent to its z-score, i.e., �nml ≃ znml

Proof  Define �nml
(
�� , ��

)
 such that � ∈ ℝ+, (0, 1)

In the absence of an explicit assumption of a normal population, the mean (�) and 
standard deviation (�) are not independent, i.e., �� ∝ ��,

It follows that ∃
{
�nml

}l=|D|
l=1

;�nml ∈ ℝ+, (0, 1)

Step 4	� The �nm-values computed in Step 3 are then clustered, such that every clus-
ter mean represents the centroid of a specific function ({
�

�

n

}
;1 ≤ min (n) ≤ n;n ∈ ℕ

)
 . These are then compared �

�2(n) =
∑m=���

m=1

�
�nm − �

�

n

�2
∕�

�

n
; 1 ≤ min (n) ≤ n; 1 ≤ m ≤ �G�; n,m ∈ ℕ

�
 . 

Since, the cluster means are derived from the sequence data their difference 
is expected to be trivial 

�
min

�∑m=�G�
m=1

�2(n)
��

subsume 
(
�2(n) → 0

)

Rearranging the terms and differentiating w.r.t � ′

n

(5)Then, znml =
(
𝜁nml − 𝜁nml

)
∕𝜎𝜁nml = 𝜁nml∕𝜎𝜁nml − 𝜁nml∕𝜎𝜁nml = 𝜁nml

∑m=|G|
m=1

(
(𝛽nm − 𝛽

�

n
)2∕𝛽

�

n

)
→ 0 (1 < min (n) ≤ n; 1 ≤ m ≤ |G|; n,m ∈ ℕ)

(
m=|G|∑
m=1

(�nm − �
�

n
)2

)
∕�

�

n
→ 0

(
�2
n1
+
(
�

�

n

)2
− (2)

(
�n1

)(
�

�

n

))
+
(
�2
n2
+
(
�

�

n

)2
− (2)

(
�n2

)(
�

�

n

))
∕�

�

n
… → 0

(
�2
n1
+ �2

n2
⋯ (|G|)(� �

n

)2
− (2)

(
�

�

n

)(
�n1 + �n2 ⋯

))
∕�

�

n
→ 0
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Consider the arbitrary terms �nm, �n(m+i)∀i ≠ m

If 𝛽n(m+i) + 𝜀 > 𝛽nm, 𝜀 ∈ ℝ+

Similarly, if 𝛽n(m+i) − 𝜀 > 𝛽nm, 𝜀 ∈ ℝ+

From Eqs. (9) and (10),

Substituting this value in (Eq. 7)

(6)

d(�2
n1
)

d�
�

n

+
d(�2

n2
)

d�
�

n

+
(|G|)d(� �

n

)2
d�

�

n

−
(2)d

(
�

�

n
�n1 + �

�

n
�n2 ⋯

)
d�

�

n

= 0

(7)(2)(|G|)(� �

n

)
− 2

(
�n1 + �n2 +⋯ �nm

)
= 0

(2)(|G|)(� �

n

)
− 2

m=|G|∑
m=1

�nm = 0

(8)(|G|)(� �

n

)
=

m=|G|∑
m=1

�nm =
(
�n1 + �n2 +⋯ �nm

)

(9)Then

m=|G|∑
m=1

𝛽nm + 𝜀 > (|G|)(𝛽 �

n

)

(10)Then

m=|G|∑
m=1

𝛽nm + 𝜀 < (|G|)(𝛽 �

n

)

�n(m+i) = �nm(∀i ≠ m)

(11)
m=|G|∑
m=1

�nm = (|G|)(�nm
)
= (|G|)(� �

n

)

(12)

(
m=|G|∑
m=1

(�nm − �nm)∕|G|)2
)
∕�

�

n
= 0

(13)�
�

n
≃ �nm

(
∀�nm

)
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Step 5	� Utilize the results in Step 4 in association with pre-computed values 
of the set of pairs-of-pairs for each sequence of each probable function 
(𝜁nml; 1 < min (n) ≤ n; 1 ≤ m ≤ |G|; 1 ≤ l ≤ |D|; n,m, l ∈ ℕ) and define 
the input 

(
�′
)
 and output 

(
�′′

)
 channels to the artificial neural network 

(ANN) (Kundu and Sharma 2016):

ζ, Computed value of pairs-of-pairs of raw HMM scores of the mth sequence of the 
nth function; λ, Weighted ζ-score computed by the ANN; D, Composite set of pairs-
of-pairs of raw HMM scores of the mth sequence of the nth function.

Step 6	� Define the intervals 
(
n

)
 unique to each probable set of functions that 

an unknown protein sequence may be assigned to. These could be esti-
mated directly or determined empirically 

(
prediction → (�

��

nm
± �

)
∧ �nml;

𝜁 , 𝜀 ∈ ℝ+; 1 < min(n) ≤ n; 1 ≤ m ≤ |G|;1 ≤ l ≤ |D|;n,m, l ∈ ℕ) (Def. 
3) (Kundu and Sharma 2016).

 � ′

n
 , Centroid of nth cluster; tα/2, Interval coefficient of upper tail of t-distribution; z, 

Interval coefficient of normal distribution; σ, Standard deviation of sample; |G| , Size 
of nth cluster; m, mth member of nth cluster.

Step 7	� Define the bounds (a, b) of the search space by considering the countable 
union of the sequence of open and pairwise disjoint intervals (observed, 
expected) contained within the encompassing major interval �
 [a,b] =

⋃n≥min(n)
n=1

𝛽
�

n
;𝛽

�

n
∈ (𝛽

�

n
− 𝜎n, 𝛽

�

n
+ 𝜎n); 1 < min (n) ≤ n

�
 . The 

�
�

n
≃ �nm ≃ �

�

nm
≃

l=|D|∑
l=1

�nml

(14)

�
�

nm
≃

l=|D|∑
l=1

�nml

=

l=|D|∑
l=1

(
�nml

)(
�nml

)

(15)= �
��

nm

(16)n =

⎧⎪⎨⎪⎩

𝛽
�

n
±
����
�
t𝛼∕2

��
𝜎∕

√�G�
�����, �G� < 30

𝛽
�

n
±
����(z)

�
𝜎∕

√�G�
�����, �G� ≥ 30
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size 
(
l
(
 [a,b]

))
 is then the outer Lebesgue measure m∗

(
 [a,b]

)
 of the encom-

passing interval.

b, max
(
�

�

n

)
+ �n ; a, min

(
�

�

n

)
− �n ; σn, Standard deviation of nth cluster; � ′

n
 , Cen-

troid of nth cluster.

Step 8	� Validate ANN-predictions 
(
�′′

)
 of dominant function for the train-

ing sequences. This could be: (a) an exhaustive cross validation 
of each sequence of each probable function (|G| < 30) , (b) per-
formed on a distinct validation subset (≈ 25−30%) of the training 
sequences if the sample sizes are adequate (|G| ≥ 30) , or (c) empiri-
cal using pre-defined criteria appropriate to the dataset examined such as 
(𝛽��

nm
≅ 𝛽�

nm
∶= max (HMM);1 < min (n) ≤ n, 1 ≤ m ≤ |G|) (Kundu and 

Sharma 2016).

3 � Discussion

3.1 � Contribution of the Probability of Mapping the ANN‑Prediction 
to a Distinct Partition

The effective prediction by the ANN of dominant function for an unknown protein 
sequence 

(
�

��

seq
∈ ℝ+

)
 is dependent on it being unambiguously mapped to a single 

numerical interval whose centroids approximate the cluster means for that particular 
function. Consider the closed and bounded interval of length 

(
l
(
 [a,b]

)
= |b − a|) 

(Step 7; Eq. 17) and the following sequences of open and pairwise disjoint subintervals 
(Step 6):

Consider the sequence ( ⊆  ) of uniquely observed open and pairwise disjoint 
subintervals:

(17)l
(
 [a,b]

)
= m∗

(
 [a,b]

)
= |b − a|

 =

n≥min(n)⋃
n=1

(�
�

n
− �n, �

�

n
+ �n)

m∗() = m∗
⎛
⎜⎜⎝

n≥min(n)�
n=1

�
�

�

n
− �n, �

�

n
+ �n

�⎞⎟⎟⎠

=

n≥min(n)�
n=1

l(�
�

n
− �n, �

�

n
+ �n) =

n≥min(n)�
n=1

l(�) = {0}
n≥min(n)
n=1
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Consider the covering of sequences of arbitrary open and pairwise disjoint intervals 
( ⊆  )

Rewriting,

Despite the result in Eq. 21, |H| ≤ || and as P → ∞, |H|⋘||.
The probability of mapping each ANN-output 

(
�′′

)
 to a distinct sub-partition 

(� = 1∕|| ∗ || ≃ 1∕||) (Eq. 22).

Theorem  The number of probable functions |A| for any defined interval is count-
ably infinite.

 =

p=P⋃
p=1

(
ap, bp

)
;a, b ∈ {ℤ+,ℝ+}

∃qp ∈
(
ap, bp

)
;qp ∈ ℚ;∵ℚ is dense in ℝ

ap < qp < bp

(18)ap < qp ⇒ ap + 𝜀 = qp or ap = qp − 𝜀; 𝜀 ∈ ℝ+

(19)bp > qp ⇒ bp − 𝜀 = qp or bp = qp + 𝜀; 𝜀 ∈ ℝ+

qp − 𝜀 < qp < qp + 𝜀; 𝜀 ∈ ℝ+(Eqs. 18, 19)

⇒ qp ∈ (qp − �, qp + �)

Similarly, �
�

n
∈ (�

�

n
− �, �

�

n
+ �)

(20)qp = �
�

n
; iff � = �;�, � ∈ ℝ+

 =

p=P⋃
p=1

(
qp − �, qp + �

)

m∗() = m∗

(
P⋃

p=1

(
qp − �, qp + �

))
=

P∑
p=1

l
(
qp − �, qp + �

)
=

P∑
p=1

l(�) = {0}P
p=1

(21)m∗() = m∗() = 0
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Proof  Consider the aforementioned sets (,) . Since, every probable function is 
modeled as an open and bounded interval with a centroid, and ℚ is dense in ℝ , we 
can always find an infinite number of rational numbers between any two real num-
bers, i.e.,

 

Rewriting these inequalities and continuing,

3.2 � Relevance of Functional Constraints to Unambiguous Assignment 
of Dominant Function

The outlined protocol is expected to improve upon previous stratification attempts, 
both, in terms of biological relevance, as well as in the accuracy of predictions. 
The latter has been assessed in earlier work using the indices of precision (specific-
ity) and recall (sensitivity) (Kundu and Sharma 2016). Whilst, the utility of collat-
ing biochemical data relevant to sequence clustering is unequivocal; the multitude 
of methods utilized imposes rigor in the schema. In particular, the use of the SSI 
(Step 2) in tandem with empirical data can refine the selection of training sequences 
such that �-value for each relevant sequence 

(
�nm

)
 is within one standard devia-

tion of the centroid for a particular cluster (|𝛽nm − 𝛽
�

n
| < 𝜎n) and may even con-

verge (|�nm − �
�

n
| → 0) (Steps 3 and 4) (Kundu 2017). The Chi squared data (Step 

4), too, can be utilized to modify this selection such that an outlier sequence can 
be edited at this stage as well. The ratio of the input and output channels is criti-
cal to accomplishing convergence in an ANN (Step 5) with multiple outputs, as is 
its determination of the number of hidden layers. In contrast, despite a single out-
put’s risk at being ill-conditioned, the unbiased assignment of dominant function 
mandates its persistent use. Clearly, well partitioned (open, bounded, pairwise dis-
joint) intervals that encompass the inputs 

(
�nml

)
 to the ANN are then a pre-requi-

site for efficacious prediction (Steps 6 and 7). The number of theoretical partitions (
�nml ∈ ; �nml → ∞

)
 (Steps 6 and 7), notwithstanding, the analysis suggests that the 

cardinality of the superset (|A|) of probable functions that an unknown sequence 
may be partitioned into is important and must be considered (Step 1).

Consider the following functions 
(
f ∶ A → {|A|}K

k=3
;g ∶ D → {|D|}K

k=3

)
 (Step 1) 

(Table 1, Fig. 1c)
Clearly, f (A) ∼ g(D)(K → ∞) and 1∕f (A)g(D) ≃ 1

f (A)

ap − qp < 1∕x ⟹ ap < 1∕x + qp

1∕y < bp − qp ⟹ 1∕y + qp < bp

(22)ap < qp < 1∕x + qp +⋯ ≤ ⋯ 1∕y + qp < bp

ap, bp ∈ ℝ+(Set of positive real numbers)

qp, 1∕x, 1∕y ∈ ℚ (Set of rational numbers)

x, y ∈ ℤ+(Set of positive integers)
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A, Raw HMM scores of all probable functions for a sequence; D, Composite set of 
pairs-of-pairs of raw HMM scores of the mth sequence of the nth function; τ, Prob-
ability of assigning a unique dominant function to a protein sequence.

Prediction of dominant function by this integrated algorithm is also likely to be 
constrained at the ANN stage, wherein, a larger number of hidden neurons may not 
result in any additional information. Extant literature from clinical medicine, agri-
culture, and academia, that have utilized ANN-based predictors suggests that the 
upper limit for neurons/nodes in a back-propagation (BP) ANN with 1∶1∶1 archi-
tecture is n ≅ 18 (Akbari Hasanjani and Sohrabi 2017; Kundu and Sharma 2016; 
Hawari and Alnahhal 2016; Teshnizi and Ayatollahi 2015; Shi et al. 2013; Yama-
mura et al. 2008; Zhou and Li 2007). This, in turn would imply a limit on the car-
dinality of the superset of all probable functions that a protein sequence might be 
expected to possess, i.e., 3 ≤ |A| ≤ 6; 0.166 ≤ � ≤ 0.33 (Table 1, Fig. 1d).

4 � Concluding Remarks

The HMM–ANN based algorithm accurately predicts dominant biological function 
of an unknown protein sequence. The detailed mathematical treatment of the vari-
ous steps of this algorithm not only offers insights into the origins of this specificity, 
but also highlights the mechanism of integrating multiple methods into a generic 
functional algorithm. Additionally, it may assist investigators in preparing a com-
putationally feasible superset, of putative function for their sequence(s) of interest. 
The algorithm itself, can be adapted with little effort, and uses publically available 
software and tools. The coding, when needed is trivial and can be accomplished 
with ease. The computations are self explanatory, lucid, and can be readily com-
prehended by biologists. The existence of upper and lower bounds may impose 
constraints on the selection of features/probable functions that could characterize a 
protein sequence. However, careful curation, inclusion of empirical data, and strict 
thresholds could go a long way in broadening the utility of this generic HMM–ANN 
algorithm.
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