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Splicing factors control C. elegans behavioural
learning in a single neuron by producing
DAF-2c receptor
Masahiro Tomioka1, Yasuki Naito1,2, Hidehito Kuroyanagi3 & Yuichi Iino1,2

Alternative splicing generates protein diversity essential for neuronal properties. However, the

precise mechanisms underlying this process and its relevance to physiological and

behavioural functions are poorly understood. To address these issues, we focused on a

cassette exon of the Caenorhabditis elegans insulin receptor gene daf-2, whose proper variant

expression in the taste receptor neuron ASER is critical for taste-avoidance learning. We

show that inclusion of daf-2 exon 11.5 is restricted to specific neuron types, including ASER,

and is controlled by a combinatorial action of evolutionarily conserved alternative splicing

factors, RBFOX, CELF and PTB families of proteins. Mutations of these factors cause a

learning defect, and this defect is relieved by DAF-2c (exon 11.5þ ) isoform expression only in

a single neuron ASER. Our results provide evidence that alternative splicing regulation of a

single critical gene in a single critical neuron is essential for learning ability in an organism.
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D
iverse neuronal populations are essential for physiological
functions of the brain. It is widely accepted that neuronal
identities are determined by combinatorial actions of

transcription factors that are controlled by regulatory networks of
microRNAs and signal transduction pathways1,2. It has also been
suggested that post-transcriptional regulation by alternative
splicing plays critical roles in many steps of neuronal
development3,4. Dysregulation of alternative splicing events in
the brain has been linked to several neurodegenerative and
neuropsychiatric disorders, highlighting the physiological
importance of alternative splicing in the brain5,6. Several brain-
enriched RNA-binding proteins (RBPs), such as NOVA, RBFOX
and polypyrimidine tract-binding (PTB) families of proteins, have
been found to regulate alternative splicing events in the nervous
system4. Altered expression of these splicing factors causes
substantial defects in survival and/or function of neurons7–10.
Extensive studies using genome-wide approaches and
computational methods have unveiled the neural splicing
networks controlled by these proteins and some biologically
relevant targets in brain function5,7,11,12. However, functional
roles of such a considerable number of splicing isoforms in the
brain are yet poorly understood.

Cell-type specificity of alternative splicing patterns can be
ensured by combinatorial actions of alternative splicing
factors13,14. Bioinformatic analysis using Bayesian networks
reveals that cis-regulatory elements of neural splicing factors,
NOVA and RBFOX, coexist in a number of sequences
surrounding cassette exons, which implies their combinatorial
splicing regulations of a set of neuronal genes15. Recent findings
suggest that this type of regulation is used to determine neuronal
subtype identities in vivo16. Combinatorial regulation of the CELF
family protein, UNC-75, and the Hu/ELAV family protein,
EXC-7, is required for alternative splicing of a JIP3 homologue
unc-16 in Caenorhabditis elegans. Predominant inclusion of a
cassette exon of unc-16 occurs in cholinergic neurons that
co-express UNC-75 and EXC-7, but not GABAergic neurons that
express only UNC-75, suggesting that predominant inclusion of
the cassette exon is achieved by combinatorial expression of a pair
of splicing factors16. The in vivo mechanism to generate diverse
neuronal properties via alternative splicing is just beginning to be
understood.

To analyse alternative splicing events and their relevance to
physiological and behavioural functions, the C. elegans nervous
system is useful. C. elegans hermaphrodites have only 302
neurons, which are classified into 118 classes based on their
morphology and neural connectivity17. Among 60 sensory
neurons, amphid sensory neurons comprising 12 neuron classes
are the major sensors of environmental chemicals and
temperature. C. elegans uses the amphid sensory neurons for
innate and learned behavioural responses to seek suitable
conditions and to avoid unfavourable conditions18. We have
reported that insulin/IGF receptor signalling in the taste receptor
neuron ASE right (ASER), the right-sided ASE class of amphid
sensory neurons, plays a pivotal role in taste-avoidance learning
during which worms learn to avoid salt concentrations
encountered under starvation conditions19,20. C. elegans has
two isoforms of the insulin/IGF receptor homologue, DAF-2a and
DAF-2c, which are produced by skipping and inclusion of exon
11.5, respectively. Only DAF-2c (exon 11.5þ ) is preferentially
transported to the axonal processes of the ASER neuron by
interacting with a kinesin-1 motor complex. Strikingly,
translocation of DAF-2c, but not DAF-2a (exon 11.5� ),
increases after food deprivation and can support taste-
avoidance learning. In contrast, DAF-2a is more effective than
DAF-2c in other daf-2-regulated processes, including dauer
formation and longevity. Thus, DAF-2 isoforms play distinct

roles in the biological processes, and DAF-2c has a critical role in
the ASER neuron in taste-avoidance learning20.

Here we report that alternative splicing of daf-2 exon 11.5 is
regulated in a cell-type-specific manner. Using fluorescence-based
splicing reporters and a messenger RNA (mRNA)-tagging
method, we demonstrate that daf-2 exon 11.5 inclusion occurs
in restricted neuron classes, including ASE. We investigate the
molecular mechanism that underlies this neuron-class-specific
alternative splicing event. We find that daf-2 exon 11.5 inclusion
is regulated by RBFOX, CELF and PTB families of proteins,
whose mammalian homologues act in the brain as alternative
splicing factors. Furthermore, our analysis reveals that these
splicing factors are co-expressed only in the restricted neuron
classes, where daf-2 exon 11.5 inclusion predominantly occurs.
Ectopic expression of PTB-1/PTB was sufficient to induce
predominant inclusion of daf-2 exon 11.5 in the nervous system,
suggesting that the PTB-1 expression is a critical determinant of
the neuron-class specificity of exon 11.5 inclusion. We also show
that mutations of these factors cause defects in taste-avoidance
learning. Remarkably, expression of DAF-2c (exon 11.5þ ) only
in a single neuron ASER relieved the learning defect of the
splicing factor mutant. Thus, combinatorial action of the splicing
factors in ASER determines the neuronal property required for
learning ability by controlling alternative splicing of daf-2.

Results
Cell-type-specific alternative splicing of daf-2 exon 11.5. To
visualize the alternative splicing patterns of daf-2 exon 11.5, we
created splicing reporters, in which either green fluorescent
protein (GFP) or red fluorescent protein (RFP) complementary
DNA (cDNA) was fused with the modified daf-2 genomic frag-
ments that contain exon 11.5, the flanking introns and parts of
exons 11 and 12 to monitor exon skipping or exon inclusion,
respectively (Fig. 1a; Supplementary Fig. 1a). When both repor-
ters were expressed under a common ubiquitous promoter, GFP
signals, which reflect exon skipping, were widely observed. In
contrast, RFP signals, which reflect exon inclusion, were observed
only in restricted cell types, including neurons, the somatic gonad
and hypodermal cells in the tail region (Fig. 1b). When these
reporters were exclusively expressed in the nervous system, GFP
and RFP expressions were observed in distinct neurons in a
mutually exclusive manner (Fig. 1c; Supplementary Movie 1),
suggesting that exon 11.5 selection occurs in a neuron-class-
specific manner.

To further investigate the reporter expression patterns in each
neuron class, these reporters were expressed under several
neuron-class-selective promoters. All the amphid sensory
neurons, including ASER, predominantly expressed E11.5(þ )::
RFP (Fig. 1d; Supplementary Fig. 2a). The predominant RFP
signals were also observed in some other neuron classes,
including gas-sensing BAG and mechanosensory OLL neurons,
and a small subset of inter- and motor-neurons (Fig. 1d;
Supplementary Fig. 2b). By comparison, predominant GFP
signals were observed in some other neuron classes, including
IL2 sensory neurons, and inter- and motor-neurons (Fig. 1d;
Supplementary Fig. 2b and c). Swapping of GFP and RFP cDNAs
in the exon 11.5-skipping/inclusion reporters reversed the
expression patterns of GFP and RFP (Supplementary Fig. 2d),
which indicated that neuron-class-specific expression of the exon
11.5-skipping/inclusion reporters was not due to the different
characteristics of these fluorescent proteins, but because of the
differential splicing patterns.

To confirm neuron-class-specific alternative splicing of exon
11.5 in the endogenous daf-2 transcripts, we isolated mRNAs
specifically from the amphid sensory neurons or other classes of
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neurons, using an mRNA-tagging method20, and compared
enrichment levels of total daf-2 and the daf-2 (exon 11.5þ )
isoform. We utilized the gpc-1 and the glr-1 promoters for
expression of FLAG-tagged poly(A)-binding protein in 10 neuron
classes, including 7 amphid sensory neurons, and in 15 classes of
inter- and motor-neurons, respectively (Fig. 2a–d). Total daf-2
mRNAs were enriched at comparable levels in the gpc-1- and
glr-1-expressing neurons, whereas daf-2 (exon 11.5þ ) mRNA
was enriched at a significantly higher level in the gpc-1-expressing
neurons (Fig. 2e). Reverse transcription–PCR (RT–PCR) analysis
confirmed the significantly higher inclusion level of daf-2 exon
11.5 in the gpc-1-expressing neurons than in the glr-1-expressing
neurons (Fig. 2f). The expression patterns of the exon
11.5-skipping/inclusion reporters driven by these promoters
(Supplementary Fig. 2a,c) were consistent with these results,
confirming that the reporter expressions reflect alternative
splicing patterns of the endogenous daf-2 transcripts. Taken

together with the previous finding that DAF-2c (exon 11.5þ )
expressed in the ASER amphid sensory neuron supports taste-
avoidance learning20, these data are consistent with the idea that
exon 11.5 inclusion predominantly occurs in neurons that require
DAF-2c in a neuron-class-specific manner.

Multiple RBPs regulate exon 11.5 selection. To understand the
mechanism underlying neuron-class-specific inclusion of daf-2 exon
11.5, we investigated the effects of mutations of genes whose
mammalian orthologues were known to encode alternative splicing
factors in the brain3 (Supplementary Table 1). We compared the
fluorescence signals between wild-type and mutant worms expressing
the exon 11.5-skipping/inclusion reporters in a variety of neurons,
including all the amphid sensory neurons and some inter- and
motor-neurons, under the casy-1 promoter21 (hereafter this
transgene is referred to as ‘neuronal exon 11.5-skipping/inclusion

E11.5(–)::GFP E11.5(+)::RFP

Merged BF

*
*

*
*

*

*
*

*
*

*

*
*

*
*

*

a

E12::GFPE11 E11.5
Frame shift → Stop codon

RFP fusion protein

GFP fusion protein

Exon 11.5-inclusion reporter

Frame shift → Stop codon

Exon 11.5-skipping reporter

ATG 1 bp insertion

ATG 1 bp insertion 1 bp deletion

E12::RFPE11 E11.5

Whole body

Neurons

E11.5(–)::GFP E11.5(+)::RFP

Merged BF

b

c

d
Tail region

Pan-neuronal promoter
A P

D

V

Mid-body region
E11.5(–)::GFP Merged BF

Somatic gonad
precursor

E11.5(+)::RFP

E11.5(–)::GFP

Merged

BF

Hypodermal cells

E11.5(+)::RFP

casy-1 promoter

Lateral

RIC

BAG

IL2s

E11.5(–)::GFP

E11.5(+)::RFP

Merged

BF

A P

V

D

Medial

RIG

AVG

E11.5(–)::GFP

E11.5(+)::RFP

Merged

BF

Figure 1 | Cell-type-specific alternative splicing of daf-2 exon 11.5. (a) Schematic of daf-2 alternative splicing reporters for monitoring skipping (top) and

inclusion (bottom) of exon 11.5. GFP and RFP fusion proteins are expressed by exon skipping and exon inclusion, respectively. (b–d) Expression patterns of

the exon 11.5-skipping/inclusion reporters driven by a ubiquitous promoter, the eef-1A.1 promoter (b), a pan-neuronal promoter, the H20 promoter (c) and

the casy-1 promoter (d). Maximum intensity projection images of L1/L2 larvae. Asterisks in c represent neurons with predominant RFP expression. Lateral

and medial positions of the head region of a worm carrying the neuronal exon 11.5-skipping/inclusion reporter (d). The predominant RFP signals are

observed in the amphid sensory neurons (dotted region) as well as in other neuron classes, including BAG sensory neurons, RIC and RIG interneurons (d).

The predominant GFP signals are observed in neurons, including IL2 sensory neurons and AVG interneurons (d). BF, bright field. The utilized worm strains

were JN1737 (b), JN1736 (c) and JN785 (d), whose genotypes are shown in Supplementary Table 3. Scale bars, 50mm (b, whole body); 30 mm (c); 10mm

(b, mid-body region and tail region, and d).
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reporter’; Fig. 1d). The fluorescence signals in the head ganglia were
evaluated based on intensity ratios of RFP to GFP and fractions of
GFP and RFP expression areas (Fig. 3a). Some of the mutants
showed significant changes in the reporter expression compared with
the wild-type worms. E11.5(þ )::RFP (exon 11.5 inclusion) signals
were significantly reduced in the mutants of a CELF family gene
unc-75, a PTB protein orthologue ptb-1, an RBFOX family gene asd-1
and an hnRNP A1 homologue hrp-1 (Fig. 3b,c). On the contrary,
E11.5(þ )::RFP signals were increased in the mutants of an hnRNP

F/H homologue hrpf-1, a Hu/ELAV family gene exc-7 and a TRA2b
orthologue rsp-8 (Fig. 3b,c). These data indicated that a number of
evolutionarily conserved alternative splicing factors were involved in
precise control of alternative splicing of exon 11.5 in the nervous
system. Except for a ubiquitously expressed hrp-1 gene22, these genes
were reported to be expressed in restricted cell types, raising the
possibility that neuron-class-specific alternative splicing of exon 11.5
is ensured by a combinatorial action of the splicing factors. To
explore this idea, we further investigated the roles of the RBFOX
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strains were JN1709 (b,d–f) and JN1710 (c,d–f), whose genotypes are shown in Supplementary Table 3.
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genes (asd-1 and fox-1), unc-75 and ptb-1, which are required for the
inclusion of exon 11.5 in the nervous system.

RBFOX proteins directly promote exon 11.5 inclusion. Exon
inclusion of the neuronal exon 11.5-skipping/inclusion reporter

was reduced in two asd-1 mutants (Fig. 4a,b). A mutation in the
paralogous gene fox-1 enhanced the inclusion defect of asd-1
mutants, and neurons with predominant exon 11.5 inclusion were
severely reduced in the asd-1; fox-1 double mutants (Fig. 4a–c;
Supplementary Fig. 3a,b). Together with their common property
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as the RBFOX family splicing factor23, these data suggest
functional redundancy of these genes for exon 11.5 inclusion.
These RBFOX family proteins have been shown to regulate
splicing through an evolutionarily conserved binding motif
UGCAUG23,24. We found that the flanking intron downstream
of daf-2 exon 11.5 contains two putative RBFOX target stretches

(Supplementary Fig. 1a). To test the involvement of these
stretches in exon 11.5 inclusion, we created modified versions
of the E11.5(þ )::RFP reporter to monitor exon-inclusion levels
relative to the reporter expression levels (Fig. 4d). Mutations in
either of the UGCAUG stretches caused a significant reduction,
and a double mutation of these stretches caused a strong
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reduction in the exon 11.5 inclusion, as did the asd-1; fox-1
mutation (Fig. 4e,f). These data suggest that the RBFOX family
proteins, ASD-1 and FOX-1, directly promote inclusion of daf-2
exon 11.5 in the nervous system.

Cooperative action of RBPs in exon 11.5 inclusion. Exon
inclusion of the neuronal exon 11.5-skipping/inclusion reporter
was reduced in all seven unc-75 mutants and two ptb-1 mutants
(Fig. 5a,b; Supplementary Fig. 4a,b). The ptb-1 mutations
enhanced the inclusion defect of a null mutant unc-75(e950)
(Fig. 5a–c), suggesting that unc-75 and ptb-1 cooperatively
regulate predominant inclusion of daf-2 exon 11.5. We next
tested for genetic interactions of unc-75 and ptb-1 with the
RBFOX family genes (Fig. 5d–g). Each of the unc-75 and ptb-1
mutations slightly but significantly enhanced the reduced exon
inclusion of the asd-1; fox-1 double null mutant
(Figs 4c and 5d–g; Supplementary Fig. 5). Furthermore, these
mutations reduced exon inclusion of the modified E11.5(þ )::RFP
reporters (Fig. 4d) with or without the mutations in the
RBFOX-binding stretches (Fig. 5h,i), which indicated that unc-75
and ptb-1 promoted exon 11.5 inclusion independently of the
RBFOX actions. Collectively, a series of genetic analyses suggest
that cooperative action of the three families of proteins, RBFOX
family, UNC-75/CELF and PTB-1/PTB regulates predominant
inclusion of daf-2 exon 11.5 (Fig. 5j).

Abnormal splicing of endogenous daf-2 in RBP mutants. We
next examined requirements of UNC-75, PTB-1 and the RBFOX
proteins for neuron-class-specific alternative splicing of
endogenous daf-2. RT–PCR analysis using total RNAs from
whole worms revealed that inclusion of daf-2 exon 11.5 was
significantly reduced in the splicing factor mutants compared
with the wild type (Fig. 6a). We then analysed daf-2 isoform
expression in the amphid sensory neurons by the mRNA-tagging
method. We used RNA fractions comparably enriched for tran-
scripts in the amphid sensory neurons from the wild-type and the
mutant worms for the analyses (Fig. 6b,c). Amount of the daf-2
(exon 11.5þ ) isoform relative to the daf-2 (exon 11.5� ) isoform
was significantly reduced in the amphid sensory neurons of the
unc-75, ptb-1 and asd-1 single mutants, and a ptb-1; asd-1 double
mutant (Fig. 6d). These results confirmed that these splicing
factors promote inclusion of exon 11.5 of endogenous daf-2 in the
amphid sensory neurons.

The RBFOX genes are expressed in various neuron classes. To
test the hypothesis that neuron-class-specific inclusion of exon
11.5 is achieved by combinatorial expression of the splicing
factors, we examined expression patterns of the RBFOX genes
(asd-1 and fox-1), unc-75 and ptb-1. As previously reported25,
the RBFOX genes were expressed in various tissues including the
pharynx, the intestine, hypodermis, neurons, muscles and
the somatic gonad (Supplementary Fig. 6a–g). As the neuronal

asd-1 expression was difficult to observe because of its expression
in various tissues in the head region, we utilized split GFP26 to
observe neuronal expression pattern of the RBFOX genes
(Fig. 7a). One of the two split-GFP fragments, spGFP1-10,
which contains 10 of the 11 strands of the b-barrel structure of
GFP, was expressed under the asd-1 and the fox-1 promoters.
mCherry-fused spGFP11, another split-GFP fragment that
contains the 11th strand of the GFP b-barrel, was expressed by
the pan-neuronal H20 promoter. GFP signals, which reflect
co-expression of spGFP1-10 and spGFP11::mCherry (Fig. 7a),
were observed in many but not all neuron classes, suggesting that
the expression of the RBFOX genes covers a variety of neuron
classes (Fig. 7b).

ptb-1 is expressed in subsets of tissues. Large-scale expression
analyses suggested that ptb-1 was expressed in a subset of neurons
as well as non-neuronal cells27,28. We now precisely determined
the expression pattern of ptb-1. We first confirmed expression
of two ptb-1 variants, ptb-1a and ptb-1b, driven by alterna-
tive promoters (Fig. 8a), as annotated in WormBase
(http://www.wormbase.org). PTB-1a has four evolutionarily
conserved RNA recognition motifs (RRM1� 4)29, while PTB-1b
lacks the first RRM (RRM1; Fig. 8a).

We also found a 34-nucleotide (nt) cassette exon, exon 11
(Fig. 8a,b), skipping of which causes a frameshift and a premature
termination codon. RT–PCR analysis of the PTB-1 isoforms in
the nonsense-mediated mRNA decay (NMD)-deficient smg-2
mutant indicated that both ptb-1a and ptb-1b have the exon
11(� ) isoforms destabilized by NMD (Fig. 8b). The exon 11(� )
ptb-1variants were not detected in the ptb-1 mutant (Fig. 8c),
indicating that PTB-1 proteins repress splicing of exon 11 in their
own transcripts to produce unproductive mRNA isoforms. The
overall domain structure of PTB-1a and the mechanism of
negative autoregulation of its own expression level via alternative
splicing of the 34-nt cassette exon encoding a portion of the third
RRM coupled with the NMD pathway are quite similar to those
of its mammalian orthologues PTBP1 and PTBP2 (refs 30,31),
suggesting their conserved functions as alternative splicing
regulators.

We next investigated the expression patterns of transcriptional
reporter genes containing the upstream regulatory elements for
either of the first exons (Fig. 8a). The ptb-1a promoter drove the
expression in a small subset of neurons, including all the amphid
sensory neurons, muscles and somatic gonadal cells, while the
ptb-1b promoter drove strong expression in neurons (Fig. 8d–f).
In the nervous system, the ptb-1a and ptb-1b promoters drove the
expression in distinct but partially overlapping neuron classes,
including ASE (Fig. 8d).

Neural PTB-1 expression correlates with exon 11.5 inclusion.
We then examined cell types that express ptb-1 along with the
RBFOX genes using split GFP (Fig. 7a). spGFP1-10 and

Figure 5 | UNC-75, PTB-1 and the RBFOX proteins cooperatively regulate exon 11.5 inclusion. (a,b) Normalized fluorescence intensity ratios of RFP to

GFP (a) and fractions of RFP and GFP expression (b) of the neuronal exon 11.5-skipping/inclusion reporter in the mutants. (c) Maximum intensity

projection images of the head region of a worm carrying the neuronal exon 11.5-skipping/inclusion reporter in the unc-75(e950); ptb-1(gk347274)

background. Scale bar, 10mm. (d–g) Genetic interactions of the RBFOX mutant, asd-1(ok2299); fox-1(e2643), with unc-75(e950) (d,e) and with

ptb-1(gk347274) (f,g) in daf-2 exon 11.5 splicing. Normalized fluorescence intensity ratios of RFP to GFP (d,f) and fractions of RFP and GFP expression

(e,g) in the head ganglia of worms carrying the neuronal exon 11.5-skipping/inclusion reporter in the mutant backgrounds are shown. (h,i) Normalized

fluorescence intensity ratios of RFP (exon inclusion) to GFP (promoter activity) of the modified daf-2 exon 11.5-inclusion reporters with (i) or without (h)

the M1/M2 mutations in the wild-type, unc-75(e950) and ptb-1(gk347274) backgrounds. The reporter minigenes were expressed under the gpc-1 promoter.

(j) A regulatory model of daf-2 exon 11.5 inclusion by a combinatorial action of RBFOX, CELF and PTB families of proteins. Data were normalized by the

averaged values in the wild-type worms (nZ24, a; n¼ 25, d and f; n¼ 20, h and i). The n values are shown in each bar. Error bars represent s.e.m.

**Po0.01, different from wild type; ##Po0.01, different from each other; þ þPo0.01, comparison of RFP-positive fractions, two-tailed t-test with

Bonferroni correction. L1/L2 larvae were used for the analyses.
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spGFP11::mCherry were expressed under the two ptb-1 (ptb-1a
and ptb-1b) promoters and the two RBFOX gene (asd-1 and
fox-1) promoters, respectively. GFP signals, which reflect
co-expression of ptb-1 and either of the RBFOX genes, were
observed in subsets of neuronal, muscle and somatic gonadal cells
(Fig. 7c). This expression pattern was highly similar to that of the
ptb-1 transcriptional reporter genes (Fig. 8d–f), suggesting that
RBFOX was expressed in most ptb-1-expressing cell types.
Pan-neuronal expression of unc-75 (ref. 32) further restricted cell
types that co-express the RBFOX, unc-75 and ptb-1 genes to a
subset of neurons (Fig. 7d; Supplementary Fig. 6h).

A series of expression analyses raised the possibility that the
ptb-1-expressing neurons (that is, co-expression sites of the
RBFOX, unc-75 and ptb-1 genes) might correlate with predomi-
nant inclusion of daf-2 exon 11.5, which requires combinatorial
action of these splicing factors. Therefore, we compared
expression patterns of the ptb-1 transcriptional reporters with
that of the daf-2 exon 11.5-inclusion or -skipping reporter in the
nervous system. All neurons that expressed ptb-1a::Venus and/or

ptb-1b::Venus also expressed E11.5(þ )::RFP (Fig. 8g). In
contrast, expression of Venus and E11.5(� )::RFP was mutually
exclusive in many neuron classes (Fig. 8h). When the E11.5(þ )::
RFP and E11.5(� )::GFP reporters were co-expressed under the
ptb-1a or ptb-1b promoter, the nervous system preferentially
expressed E11.5(þ )::RFP, with a few exception such as in AVA
and RID neurons (Supplementary Fig. 2e,f), which further
confirmed preferential inclusion of exon 11.5 in the
PTB-1-expressing neurons. These analyses revealed strong
correlation between PTB-1 expression and inclusion of daf-2
exon 11.5 in the nervous system.

PTB-1 confers neuron-type specificity on exon 11.5 selection.
To test whether PTB-1 expression is sufficient for preferential
inclusion of daf-2 exon 11.5 in the nervous system, either PTB-1a
or PTB-1b was ectopically expressed in a variety of neurons of the
ptb-1 mutant carrying the neuronal exon 11.5-skipping/inclusion
reporter. Expression of either of the PTB-1 isoforms significantly
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Figure 6 | UNC-75, PTB-1 and RBFOX proteins promote exon 11.5 inclusion of endogenous daf-2. (a) RT–PCR analysis of daf-2 exon 11.5 using total RNAs

from the synchronized L1 larvae of wild-type, asd-1(yb978); fox-1(e2643), unc-75(yb1701) and ptb-1(gk347274). (b) GFP expression patterns of worms

expressing the flag::pab-1::SL2::GFP minigene under the gpc-1 promoter in unc-75(e950), ptb-1(gk347274), asd-1(ok2299) and ptb-1(gk347274); asd-1(ok2299)

backgrounds. Note that expression of GFP is not affected in these mutants. The head regions of L1/L2 larvae are shown. Scale bars, 10mm. (c,d) Relative

transcript levels of odr-3 (c) and relative levels of daf-2 (exon 11.5þ ) to daf-2 (exon 11.5� ) mRNAs (d) in the gpc-1-expressing neurons, as determined by

quantitative RT–PCR. Neuron-type-specific poly(A)þ RNAs were isolated from adult worms expressing FLAG-PAB-1 under the gpc-1 promoter in the wild-

type, unc-75(e950), ptb-1(gk347274), asd-1(ok2299) and ptb-1(gk347274); asd-1(ok2299) backgrounds. The same RNA samples were used in c and d. Data

were normalized by the averaged values in the wild-type worms. Error bars represent s.e.m. among three technical replicates. *Po0.05; **Po0.01, different

from wild type, one-way analysis of variance (ANOVA) followed by Dunnett post hoc test.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11645 ARTICLE

NATURE COMMUNICATIONS | 7:11645 | DOI: 10.1038/ncomms11645 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications


enhanced exon 11.5 inclusion in the nervous system of the ptb-1
mutant (Fig. 9a,b). The effect of ectopic PTB-1a expression was
prominent compared with that of PTB-1b (Fig. 9b). Lack of the
RRM1 domain in the PTB-1b isoform implies the requirement of
RRM1 for efficient PTB-1 action. Most PTB-1a-expressing
neurons, even the neurons where the E11.5(� )::GFP reporter
was predominantly expressed in the wild type, such as IL2
sensory neurons (Fig. 1d), exhibited preferential expression of the
E11.5(þ )::RFP reporter, whereas neurons that failed to express
PTB-1a did not (Fig. 9c). PTB-1b expression also caused
preferential E11.5(þ )::RFP expression in many neurons,
although some neurons showed preferential E11.5(� )::GFP
expression despite PTB-1b expression (Fig. 9d). These data
indicated that the PTB-1 expression is a primary determinant of
the neuron-class specificity of exon 11.5 inclusion in the nervous
system.

Impaired learning in RBP mutants. We explored the beha-
vioural consequences of defective inclusion of daf-2 exon 11.5 in
the splicing factor mutants. C. elegans worms alter their
preferences for NaCl concentrations after conditioning with
different NaCl concentrations. They are attracted to NaCl
concentrations at which they were fed, whereas they avoid NaCl

concentrations at which they were starved (Fig. 10a)33. Insulin-
like signalling mutants exhibit defects in salt concentration
avoidance after starvation conditioning, which we call taste-
avoidance learning20,33. As only the DAF-2c (exon 11.5þ )
isoform can mediate signalling for taste-avoidance learning20, we
tested salt concentration learning of the splicing factor mutants.

As the unc-75 null mutant exhibits a severe locomotion
defect24, we examined reduction-of-function mutants of unc-75.
The unc-75(yb1714) mutant showed defects in migration to
higher salt concentrations (Supplementary Fig. 7), suggesting that
unc-75 is required for proper behavioural responses to salt as well
as for locomotion. ptb-1 and asd-1 mutants had no obvious defect
in behavioural responses to salt after conditioning under fed
conditions, whereas they showed defects in taste-avoidance
learning (Fig. 10b; Supplementary Fig. 8a,b). The ptb-1; asd-1
double mutants showed further impaired taste-avoidance learning
(Fig. 10b). These data indicated that ptb-1 and asd-1 are required
for taste-avoidance learning.

To further characterize the behavioural phenotype of the
splicing factor mutant, we tested for genetic interactions between
the splicing factor genes and daf-16. DAF-2 signalling controls
the action of the DAF-16/FOXO transcription factor, by
inhibiting its nuclear translocation34. Most phenotypes of daf-2
mutants are suppressed by daf-16 mutations34, whereas we
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reported that daf-16 mutations strongly enhanced the taste-
avoidance learning defect of daf-2, implying that, unlike the
canonical DAF-2 signalling, the insulin-like signalling mediated
by DAF-2c (exon 11.5þ ) may regulate taste-avoidance learning
in parallel with DAF-16 (ref. 19). daf-16; ptb-1; asd-1 triple
mutants showed largely normal behavioural responses to salt after
conditioning under fed conditions, whereas they showed a strong
defect in taste-avoidance learning as if they were not starved
during conditioning (Fig. 10c; Supplementary Fig. 8c,d). This
behavioural phenotype resembled that of the daf-16; daf-2 mutant
(Fig. 10c; Supplementary Fig. 8c,d)19. The similar genetic

interactions of the daf-16 gene with ptb-1; asd-1 and daf-2
support the idea that the splicing factors regulate taste-avoidance
learning through the production of DAF-2c (exon 11.5þ )
isoform.

DAF-2c expression in ASER relieves the impaired learning. To
assess impacts of altered expression of daf-2 isoforms on the
taste-avoidance learning, we generated wild-type and mutant
worms ectopically expressing either of the DAF-2 isoforms.
Neuronal expression of either DAF-2a (exon 11.5� ) or DAF-2c
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mutants. Note that the splicing pattern of etr-1, encoding an ELAV-type RBP, is not affected in any of the mutants. (d–f) Expression patterns of Pptb-

1a::mCherry and Pptb-1b::mWasabi. Maximum intensity projection images of the head (d) and tail (f) regions of L1/L2 larvae and the mid-body region of an

adult (e) are shown. ADM, anal depressor muscle; ASM, anal sphincter muscle; PM, pharyngeal muscle; SIM, stomatointestinal muscle; VM, vulval muscle.

(g,h) Expression patterns of Pptb-1a::Venus plus Pptb-1b::Venus in combination with that of the exon 11.5-inclusion (g) or -skipping (h) reporter driven by the

H20 promoter. Maximum intensity projection images of the head region of L1/L2 larvae are shown. Scale bars, 10mm (d,f–h); 30mm (e).
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(exon 11.5þ ) in the wild-type resulted in impaired learning
(Fig. 10d), suggesting that appropriate expression levels of
DAF-2a and DAF-2c or their balance in the nervous system is
important for proper learning ability. On the other hand,
neuronal expression of DAF-2c, but not that of DAF-2a, rescued
the learning defect of the daf-2 mutant (Fig. 10d), which is
consistent with the finding that only DAF-2c can support the
taste-avoidance learning20. Similarly, neuronal expression of
DAF-2c, but not of DAF-2a, partially restored the impaired
learning of the ptb-1; asd-1 mutant (Fig. 10d), indicating that the
learning defect of the ptb-1; asd-1 mutant is due at least in part to
deceased expression of DAF-2c in the nervous system.
Furthermore, DAF-2c expression only in the ASER neuron
rescued the learning defect of the ptb-1; asd-1 mutant (Fig. 10e),
indicating that ASER is the critical neuron for the splicing factors
to control taste-avoidance learning by producing DAF-2c. The
DAF-2c expression in ASER also rescued the learning defect of
the daf-16; ptb-1; asd-1 mutant (Fig. 10e), suggesting that the
DAF-2c (exon 11.5þ ) signalling regulates taste-avoidance
learning in a DAF-16-independent manner. Collectively, these

data demonstrate that the learning defect of the splicing factor
mutant is mainly caused by the reduction of the DAF-2c (exon
11.5þ ) isoform in ASER.

Discussion
In this study, we showed cell-type-specific alternative splicing of
daf-2 exon 11.5. Within the nervous system, daf-2 exon 11.5
inclusion preferentially occurs in a restricted subset of neurons,
including the amphid sensory neurons. This neuron-class-specific
alternative splicing is determined by the combinatorial action of
the evolutionarily conserved RBPs, RBFOX proteins (ASD-1 and
FOX-1), UNC-75/CELF and PTB-1/PTB. We found that PTB-1,
which is co-expressed with the RBFOX proteins and UNC-75 in
the restricted neuron classes (Fig. 7d), has a key role in conferring
neuron-class specificity of exon 11.5 inclusion. The combinatorial
mutations of these splicing factors result in a pronounced defect
in taste-avoidance learning. DAF-2c (exon 11.5þ ) expression
only in a single neuron ASER relieves the learning defect of the
splicing factor mutant. Therefore, the precisely regulated daf-2
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exon 11.5 inclusion in ASER is essential for taste-avoidance
learning (Supplementary Fig. 9). DAF-2 signalling is also required
for starvation-induced odour chemotaxis learning in AWC
olfactory neurons35, although a DAF-2 isoform that regulates
olfactory learning has not been determined. The predominant
inclusion of exon 11.5 in the amphid sensory neurons, including
AWC (Supplementary Fig. 2a), implies a requirement of the
DAF-2c isoform in a range of sensory plasticity, including those
of taste and smell responses.

PTB functions as both a repressor and an activator in many
alternative splicing events in mammalian cells31,36. The neuronal
PTB knockout mice show severe defects in neurogenesis and
result in death soon after birth8,12. In this study, we unveiled the
role of C. elegans PTB-1 in determination of the neuronal
property essential for behavioural learning. The expression
pattern and the ectopic expression analyses suggest that PTB-1
is a strong determinant of daf-2 exon 11.5 inclusion in the
nervous system. We characterized the two PTB-1 isoforms, PTB-1a
and PTB-1b, which are produced by alternative promoters.
PTB-1a strongly activates exon 11.5 inclusion compared with
PTB-1b. Mammalian PTB proteins, PTBP1 and PTBP2, also have
different effects on alternative splicing. It was reported that a
switch between expressions of PTBP1 and its paralogue PTBP2 is
required for reprogramming of protein isoforms during neuronal
maturation12,31. This switch in expression is due in part to
PTBP1-induced alternative splicing of a 34-nt cassette exon of
PTBP2, which leads to mRNA degradation by NMD. We found
the cassette exon (exon 11) in the ptb-1 gene, skipping of which
leads to NMD-dependent mRNA degradation. It is surprising
that its role in negative autoregulation as well as its position and
size is highly conserved between mammals and C. elegans. The
two PTB-1 isoforms are expressed in distinct but partially
overlapping neurons, including ASER. It would be interesting to
investigate how PTB-1 isoform expressions are controlled at
levels of transcription and post transcription to determine the
neuronal properties essential for learning ability.

Except for daf-2 exon 11.5 and ptb-1 exon 11, we identified in
this study, a target exon of PTB-1 has not been reported. The
RBFOX proteins regulate several alternative splicing events in
various tissues, including the muscles and the nervous
system23,24. UNC-75 is exclusively expressed in the nervous
system and determines protein isoforms of various neuronal
genes16,37. Each of these splicing factors might control a different
subset of neuronal genes. Because DAF-2c (exon 11.5þ )
expression only partially restores the taste-avoidance learning
defect of the splicing factor mutant, other genes related to
behavioural learning may be affected in the mutant. It would be
interesting to identify exons cooperatively regulated by these
splicing factors, which may be involved in learning ability. And
this would provide further insights into how the neuron-class-
specific alternative splicing contributes to the complex neuronal
functions underlying learning.

daf-2 exon 11.5 inclusion preferentially occurs also in some
non-neuronal cells, including somatic gonadal cells. The DAF-2
signalling in the proximal region of somatic gonad, including
uterine and spermathecal cells, regulates age-related loss of the
germline stem cells38. Our results suggest that ptb-1 and the
RBFOX genes are co-expressed not only in neurons but also in
uterine and spermathecal cells. These observations raise the
intriguing possibility that the combinatorial action of PTB-1 and
the RBFOX proteins might also regulate gonadal cell-type-specific
inclusion of daf-2 exon 11.5 and be related to the germline stem
cell maintenance. It will be interesting to investigate the isoform-
specific function of DAF-2 and requirement of cell-type-specific
alternative splicing for maintenance of the germline stem cell
number.

In addition to these splicing factors, we showed that mutations
in exc-7 and rsp-8 increase expression of the neuronal exon
11.5-inclusion reporter. EXC-7/Hu/ELAV and RSP-8/TRA2b
might repress the exon 11.5 inclusion and further fine-tune the
neuron-type specificity of alternative splicing of daf-2. Further
investigation is needed to clarify the functional role of the
candidate repressors of exon 11.5 inclusion in the nervous system.
On the other hand, the hrp-1 mutation reduces expression of the
neuronal exon 11.5-inclusion reporter. HRP-1/hnRNP A1 is
ubiquitously expressed and essential for larval development22,39.
RNA interference knockdown of hrp-1 during the adult stage
extends lifespan in a daf-16-dependent manner similar to that of
daf-2 (ref. 39). It will be interesting to determine whether and
how HRP-1 contributes to selection of daf-2 exon 11.5 and
longevity extension.

We demonstrate that the RBFOX family proteins directly act
through the binding motif UGCAUG in the intron downstream
of exon 11.5. We identified a cassette exon homologous to daf-2
exon 11.5 in Cbr-daf-2, the daf-2 orthologue of the closely related
nematode species C. briggsae20. Cbr-daf-2 also has an
RBFOX-binding motif near the 50 splice site in the intron
downstream of the cassette exon (Supplementary Fig. 1b). Exon
11.5 of daf-2 resides in a similar position to a cassette exon, exon
11, of mammalian insulin receptor (IR) genes20. The
RBFOX-binding motif also resides near the 50 splice site in the
intron downstream of exon 11 of the human and mouse IR genes.
It was predicted that inclusion of Insr exon 11 is directly
promoted by Rbfox proteins in the mouse brain5. The conserved
regulation by the RBFOX family proteins in the nematodes and
mammals suggests the biological importance of RBFOX-regulated
alternative splicing of insulin receptors in the nervous systems.

Mammalian CELF family proteins have been shown to repress
exon 11 of the IR genes40,41. These CELF proteins are widely
expressed in numerous tissues, whereas alternative splicing of
exon 11 of the IR genes occurs in a tissue-specific manner42. It
was postulated that the coordination of CELF proteins and other
factors, such as muscleblind-like 1, confer tissue-type specificity
to the alternative splicing regulation of IR43. All six human CELF
family genes are strongly expressed in the nervous system6. The
CELF family proteins regulate cell-type-specific alternative
splicing in concert with other splicing factors, including
PTB44,45. These reports raise the possibility that the CELF
family proteins and other splicing factors, such as RBFOX and
PTB, might cooperatively control neuron-type-specific alternative
splicing of the mammalian IR genes in a manner analogous to
that in the C. elegans nervous system. Dysfunction of neuronal IR
signalling is linked to neurological diseases such as Alzheimer’s
disease46. However, an isoform-specific function of IR in the
brain is still unclear. It will be interesting to investigate alternative
splicing patterns of the IR genes in distinct neuron types and an
isoform-specific function of IR in the brain.

Methods
C. elegans strains. C. elegans Bristol strain N2 was used as the wild type. The
strains were grown and maintained at 20 �C. Standard genetics methods were used
to generate multiple mutants by crosses47. hrp-1(ok963) IV and ptb-1(gk347274) II;
asd-1(ok2299) III; fox-1(e2643) X were maintained with the genetic balancers,
nT1[qIs51] (IV;V) and qC1[qIs26] III, respectively. daf-2(pe1230) was previously
isolated by forward genetic screening for mutants defective in taste-avoidance
learning20. No daf-2(pe1230) worm shows a dauer constitutive (Daf-c) phenotype
at 20 �C. The mutation site of pe1230 is shown in Supplementary Table 1. The
mutants and transgenic worms used in this study are listed in Supplementary
Tables 2–4.

DNA constructs and transgenesis. To generate daf-2 cDNA expression plasmids,
a PCR-amplified H20 promoter (2.5 kb) was inserted upstream of daf-2a/c cDNAs
in pBS-daf-2a/c plasmids20. Plasmids except for daf-2 cDNA constructs were
generated using the Gateway system (Invitrogen) as previously described20. To
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generate daf-2 exon 11.5-splicing reporter constructs, a PCR-amplified genomic
region of daf-2 between parts of exons 11 and 12 was inserted upstream of mRFP,
EGFP or EGFP-fused mRFP separated by a sequence with an acceptor site of a
spliced leader (SL2), in a Gateway destination vector, pPD-DEST2. Mutations were
introduced into exon 11.5, exon 12 and/or RBFOX-binding motifs by PCR
reactions. Sequences of the daf-2 genomic region and mutation sites in the splicing
reporters are shown in Supplementary Fig. 1a. To generate Flag-tagged pab-1
expression constructs, Flag-tagged pab-1 cDNA was inserted upstream of an
acceptor site of SL2 followed by GFP in pPD-DEST2. To generate ptb-1 cDNA
expression constructs, PCR-amplified ptb-1a and ptb-1b cDNAs were inserted
upstream of an acceptor site of SL2 followed by CFP in pPD-DEST2. To generate a
spGFP1-10 expression construct, spGFP1-10 cDNA was inserted into pPD-DEST2.
To generate a spGFP11::mCherry expression construct, spGFP11 cDNA was
inserted in-frame upstream of mCherry cDNA in pPD-DEST2. spGFP1-10 and
spGFP11 cDNAs are a generous gift from Dr Cori Bargmann. Gateway entry
vectors with promoters for H20 (ref. 21), casy-1 (ref. 20), gpc-1 (ref. 48), glr-1 (ref. 19)
and odr-2 (ref. 19) were previously described. PCR-amplified asd-1 (2.3 kb), ptb-1a
(5.1 kb), ptb-1b (7.4 kb) and eef-1A.1 (2.9 kb) promoters were cloned into a
Gateway entry vector. Pfox-1::spGFP1-10 and Pfox-1::spGFP11::mCherry were
expressed as a vector-free construct generated by a PCR fusion-based method49.
A 4.0-kb upstream regulatory sequence of fox-1 was fused to spGFP1-10 or
spGFP11::mCherry followed by unc-54 30-untranslated region using PCR fusion
reactions. Germline transformations were performed using standard
microinjection methods50. DNA constructs were injected at concentrations
between 20 and 100 ng ml� 1 and with or without a co-injection marker,
unc-122p::mCherry (20 ng ml� 1), pRF4 carrying rol-6(su1006) (50 ng ml� 1) or
myo-3p::Venus (10 or 30 ng ml� 1), and a carrier DNA, pPD49.26. Injection
mixtures were prepared at a final concentration of 100 ng ml� 1.

Cloning of ptb-1 and Cbr-daf-2 cDNAs. Full-length ptb-1 and partial Cbr-daf-2
cDNAs were amplified by RT–PCR from C. elegans and C. briggsae total RNAs,
respectively. The ptb-1 and Cbr-daf-2 cDNAs were cloned and sequenced to
examine the genomic structures. The ptb-1a and ptb-1b cDNA sequences were
submitted to DNA Data Bank of Japan and were given accession numbers,
LC026472 and LC026473, respectively. Primers used for PCR reactions are listed in
Supplementary Table 5.

mRNA tagging. Neuron-type-specific poly(A)þ RNA was isolated from trans-
genic adult worms with FLAG-PAB-1 expressed under a neuron-type-selective
promoter according to our previously published protocol51 with some
modifications. We used transgenic worms expressing FLAG-PAB-1 and GFP under
the gpc-1 or glr-1 promoter (Fig. 2a–c; Supplementary Tables 3 and 4). To crosslink
poly(A)þRNA with FLAG-PAB-1, the worms grown on nematode growth
medium (NGM) plates were collected and washed three times with M9 buffer, and
then treated with 5% formaldehyde in M9 for 20 min at room temperature. To
immunoprecipitate the RNA/FLAG-PAB-1 complexes, the supernatant of worm
lysates was incubated with anti-FLAG M2 affinity gel beads (Sigma-Aldrich) for 4 h
at 4 �C. The precipitated materials including RNA/FLAG-PAB-1 complexes were
incubated for 30 min at 65 �C to remove the crosslink.

RT–PCR and quantitative RT–PCR assays. Neuron-type-specific RNA and total
RNA were reverse-transcribed, and then subjected to PCR reactions with gene- or
exon-specific primers to compare transcript levels between samples. The RT–PCR
products were analysed using the microchip electrophoresis system, MultiNA
(Shimadzu) or BioAnalyzer (Agilent), and each analysis was performed in quad-
ruplicate (Fig. 2f) or triplicate (Fig. 6a). Images have been cropped for presentation.
Full-size images are presented in Supplementary Figs 10–12. Real-time PCR
analyses were performed using a Thermal Cycler Dice Real Time System (Takara).
Serial dilutions of daf-2a/c cDNA or cDNA prepared from total RNA of wild-type
worms were used to generate a standard curve. A ubiquitous gene, eef-1A.1, was
used as an internal standard and each analysis was performed in triplicates. Pri-
mers are listed in Supplementary Table 5.

Quantitative analysis of confocal images. Anaesthetized worms at the L1/L2
stage were imaged on a 5% agarose pad. Note that there was no significant
difference in expression patterns of the neuronal daf-2 exon 11.5-skipping/inclu-
sion reporters between wild-type L1 and L2 worms (Supplementary Fig. 13).
Images of the head regions of Z20 individual worms carrying daf-2 exon
11.5-splicing reporters were acquired for each genotype. Z-series images (slice
spacing of 1 mm) were acquired with a Leica SP5 confocal microscope using
a � 63/1.30 objective. The same parameter settings were used to acquire all images
for quantification. To determine fluorescence intensity ratios, z-stack images were
created using a sum intensity projection in ImageJ. After background subtraction,
averaged fluorescence intensities in a region of interest around the head ganglia
were obtained in the z-stack images, and RFP-to-GFP intensity ratios were
determined (Fig. 3a). The intensity ratios were normalized by the averaged values
obtained for wild-type or control worms, which were acquired in a set of experi-
ments within 1 day. To determine the fractions of GFP and/or RFP expression in
the head ganglia, the z-stack images were cropped to include only the head ganglia

and their binary images were created using ImageJ. The IsoData algorithm was
applied to all images of wild-type worms acquired in a set of experiments to
determine a threshold value, and the average of these values was used to binarise all
images acquired in the set of experiments. Pixel fractions with GFP alone, RFP
alone or both signals were calculated in the z-series binary images using an R script
that counts the total numbers of each type of pixels (that is, pixels with GFP alone,
RFP alone or both signals) within all pixels of the z-series binary images and
calculates the fractions of each pixel type (Fig. 3a).

Salt concentration learning assay. Salt concentration learning assays were
performed according to our previously reported procedure33 with some
modifications. For conditioning, adult worms were transferred to NGM plates with
25 or 100 mM NaCl for 5 h. After conditioning, the worms were placed at the
centre of a test plate with a NaCl gradient and were allowed to crawl for 45 min.
Chemotaxis and learning indices were determined as shown in Fig. 10a. A learning
index after conditioning under fed conditions was determined by subtracting the
chemotaxis index after conditioning on an NGM plate with 25 mM NaCl from that
with 100 mM NaCl. A learning index after conditioning under starvation
conditions was determined by subtracting the chemotaxis index after conditioning
on an NGM plate with 100 mM NaCl from that with 25 mM NaCl.

References
1. Guillemot, F. Spatial and temporal specification of neural fates by transcription

factor codes. Development 134, 3771–3780 (2007).
2. Hobert, O. Neurogenesis in the nematode Caenorhabditis elegans. WormBook.

10.1895/wormbook.1.12.2 (2010).
3. Li, Q., Lee, J. A. & Black, D. L. Neuronal regulation of alternative pre-mRNA

splicing. Nat. Rev. Neurosci. 8, 819–831 (2007).
4. Raj, B. & Blencowe, B. J. Alternative splicing in the mammalian nervous system:

recent insights into mechanisms and functional roles. Neuron 87, 14–27 (2015).
5. Weyn-Vanhentenryck, S. M. et al. HITS-CLIP and integrative modeling define

the Rbfox splicing-regulatory network linked to brain development and autism.
Cell Rep. 6, 1139–1152 (2014).

6. Ladd, A. N. CUG-BP, Elav-like family (CELF)-mediated alternative splicing
regulation in the brain during health and disease. Mol. Cell. Neurosci. 56,
456–464 (2013).

7. Yano, M., Hayakawa-Yano, Y., Mele, A. & Darnell, R. B. Nova2 regulates
neuronal migration through an RNA switch in disabled-1 signaling. Neuron 66,
848–858 (2010).

8. Licatalosi, D. D. et al. Ptbp2 represses adult-specific splicing to regulate the
generation of neuronal precursors in the embryonic brain. Genes Dev. 26,
1626–1642 (2012).

9. Gehman, L. T. et al. The splicing regulator Rbfox2 is required for both
cerebellar development and mature motor function. Genes Dev. 26, 445–460
(2012).

10. Zheng, S. et al. PSD-95 is post-transcriptionally repressed during early neural
development by PTBP1 and PTBP2. Nat. Neurosci. 15, 381–388 (2012).

11. Ule, J. et al. Nova regulates brain-specific splicing to shape the synapse. Nat.
Genet. 37, 844–852 (2005).

12. Li, Q. et al. The splicing regulator PTBP2 controls a program of embryonic
splicing required for neuronal maturation. Elife 3, e01201 (2014).

13. Kuwasako, K. et al. RBFOX and SUP-12 sandwich a G base to cooperatively
regulate tissue-specific splicing. Nat. Struct. Mol. Biol. 21, 778–786 (2014).

14. Markovtsov, V. et al. Cooperative assembly of an hnRNP complex induced by a
tissue-specific homolog of polypyrimidine tract binding protein. Mol. Cell. Biol.
20, 7463–7479 (2000).

15. Zhang, C. et al. Integrative modeling defines the Nova splicing-regulatory
network and its combinatorial controls. Science 329, 439–443 (2010).

16. Norris, A. D. et al. A pair of RNA-binding proteins controls networks of
splicing events contributing to specialization of neural cell types. Mol. Cell 54,
946–959 (2014).

17. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the
nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc.
Lond. B Biol. Sci. 314, 1–340 (1986).

18. Bargmann, C. I. Chemosensation in C. elegans. WormBook. 10.1895/
wormbook.1.123.1 (2006).

19. Tomioka, M. et al. The insulin/PI 3-kinase pathway regulates salt chemotaxis
learning in Caenorhabditis elegans. Neuron 51, 613–625 (2006).

20. Ohno, H. et al. Role of synaptic phosphatidylinositol 3-kinase in a behavioral
learning response in C. elegans. Science 345, 313–317 (2014).

21. Ikeda, D. D. et al. CASY-1, an ortholog of calsyntenins/alcadeins, is essential for
learning in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 105, 5260–5265
(2008).

22. Joeng, K. S., Song, E. J., Lee, K. J. & Lee, J. Long lifespan in worms with long
telomeric DNA. Nat. Genet. 36, 607–611 (2004).

23. Kuroyanagi, H., Kobayashi, T., Mitani, S. & Hagiwara, M. Transgenic
alternative-splicing reporters reveal tissue-specific expression profiles and
regulation mechanisms in vivo. Nat. Methods 3, 909–915 (2006).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11645 ARTICLE

NATURE COMMUNICATIONS | 7:11645 | DOI: 10.1038/ncomms11645 | www.nature.com/naturecommunications 15

http://www.nature.com/naturecommunications


24. Kuroyanagi, H., Watanabe, Y. & Hagiwara, M. CELF family RNA-binding
protein UNC-75 regulates two sets of mutually exclusive exons of the unc-32
gene in neuron-specific manners in Caenorhabditis elegans. PLoS Genet. 9,
e1003337 (2013).

25. Kuroyanagi, H., Ohno, G., Mitani, S. & Hagiwara, M. The Fox-1 family and
SUP-12 coordinately regulate tissue-specific alternative splicing in vivo. Mol.
Cell. Biol. 27, 8612–8621 (2007).

26. Feinberg, E. H. et al. GFP Reconstitution Across Synaptic Partners (GRASP)
defines cell contacts and synapses in living nervous systems. Neuron 57,
353–363 (2008).

27. Ruvinsky, I., Ohler, U., Burge, C. B. & Ruvkun, G. Detection of broadly
expressed neuronal genes in C. elegans. Dev. Biol. 302, 617–626 (2007).

28. McKay, S. J. et al. Gene expression profiling of cells, tissues, and developmental
stages of the nematode C. elegans. Cold Spring Harb. Symp. Quant. Biol. 68,
159–169 (2003).

29. Wagner, E. J. & Garcia-Blanco, M. A. Polypyrimidine tract binding protein
antagonizes exon definition. Mol. Cell. Biol. 21, 3281–3288 (2001).

30. Wollerton, M. C., Gooding, C., Wagner, E. J., Garcia-Blanco, M. A. & Smith, C. W.
Autoregulation of polypyrimidine tract binding protein by alternative splicing
leading to nonsense-mediated decay. Mol. Cell 13, 91–100 (2004).

31. Boutz, P. L. et al. A post-transcriptional regulatory switch in polypyrimidine
tract-binding proteins reprograms alternative splicing in developing neurons.
Genes Dev. 21, 1636–1652 (2007).

32. Loria, P. M., Duke, A., Rand, J. B. & Hobert, O. Two neuronal, nuclear-localized
RNA binding proteins involved in synaptic transmission. Curr. Biol. 13,
1317–1323 (2003).

33. Kunitomo, H. et al. Concentration memory-dependent synaptic plasticity of a
taste circuit regulates salt concentration chemotaxis in Caenorhabditis elegans.
Nat. Commun. 4, 2210 (2013).

34. Murphy, C. T. & Hu, P. J. Insulin/insulin-like growth factor signaling in
C. elegans. WormBook. 10.1895/wormbook.1.164.1 (2013).

35. Lin, C. H. et al. Insulin signaling plays a dual role in Caenorhabditis elegans
memory acquisition and memory retrieval. J. Neurosci. 30, 8001–8011 (2010).

36. Xue, Y. et al. Genome-wide analysis of PTB-RNA interactions reveals a strategy
used by the general splicing repressor to modulate exon inclusion or skipping.
Mol. Cell 36, 996–1006 (2009).

37. Kuroyanagi, H., Watanabe, Y., Suzuki, Y. & Hagiwara, M. Position-dependent
and neuron-specific splicing regulation by the CELF family RNA-binding protein
UNC-75 in Caenorhabditis elegans. Nucleic Acids Res. 41, 4015–4025 (2013).

38. Qin, Z. & Hubbard, E. J. Non-autonomous DAF-16/FOXO activity antagonizes
age-related loss of C. elegans germline stem/progenitor cells. Nat. Commun. 6,
7107 (2015).

39. Curran, S. P. & Ruvkun, G. Lifespan regulation by evolutionarily conserved
genes essential for viability. PLoS Genet. 3, e56 (2007).

40. Savkur, R. S., Philips, A. V. & Cooper, T. A. Aberrant regulation of insulin
receptor alternative splicing is associated with insulin resistance in myotonic
dystrophy. Nat. Genet. 29, 40–47 (2001).

41. Sen, S., Talukdar, I. & Webster, N. J. SRp20 and CUG-BP1 modulate insulin
receptor exon 11 alternative splicing. Mol. Cell. Biol. 29, 871–880 (2009).

42. Belfiore, A., Frasca, F., Pandini, G., Sciacca, L. & Vigneri, R. Insulin receptor
isoforms and insulin receptor/insulin-like growth factor receptor hybrids in
physiology and disease. Endocr. Rev. 30, 586–623 (2009).

43. Sen, S. et al. Muscleblind-like 1 (Mbnl1) promotes insulin receptor exon 11
inclusion via binding to a downstream evolutionarily conserved intronic
enhancer. J. Biol. Chem. 285, 25426–25437 (2010).

44. Gromak, N., Matlin, A. J., Cooper, T. A. & Smith, C. W. Antagonistic regulation
of alpha-actinin alternative splicing by CELF proteins and polypyrimidine tract
binding protein. RNA 9, 443–456 (2003).

45. Charlet-B, N., Logan, P., Singh, G. & Cooper, T. A. Dynamic antagonism
between ETR-3 and PTB regulates cell type-specific alternative splicing. Mol.
Cell 9, 649–658 (2002).

46. Blázquez, E., Velázquez, E., Hurtado-Carneiro, V. & Ruiz-Albusac, J. M. Insulin
in the brain: its pathophysiological implications for states related with central

insulin resistance, type 2 diabetes and Alzheimer’s disease. Front. Endocrinol.
(Lausanne) 5, 161 (2014).

47. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).
48. Yamada, K., Hirotsu, T., Matsuki, M., Kunitomo, H. & Iino, Y. GPC-1, a G

protein gamma-subunit, regulates olfactory adaptation in Caenorhabditis
elegans. Genetics 181, 1347–1357 (2009).

49. Hobert, O. PCR fusion-based approach to create reporter gene constructs for
expression analysis in transgenic C. elegans. Biotechniques 32, 728–730 (2002).

50. Mello, C. C., Kramer, J. M., Stinchcomb, D. & Ambros, V. Efficient gene
transfer in C.elegans: extrachromosomal maintenance and integration of
transforming sequences. EMBO J. 10, 3959–3970 (1991).

51. Takayama, J., Faumont, S., Kunitomo, H., Lockery, S. R. & Iino, Y. Single-cell
transcriptional analysis of taste sensory neuron pair in Caenorhabditis elegans.
Nucleic Acids Res. 38, 131–142 (2010).

52. Roayaie, K., Crump, J. G., Sagasti, A. & Bargmann, C. I. The G alpha protein
ODR-3 mediates olfactory and nociceptive function and controls cilium
morphogenesis in C. elegans olfactory neurons. Neuron 20, 55–67 (1998).

53. Brockie, P. J., Madsen, D. M., Zheng, Y., Mellem, J. & Maricq, A. V. Differential
expression of glutamate receptor subunits in the nervous system of
Caenorhabditis elegans and their regulation by the homeodomain protein
UNC-42. J. Neurosci. 21, 1510–1522 (2001).

Acknowledgements
We thank Cori Bargmann for the split-GFP cDNAs and the Caenorhabditis Genetics
Centre (University of Minnesota) and the National Bioresource Project (Japan) for
strains. We are grateful to H. Kunitomo, H. Ohno, S. Kato, N. Sakai, T. Nagashima,
W. Onoguchi, E.B. Sun and other members of the Iino laboratory for critical help and
discussion. M.T. was supported by Grants-in-Aid for Innovative Areas ‘RNA regulation’
(23112704) and for Young Scientists (B) (25870172) from the Ministry of Education,
Culture, Sports, Science and Technology of Japan (MEXT) and The Naito Foundation.
H.K. was supported by Grants-in-Aid for Innovative Areas ‘RNA regulation’ (20112004),
‘Transcription Cycle’ (15H01350), and ‘Non-coding RNA neo-taxonomy’ (15H01467)
from MEXT and a Grant-in-Aid for Scientific Research (26291003) from Japan Society
for the Promotion of Science (JSPS). Y.I. was supported by Grants-in-Aid for Innovative
Areas ‘Systems molecular ethology’ (20115002), ‘Memory dynamism’ (25115010) and
‘Comprehensive Brain Science Network’ (221S0003) from MEXT.

Author contributions
M.T. conceived the project; M.T. and Y.I. supervised the project; M.T., Y.N. and H.K.
designed and conducted the experiments; all authors interpreted the results; M.T. wrote
the manuscript with input from H.K. and Y.I.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Tomioka, M. et al. Splicing factors control C. elegans beha-
vioural learning in a single neuron by producing DAF-2c receptor. Nat. Commun.
7:11645 doi: 10.1038/ncomms11645 (2016).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11645

16 NATURE COMMUNICATIONS | 7:11645 | DOI: 10.1038/ncomms11645 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Cell-type-specific alternative splicing of daf-2 exon 11.5
	Multiple RBPs regulate exon 11.5 selection

	Figure™1Cell-type-specific alternative splicing of daf-2 exon 11.5.(a) Schematic of daf-2 alternative splicing reporters for monitoring skipping (top) and inclusion (bottom) of exon 11.5. GFP and RFP fusion proteins are expressed by exon skipping and exon
	Figure™2Neuron-class-specific exon 11.5 selection of endogenous daf-2.(a) Schematic of DNA constructs in transgenes used for cell-type-selective expression of FLAG-tagged poly(A)-binding protein (FLAG-PAB-1). An intergenic region between flag::pab-1 and G
	Figure™3Multiple RBPs are required for exon 11.5 selection.(a) A flow chart for quantification of the neuronal exon 11.5-skippingsolinclusion reporter expression. The top right graph shows the averaged RFP-to-GFP intensity ratio in the wild-type reporter 
	RBFOX proteins directly promote exon 11.5 inclusion

	Figure™4RBFOX family proteins directly promote exon 11.5 inclusion.(a,b) Normalized fluorescence intensity ratios of RFP to GFP (a) and fractions of GFP and RFP expression (b) of the neuronal exon 11.5-skippingsolinclusion reporter in the mutants of the R
	Cooperative action of RBPs in exon 11.5 inclusion
	Abnormal splicing of endogenous daf-2 in RBP mutants
	The RBFOX genes are expressed in various neuron classes
	ptb-1 is expressed in subsets of tissues
	Neural PTB-1 expression correlates with exon 11.5 inclusion

	Figure™5UNC-75, PTB-1 and the RBFOX proteins cooperatively regulate exon 11.5 inclusion.(a,b) Normalized fluorescence intensity ratios of RFP to GFP (a) and fractions of RFP and GFP expression (b) of the neuronal exon 11.5-skippingsolinclusion reporter in
	PTB-1 confers neuron-type specificity on exon 11.5 selection

	Figure™6UNC-75, PTB-1 and RBFOX proteins promote exon 11.5 inclusion of endogenous daf-2.(a) RT-PCR analysis of daf-2 exon 11.5 using total RNAs from the synchronized L1 larvae of wild-type, asd-1(yb978); fox-1(e2643), unc-75(yb1701) and ptb-1(gk347274). 
	Impaired learning in RBP mutants

	Figure™7Split-GFP reporters reveal cell types that co-express unc-75, ptb-1 and RBFOX genes.(a) Schematic of split-GFP reporters. When split-GFP fragments (spGFP1-10 and spGFP11::mCherry) are expressed by distinct promoters, GFP signals are observed in th
	DAF-2c expression in ASER relieves the impaired learning

	Figure™8Inclusion of exon 11.5 predominantly occurs in ptb-1-expressing neurons.(a) Schematic representation of ptb-1 isoforms. The upstream regulatory regions used in the transcriptional reporters are shown (black lines). Boxes indicate exons. Blue and g
	Discussion
	Figure™9Ectopic PTB-1 expression promotes exon 11.5 inclusion in the nervous system.(a,b) Normalized fluorescence intensity ratios of RFP to GFP (a) and fractions of GFP and RFP expression (b) of the neuronal exon 11.5-skippingsolinclusion reporter in the
	Figure™10DAF-2c expression in ASER relieves impaired learning of the RBP mutant.(a) A flow chart of salt concentration learning assay. For conditioning, worms were exposed to low or high NaCl concentrations (low lbrackNaClrbrack or high lbrackNaClrbrack, 
	Methods
	C. elegans strains
	DNA constructs and transgenesis
	Cloning of ptb-1 and Cbr-daf-2 cDNAs
	mRNA tagging
	RT-PCR and quantitative RT-PCR assays
	Quantitative analysis of confocal images
	Salt concentration learning assay

	GuillemotF.Spatial and temporal specification of neural fates by transcription factor codesDevelopment134377137802007HobertO.Neurogenesis in the nematode Caenorhabditis elegansWormBook10.1895/wormbook.1.12.22010LiQ.LeeJ. A.BlackD. L.Neuronal regulation of
	We thank Cori Bargmann for the split-GFP cDNAs and the Caenorhabditis Genetics Centre (University of Minnesota) and the National Bioresource Project (Japan) for strains. We are grateful to H. Kunitomo, H. Ohno, S. Kato, N. Sakai, T. Nagashima, W. Onoguchi
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




