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Leaf chlorophyll content (LCC) is a key indicator for assessing the growth of grapes. Hyperspectral 
techniques have been applied to LCC research. However, quantitative prediction of grape LCC using 
this technique remains challenging due to baseline drift, spectral peak overlap, and ambiguity in 
the sensitive spectral range. To address these issues, two typical crop leaf hyperspectral data were 
collected to reveal the spectral response characteristics of grape LCC using standardization by variables 
(SNV) and multiple far scattering correction (MSC) preprocessing variations. The sensitive spectral 
range is determined by Pearson’s algorithm, and sensitive features are further extracted within that 
range using Extreme Gradient Boosting (XGBoost), Recursive Feature Elimination (RFE), and Principal 
components analysis (PCA). Comparison of the prediction ability of Random Forest Regression 
(RFR) algorithm, Support Vector Machine Regression (SVR) model, and Genetic Algorithm-Based 
Neural Network (GA-BP) on grape LCC based on sensitive features. A SNV-RFE-GA-BP framework for 
predicting hyperspectral LCC in grapes is proposed, where R2=0.835 and NRMSE = 0.091. The analysis 
results show that SNV and MSC treatments improve the correlation between spectral reflectance and 
LCC, and different feature screening methods have a greater impact on the model prediction accuracy. 
It was shown that SNV-based processed hyperspectral data combined with GA-BP has great potential 
for efficient chlorophyll monitoring in grapevine. This method provides a new framework theory for 
constructing a hyperspectral analytical model of grapevine key growth indicators.
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Yunnan Province is located in the low-latitude plateau area, mainly by the South Bengal high-pressure air flow 
influence of the formation of the plateau monsoon climate. Most of the province has warm winters and cool 
summers, with four seasons of spring1. Yunnan grapes are mainly distributed at an altitude of 400–2800  m 
between these areas, the annual average temperature between 10 and 23.6 ?, rainfall of 550–1200  mm, the 
number of hours of sunshine in 2000 h or more, the annual sunshine rate is greater than 45%, so most of the 
province’s regions are suitable for planting grapes2,3. Photosynthesis is the most basic and important function of 
grapevine leaves4. The main site of photosynthesis in green plants is the chloroplast, which contains chlorophyll, 
the main photosynthetic pigment. Therefore, leaf chlorophyll content (LCC) plays a crucial role in grape growth 
and yield which is an important indicator for fruit growers to manage their vineyards5,6. It can directly reflect the 
growth condition of the plant, when LCC is too low, the senescence of leaves will affect the synthesis of organic 
nutrients, resulting in grapes without coloring or grapes that have been fully colored to appear soft fruit and 
drop grains, which directly affects the quality of the fruit7. It can also be used as an approximate estimate of leaf 
nitrogen concentration, which provides an important indicator for crop growth evaluation, yield estimation, and 
monitoring of pests and diseases8.

The traditional laboratory chemical methods for analyzing LCC methods are methodologically complex, 
resulting in time-consuming and can cause damage to the leaves9. A handheld portable chlorophyll meter can 
determine the relative chlorophyll content, SPAD- 502 plus is a handheld soil and crop analyzer developed in 
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Japan and is widely used worldwide10. However, for precision agriculture, a single content can only be obtained 
through point-by-point measurements, and real-time monitoring of plant variables cannot be realized. In recent 
years, hyperspectral remote sensing technology has been developing rapidly, and hyperspectral equipment 
provides a fast, nondestructive, and timely method of data collection, which can be used to measure the nutrient 
status of crops and to determine the growth status of plants. The use of spectroscopic techniques to detect crop 
chlorophyll11, biomass12 and yield13 has become a hot topic. Wang et al.14 predicted the chlorophyll content of 
winter wheat at each fertility stage based on full-band in situ hyperspectral data, combined with Ridge regression 
(Ridge), gradient regression counting algorithm (GRBT) and other models. Lin et al.15 Modelled N, P, and K 
status of summer maize by in situ canopy hyperspectral data. An et al.16 estimated wheat canopy powdery 
mildew based on in situ hyperspectral response and feature screening. Most of the above studies used in situ 
hyperspectral data to predict biochemical indicators of crop growth and achieved better results.

However, leaf chlorophyll spectral response curves are affected by a number of factors, including leaf water 
content, carotenoid and flavonoid compounds, and baseline drift caused by the measuring instrument17. 
Chlorophyll has sensitive bands in the visible and near-infrared wavelength ranges, but the presence of other 
compounds interferes with the light signals in these wavelength ranges, and when the absorption bands overlap 
with chlorophyll, it can be difficult to extract the sensitive bands of LCC18,19. Few in-depth studies have been 
reported on the challenges associated with LCC estimation in grapes, and how to minimize the effects of spectral 
overlap and baseline drift, extracting chlorophyll-sensitive segments is a necessary prerequisite for improving 
the accuracy of chlorophyll estimation. Standard normal variate (SNV) and multiplicative scatter correction 
(MSC) are commonly used algorithms for the preprocessing of hyperspectral data, which can effectively 
eliminate the spectral differences due to different scattering levels20. Cui et al.21 monitored early ulcers in 
apples based on hyperspectral imaging and found that MSC with processed spectra combined with a dual-
channel convolutional neural network (DC-CNN) model performed the best, with 98% accuracy. Lu et al.22 
used chlorophyll fluorescence (ChlF) induction curves and hyperspectral images to assess leaf nitrogen content 
(LNC), and the results showed that the model using SNV produced the best performance. All the above studies 
have shown that SNV and MSC can correct the baseline drift phenomenon of spectral data by ideal spectra, thus 
enhancing the correlation between spectra and data.

High-dimensional hyperspectral data contain redundant information unrelated to the response variable, 
and the contradiction between the computational intensity and accuracy of sensitive band selection is also 
a problem that cannot be ignored for feature screening methods23,24. The Pearson correlation coefficient is a 
standardized statistic that is constructed based on covariance and standard deviation which can help to screen 
out independent variables with significant linear relationships25. Sahoo et al. extracted LCC strong correlation 
bands based on Pearson’s algorithm to correlate UAV spectra with farmland traits26. However, there are still high 
correlations between some sensitive bands, and it is crucial to improve the computational efficiency of the model 
and simplify the model structure while maximizing the retention of spectral information27. Extreme gradient 
boosting (XGBoost) is a tree-based algorithm for efficient and fast implementation of the gradient boosting 
decision tree (GBDT) algorithm. Decision trees are created iteratively by splitting the features and generating 
a new function for each tree to model the residuals of the previous predictions, and the importance scores of 
the feature variables are computed for feature selection while training the model28. Zou et al. demonstrated 
the effectiveness of XGBoost feature extraction by encoding and reconstructing the XGBoost leaf node feature 
information to obtain implicit features of the original data in the NIR spectra, and combining it with convolutional 
neural network (CNN) for the prediction of maize multicomponent29. Recursive feature elimination (RFE) 
can effectively filter out the set of features that are most valuable for the prediction of the target variable by 
setting a specified number of features by iteratively constructing the model and eliminating the least important 
features each time30. Fu et al. proposed a mangrove species mapping method based on the combination of 
RFE feature selection algorithm combined with deep learning (DL), and evaluated the classification ability 
of the RFE-DL Suna method by taking advantage of the UAV multispectral images, which proved the feature 
selection ability of RFE in the multidimensional dataset31. Principal component analysis (PCA) can project the 
original data onto selected principal components to reduce the data dimensionality and improve the efficiency 
and generalization of the algorithm without losing too much information32. Ji et al. converted the raw data into 
several new, relatively independent, and comprehensive indices by PCA and analyzed them in combination with 
the affiliation function, and found that the method could evaluate plant stress tolerance more comprehensively 
and objectively33.

The core of regression predictive modeling is to learn the input-to-output mapping relationship, mapping 
the feature matrix of a sample to the sample label space, so a reasonable model selection is also a key factor 
affecting the modeling accuracy34,35. Random forests (RFR) and neural networks (BP), as classical machine 
learning (ML) models, have been widely used in precision agriculture36,37. Yang et al.38 compared the ability of 
several machine learning methods to predict chlorophyll-a in rivers with different hydrological characteristics, 
and the results showed that the RF model outperformed the support vector machine regression (SVR) model. 
Qi et al.39 conducted feature extraction based on UAV multispectral imagery to monitor peanut LCC and found 
that BP network is the most suitable model to monitor peanut LCC with better fit and accuracy than RF. Genetic 
algorithm (GA) replaces the back-propagation process in BP by the operations of selection, crossover, and 
mutation, which allows for higher predictive power40,41. All of the above studies demonstrated the excellent 
performance of RFR, GA-BP, and SVR models in regression prediction, so the above three models were selected 
for use as grape LCC prediction in this study.

The aim of this study is to develop a model for LCC estimation from remote sensing spectra of grapes with 
generalization. By applying SNV and MSC preprocessing changes to the in situ hyperspectral data, effects such 
as baseline drift caused by the remaining compounds and instrumentation on the spectral curves are reduced. 
The LCC response band range is initially determined by Pearson correlation analysis, in which the sensitive 
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features are further screened by XGBoost, RFE, and PCA to reduce the input dimension and improve the model 
efficiency. Based on three typical machine learning algorithms, GA-BP, RFR, and SVR, the capability of different 
algorithms in the spectral monitoring of grape LCC is investigated to provide methodological references for the 
nondestructive monitoring and diagnosis of grape leaf nutrient spectra.

Materials and methods
Experimental area
Figure 1 shows the experimental area of this study. The Cabernet Sauvignon experimental area is located in 
Bolongbao Vineyard, Fangshan District, Beijing, which is situated between the longitude of 131.45-132.2 ◦ E and 
latitude of 46.47–47.0 ◦ N. The winegrowing area is located in the “Golden Line of Wine Grape Growing” at 40 
degrees north latitude, accompanied by the Wulan Mountain in the west and the ancient channel of the Dashi 
River in the east, which has a microclimate of “mountain front warm zone”. The old Boulder River Road provides 
excellent gravel soils, while the richness of the volcanic rocks and the favorable slope alignment make this an 
excellent place to grow grapes. The data were collected on 2022.08.19, the phenological period was maturity, and 
there were 32 sample points.

The Edible Grapes Sunshine Rose Experimental Area is located at Dongfanghong Farm, Yuanmou County, 
Chuxiong Yi Autonomous Prefecture, Yunnan Province, which is situated at a longitude of 25.75 ◦ E and a 
latitude of 101.77 ◦ N. It belongs to the northern tropical to southern subtropical hot and dry monsoon climate, 
in a year, wet and dry, hot and dry climate, long summer and no winter, small difference in temperature yearly, 
large difference in temperature daily, sunny days, light quality is good, belongs to the high sunshine area, for 
the sunshine rose grapes to create a good environment for growth. The collection dates were 2023.08.23 and 
2023.11.04, and the phenological periods were the berry growth and ripening periods, with 30 and 29 sample 
sites.

Plants are able to detect subtle changes in the quality, light, duration and direction of light intensity in the 
environment in which they grow, thus causing changes in the physiological and morphological structures 
necessary for survival in that environment. There are obvious differences in crop varieties and growing 
environments between the two regions, so this study used the above region as the study area, aiming to establish 
a generalized model for grape LNC prediction.

Data acquisition
Leaf chlorophyll determination
Traditional methods for chlorophyll determination generally use spectrophotometry, which is time-consuming 
and damages the crop at the same time. However, studies have shown that soil and plant analyzer development 
(SPAD) and chlorophyll content has a significant correlation, SPAD value can better reflect the changes in leaf 
chlorophyll content42. The use of chlorophyll meter to determine the chlorophyll content of leaves is completely 
feasible, under certain conditions can be used instead of the direct determination of chlorophyll content. In 
this study, three grape “inverted trifoliate leaves” were selected from each plot, which are considered to be the 
most functional leaves, and their growth condition plays a decisive role in the yield and quality of grapes43. 
Chlorophyll SPAD values were determined using a SPAD-502plus (Konica Minolta) chlorophyll content meter 
by clamping the test sample leaves. When the SPAD values were collected, the collection points avoided the leaf 

Fig. 1.  Study area.
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veins, and the four leaves were collected a total of 10 times, then the average value was taken as the final SPAD 
value of the leaves in the plot. The SPAD-502 plus determines the absorption of leaves in the red and near-
infrared bands and calculates the LCC, so the method of characterizing the LCC by SPAD is accurate44.

Leaf spectral data acquisition
Spectral data collection was performed simultaneously with chlorophyll determination, and in this study, grape 
leaf hyperspectral data were measured using a hand-held leaf clamp of the ASD Filed Spec Pro 2500 back-
mounted field spectrometer. The instrument collects spectral ranges from 350 to 2500 nm, with band accuracy 
and spectral resolution adjusted to 1 nm. Each determination of leaf spectral reflectance before a whiteboard 
correction, the determination of the leaf flat placed under the spectral detector with its own light source for 
direct measurement, in different positions of the leaf to be measured, uniformly collected 10 times the spectral 
reflectance, take the average value as the final spectral reflectance of the plot, a total of 91 plots.

Method
Spectral preprocessing
The raw spectra contain signals such as baseline drift and noise, and there is also spectral drift due to the 
sample size as well as environmental factors. In order to improve the modeling accuracy, the raw hyperspectral 
reflectance data were preprocessed45. SNV and MSC can effectively eliminate spectral differences due to different 
scattering levels, thus improving the relationship between spectra and data.

SNV is mainly used to eliminate the effects of solid particle size, surface scattering, and optical range 
variations on the NIR diffuse reflectance spectrum. The principle is to transform the raw spectral data into 
standard normally distributed variables. The spectral data at each wavelength point is first mean-centered, and 
the variance deflation is performed after, thus eliminating the common drift and scaling effects in spectral data46. 
The formula is as follows:
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Where: xi is the hyperspectral data, 
−
x is the average of all the spectra, which is considered as the “ideal 

spectrum”, and m is the number of wavelength points, i = 1,2 . . . m.
MSC corrects for baseline drift and offset phenomena in spectral data through ideal spectra. A one-

dimensional linear regression of the spectra of each sample against the average spectrum was performed to 
obtain the baseline translation and offset, which was subtracted from the derived translation and divided by the 
offset thereby correcting for it47. The formula is as follows:
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where: bi is the translation and offset of each spectrum and k is the offset coefficient of the spectrum.

Feature selection
The LCC sensitive band ranges were calculated using the Pearson feature selection algorithm. The Pearson 
correlation coefficient provides a quick understanding of the linear correlation between the features and the 
corresponding variables with directionality and outputs ranging from − 1 to + 1. It can be a measure of the 
strength of the relationship between the variables, the closer to 0 the lower the correlation, and is a special type 
of covariance that is standardized by removing the effect of the magnitude of the variables on both sides48. Once 
the correlation coefficient has been calculated, the strength of the correlation of the variables can be determined 
by the following range of values: 0–0.2 (very weak correlation), 0.2–0.4 (weak correlation), 0.4–0.6 (moderate 
correlation), 0.6–0.8 (strong correlation), and 0.8-1 (very strong correlation). In this study, correlation coefficients 
of 0.6 or higher were used as feature selection criteria. The formula is as follows:
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where Xi denotes reflectance, Y  denotes LCC, and n denotes sample point, i=1,2…n.
XGBoost introduces improvements such as distributed computing and second-order Taylor expansion of the 

loss function. The integrated learning of multiple CART trees is achieved by gradient tree boosting using CART 
decision trees as sub-models49. By counting the number of times a feature has been used as a split node in all 
trees as feature weights, the calculation is done by counting the total number of times each feature appears as a 
split node in the constructed decision tree model, which can be simply expressed as:
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F eatureImportanceweight (f) =

∑
T
t=1I (f is split in treet)� (6)

where T  is the total number of trees and I  is an indicator function that is 1 if feature f  is used as a split node 
in tree t and 0 otherwise.

RFE is based on a wrapper type feature selection strategy. The study uses the random forest model as a base 
tool to assess the importance of features. It iterates continuously and trains the model based on the current 
set of remaining features at each iteration, gradually eliminating relatively unimportant features by iteratively 
constructing the model and evaluating the feature importance50.

PCA is a multivariate statistical analysis method. When there is a strong correlation between features is, these 
redundant features can be recognized and removed. The original data is projected into a new coordinate system 
by linear transformation, which makes the new features orthogonal to each other, the related features are merged 
to extract the most important part of information, thus reducing data redundancy51.

Model building
As shown in Fig. 2, BP takes the input signal features and maps them first to the Hidden Layer (realized by the 
activation function Sigmoid), and then to the output layer (linear transfer function) to obtain the desired output 
value. The error function is calculated by comparing the desired output value with the actual measured value, 
and then the error is back propagated. The weights w and threshold b of the BP network are adjusted by Gradient 
descent, and the process is repeated until the set error or the maximum number of iterations is met. Genetic 
algorithm is an optimization algorithm that simulates the process of biological evolution. It searches for optimal 
solutions in the solution space by simulating the operations of heredity, mutation and selection in nature. 
The algorithm has a global search capability to find the more optimal region in the complex solution space52. 
However, the initial weights and thresholds of the BP neural network are random, resulting in an unstable model 
effect, while the genetic algorithm can train the BP for optimization, correct the weights and thresholds in the 
network, reduce the network error, and make the model reach the optimum53.

RF is a classifier that contains multiple decision trees, which combines multiple base classifiers to achieve 
higher performance than individual classifiers and is widely used in classification and regression analysis. 
The basic idea of RFR is to collect a number of entries from a sample in order to train the model. Select the 
features based on the samples and construct a decision tree as a collection of base classifiers. Calculate the 
weight of each base classifier in the integration for more accurate results. According to the calculated weights 
to find the predicted mean value, through the run to generate a large number of decision trees to achieve a 
predetermined number of decision trees, so as to achieve the purpose of regression analysis. The algorithm has 
low computational complexity and can handle uncorrelated feature data, but the training and prediction time is 
long and not applicable to high-dimensional data54.

SVR models the regression process by finding an optimal hyperplane in two dimensions. Since this optimal 
hyperplane only considers points at the edges around the training set, it allows the model to effectively avoid 
overfitting of data points. Meanwhile, the complexity control parameter based on the reprojection error as a 
penalty term can well regulate the flexibility of the regression model. The model can effectively handle sublinear 
data with high accuracy and stability55. The basis function chosen in the study is radial basis function (RBF).

Fig. 2.  Model flow. (a) GA-BP model; (b) RFR model; (c) SVR model.
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The three model parameters are designed as shown in Table 1:

Model validation and evaluation
The coefficient of determination R2 standardized root mean square error NRMSE was chosen as a criterion for 
the predictive effectiveness of the regression model.

	
R2 = 1 −

∑ n

i=1(yi − xi)2

∑ n

i=1(yi − y)2 � (7)
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√
1
n
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y
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Where: yi, xi, y is the mean of the predicted, measured, and measured chlorophyll content values, and n is the 
number of model samples.

Results
Hyperspectral data preprocessing analysis
As can be seen in Fig. 3, the trends of the reflectance spectral curves of grapevine leaves of different varieties are 
similar. This is due to the fact that green plant spectra are caused by the absorption of light by chlorophyll, other 
biochemicals, and cellular structures on the leaf surface, so their spectra are essentially the same. However, the 
local details of the curves vary considerably due to the different biochemical components among the different 
species. Spectral reflectance of grape leaves shows a large peak in the green and visible regions at 527–602 nm; 
In the green band from 500 nm, the absorption of the leaf decreases and the reflectance is increasing; Significant 
reflectance peaks at 551 nm, which is the non-absorbable part of the plant’s photosynthesis process, resulting 
in a strong spectral reflectance; The red band absorption valley is at 670 nm on the right side, after which the 
reflectivity rises steeply; The formation of a high reflective plateau in the near-infrared (NIR) band at 762–
1096 nm may be due to the strong reflection of NIR light by the porous thin-walled cellular organization of the 
leaf blade; After 1285 nm, the spectral reflectance of the leaves starts to decrease; Near-infrared absorption valley 

Fig. 3.  Hyperspectral and pre-processed images. (a) Original spectral curve; (b) SNV spectral curve; (c) MSC 
spectral curve.

 

Model Parameter Retrieve value

GA-BP

Hidden layer nodes 7

Maximum number of iterations 1000

Initial population size 40

Error thresholds 10−6

Maximum number of evolutions 50

Optimize the number of parameters 50

RFR
Number of decision trees 1000

Minimum leaf number 3

SVR
Gamma 0.001

Cost 1000

Table 1.  Model parameters.
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at 1445 nm on the right side; The other two peaks were at 1588–1737 nm and 2118–2285 nm in the mid-infrared 
region, while the absorption valley in the mid-infrared band was at 1924 nm.

The trends of the spectral reflectance curves of grape leaves corresponding to different SPAD values were 
basically the same. The chlorophyll content of grape leaves shows a tendency to increase and then decrease 
with the period of fertility, due to the differences in the growth cycle between the two sites. During the berry 
growing season, leaves undergo sufficient photosynthesis to produce organic matter, and as large amounts of 
chlorophyll are synthesized, the chlorophyll content of the leaves also increases. At maturity, leaves begin to 
senesce, and chlorophyll begins to break down with transfer to be synthesized in new leaves, resulting in lower 
leaf chlorophyll content. Following the increase in chlorophyll levels, leaves with lower chlorophyll content 
had the highest reflectance in the visible range and the lowest reflectance in the near-infrared band. The most 
obvious change in leaf spectral reflectance in the visible region was near 550 nm, and the most obvious change in 
leaf spectral reflectance in the near-infrared band was near 750 nm, suggesting that there is a strong correlation 
between the spectral reflectance of grape leaves and chlorophyll content. Chlorophyll content inversion can be 
carried out through the law of change of spectral characteristics, to obtain the grape growth information, so 
that according to the real-time state of reasonable and timely fertilization to ensure that the grapes have a better 
growth trend.

Due to the large span of hyperspectral data, 3b and 3c are the SNV and MSC preprocessing methods, and it 
can be seen that the two methods eliminate the large gaps, removing the spectral differences due to the different 
scattering levels, and thus enhancing the correlation between the spectra and the data.

Feature selection
Figure  4 represents the Pearson correlation analysis curves of the grape LCC with the hyperspectral data 
under different pre-processing, where the red sectors indicate the range of sensitive bands selected out. The 
sensitive bands of the raw hyperspectral data are mainly concentrated around 550 nm and 770–1350 nm, and 
the correlation is significantly negative for 550 nm and significantly positive for 770–1350 nm. This is due to 
the gradual formation and deepening of the red band absorption valley as the LCC content increases with leaf 
growth. The reflection peaks in the 800 nm near-infrared band are the result of multiple scattering of light inside 
the blade, where scattering of solar radiation by the blade dominates in this band range. Light entering the leaf 
is scattered multiple times between the cell walls, causing an increase in the probability that the light will again 
pass through the upper epidermis of the leaf and be picked up by the sensor, that is an increase in reflectivity. 
After the raw hyperspectral data are processed by SNV, the sensitive bands are mainly concentrated around 
370 nm, 550 nm, 720 nm and 1270 nm. As can be seen from Fig. 4b, although the number of sensitive bands is 
reduced, the preprocessed data with LCC sensitivity is enhanced, especially near 720 nm where r reaches the 
− 0.8 highly significant level. The sensitive bands after MSC treatment are concentrated around 400 nm, 1950 nm 
and 2450 nm, and all these ranges show positive correlation with LCC.

The sensitive bands screened by Pearson can be directly used as model inputs, but some sensitive bands are 
still highly correlated with each other, and it is crucial to improve the computational efficiency of the model 
and simplify the model structure while maximizing the retention of spectral information. As shown in Fig. 5, 
based on the sensitive spectral range, this study uses XGBoost, RFE and PCA to extract sensitive features as 
model inputs. The number of sensitive features set by XGBoost and RFE is 10, and the cumulative contribution 
of features set by PCA is 0.99. The score in XGboost indicates the feature importance, the larger the score, the 
stronger the feature importance. The screened sensitive bands are concentrated near 1100  nm, 700  nm and 
1900 nm under different preprocessing methods, respectively. Rank in RFE is the feature importance ranking, 
the lower the Rank value, the stronger the feature importance. The screened features exist in each sensitive 
spectral range, and the method retains the spectral information to a greater extent, which is conducive to 
improving the model accuracy. PCA can calculate the contribution of mapping features, and the number of 
sensitive bands screened is 3, 6, and 5 under different preprocessing, respectively. The figure shows that the first 
feature contribution of the original spectra is much larger than that of the pre-processed spectra, indicating that 
there is a large amount of redundancy and error between the original spectra, highlighting the importance of 
pre-processing in hyperspectral remote sensing modeling.

Fig. 4.  Pearson correlation analysis to determine the LCC sensitive spectral range. (a) Original hyperspectral 
sensitive band range; (b) SNV hyperspectral sensitive band range; (c) MSC hyperspectral sensitive band range.
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GA-BP, RFR and SVR model analysis
After the optimal features were obtained by feature screening through different preprocessing methods, the 
GA-BP, RFR and SVR models were used to predict and analyze the grape LCC. To improve the accuracy of the 
model, the data were normalized to eliminate differences in magnitude between different features. The dataset 
was divided in a 7:3 ratio and R2 and NRMSE were used as model evaluation metrics. Table 2 represents the 
evaluation coefficients of LCC prediction models with different preprocessing and feature selection methods 
combined with regression models. the larger R2 the more accurate the model is, the better the regression effect 

Model SVR RFR GA-BP

Pretreatment
Feature Selection R2 NRMSE R2 NRMSE R2 NRMSE

XGBoost 0.545 0.151 0.562 0.148 0.548 0.15

Original

RFE 0.709 0.121 0.644 0.134 0.735 0.121

PCA 0.592 0.143 0.662 0.13 0.674 0.128

XGBoost 0.675 0.128 0.714 0.119 0.802 0.1

SNV

RFE 0.668 0.129 0.788 0.103 0.835 0.091

PCA 0.548 0.151 0.713 0.12 0.635 0.135

XGBoost 0.507 0.157 0.517 0.155 0.584 0.144

MSC
RFE 0.571 0.147 0.613 0.139 0.617 0.138

PCA 0.529 0.154 0.555 0.149 0.567 0.147

Table 2.  Model performance.

 

Fig. 5.  XGBoost, RFE, PCA feature extraction for sensitive bands with different preprocessing.
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is, and the smaller the value of the NRMSE index indicates that the difference between the predicted value and 
the real value of the model is smaller, and the better the model is in predicting LCC.

As shown in Fig.  6, the original spectra are all modeled better than XGBoost and worse than the RFE 
model after PCA dimensionality reduction. In contrast, the PCA modeling effects all performed poorly under 
different preprocessing effects. This may be due to the superior effect of PCA on the dimensionality reduction 
of the raw spectra, as the raw hyperspectral model is more in line with the physical mechanism, the features 
mapped are more representative and the reduction in dimensionality has a lower overall impact on the model. 
RFE shows good performance across preprocessing and models, while XGboost performs poorly. This is due 
to the differences exhibited by the two in feature screening methods, where RFE builds the model iteratively, 
eliminating the least important feature or features based on feature importance in the model at each iteration 
until a specified number of features or other stopping conditions are reached. This method is more suitable for 
situations where the number of features is high, especially when it is not clear which features are really helpful to 
the model, allowing the model to focus more on the really valuable features, thus reducing the risk of overfitting 
and allowing the model to make more accurate predictions on new data. Whereas XGBoost tends to select 
features that appear more frequently in the dataset when constructing a decision tree. This can lead to some low-
frequency but actually valuable features being overlooked. And when there are complex correlations between 
the features, XGBoost may not be able to distinguish and select them well, so the bands selected by XGBoost are 
more concentrated in 3.2, and RFE covers all sensitive band ranges.

And in terms of modeling, GA-BP is almost all due to the rest of the models. Thanks to the GA algorithm, 
the model has a stronger global search capability, which makes the output of the neural network closer to the 
real value by continuously evolving the population, jumping out of the local optimum and finding more suitable 
parameters. The model generalization ability is also enhanced, and GA - BP enables the neural network to better 
balance the degree of fitting to the training data and the prediction ability to the unknown data by optimizing 
the parameter combinations during the training process. Thus, among all models, SNV-RFE-GA-BP achieved 
the optimal results, where R2=0.835 and NRMSE = 0.091. This method cross-sectionally compares the SVR and 

Fig. 6.  LCC fitting curves for different preprocessing, feature selection methods combined with regression 
models.
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RFR models of the same preprocessed SNV, and the R2 is improved by 0.167 and 0.047, and the NRMSE is 
reduced by 0.038 and 0.012, respectively. Longitudinal comparison of the same model GA-BP, with different 
preprocessing Original and MSC, improved R2 by 0.287 and 0.218, and reduced NRMSE by 0.03 and 0.047, 
respectively.

Figure 7 represents the different model LCC prediction boxplots and normal distribution curves used to 
determine if the models differed significantly due to assessment capabilities. It can be seen that the different 
models are ideal for predicting the LCC in the range of 40–50, but when the LCC is too high or too low, the 
enhancement of the model effect by the different preprocessing and feature selection methods is not significant. 
The SVR model was the least effective, with all predictions centered in the 40–50 range. This is due to the fact 
that SVR is the closest distance from the data to the optimal hyperplane by finding the optimal hyperplane, and 
the LCC is mainly concentrated in the range of 40–50, so the results are ideal in this range, and the performance 
of the model suffers when it goes beyond this range. After preprocessing, the GA-BP model is improved in out-
of-range effect. The effect of noise and baseline drift is somewhat eliminated from the preprocessed data, and 
optimizing the weights of the neural network through GA enables the network to better fit the intrinsic patterns 
of the data. Using the global search and selection mechanism of GA to find a more representative combination 
of weights enables the neural network to better extract the essential features, thus improving the prediction 
accuracy on unseen data and enhancing the generalization ability of the network.

Discussion
Leaf chlorophyll content is an important indicator of plant growth and development, and many researchers have 
conducted studies related to remote sensing estimation of leaf chlorophyll content56,57. Rapid prediction of grape 
LCC based on hyperspectral technology is conducive to large-scale and accurate monitoring of grape growth 
and improvement of fruit yield and quality.

Hyperspectral is high-dimensional data with strong inter-data correlation and a lot of redundancy and 
noise interference. Therefore, effective preprocessing and correlation analysis of spectral data to extract 
the characteristic bands can significantly reduce the model complexity and realize the simplification of 
hyperspectral data models58. Grape LCC is mainly reflected in the visible wavelength band, mainly due to the 
different absorption and reabsorption of photons by plant leaves with different chlorophyll contents. Based 
on the Pearson algorithm to extract the characteristic bands, the in situ hyperspectral of grape leaves reached 
significant correlation with LCC near 550 nm and 770–1350 nm, which is in line with the general characteristics 
of the green vegetation spectra, and is consistent with the conclusions of59 on the correlation analysis between 
leaf spectral reflectance and SPAD values.

After the raw hyperspectral data are processed by SNV, the sensitive bands are mainly concentrated around 
370 nm, 550 nm, 720 nm and 1270 nm. Although the number of sensitive bands is reduced, the preprocessed 
data with LCC sensitivity is enhanced, especially near 720 nm where r reaches the − 0.8 highly significant level. 
The sensitive bands after MSC treatment are concentrated around 400 nm, 1950 nm and 2450 nm, and all these 
ranges show positive correlation with LCC. It is shown that preprocessing can effectively improve the correlation 
between the spectra and the data, consistent with the finding of60 those preprocessing methods can achieve 
effective spectral domain adaptation.

In this study, by comparing the three models, GA-BP, RFR and SVR, it was found that the BP neural network 
model based on GA optimization has better estimation ability in fitting the training samples and testing the 
test samples of chlorophyll values of grape leaves. After the original spectra are dimensionalized by PCA, the 
model is better than XGBoost, but worse than RFE model, and the PCA model is not so good under different 
preprocessing. The reason is that although PCA is effective in downscaling the original spectra, the original 
hyperspectral model conforms to the physical mechanism and its mapping features are more representative, 
and downscaling has little effect on the overall effect. This is consistent with the conclusion of61 that the first 
three principal components in the in situ hyperspectral were extracted by PCA and that the bands with the 
largest contribution from each should be unlikely to produce bands close to each other. RFE performs well in 
different preprocessing and different models, and XGBoost performs poorly, which stems from the different 
feature screening methods of the two. RFE reduces the risk of overfitting and makes predictions more accurate 
by iteratively removing unimportant features through iterative modeling, depending on the importance of the 
features, for situations where there are a large number of features and it is not clear which features are useful. 
Sun et al. used the RFE method to select the optimal wavelength and demonstrated that the method not only 

Fig. 7.  Distribution of LCC projections.
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ranked the features according to their importance to maize yield, but also maintained the interpretability of the 
spectral data62. While XGBoost tends to select features with high frequency when constructing the decision tree, 
it is easy to ignore low-frequency but valuable features, and it is difficult to differentiate the selection in the face 
of complex correlation between features, so its selection of bands is more concentrated, and the RFE can cover 
the range of all sensitive bands.

In terms of modeling, GA–BP is mostly superior to other models. Thanks to the global search ability of the 
GA algorithm, it can go beyond the local optimum to find more suitable parameters, make the neural network 
output closer to the real value, enhance the generalization ability, and balance the ability to fit the training data 
with the ability to predict the unknown data. This is consistent with the conclusion of63 that GA and BP are used 
to create a prediction model and optimize the network parameters thus improving the learning efficiency and 
accuracy.

After statistical analysis of the model results, it was found that the accuracy was not satisfactory when 
the LCC was outside the range of 40–50, and even though the LCCs of different fertility periods were mostly 
concentrated in this range, the outliers were difficult to avoid due to the presence of manual errors during 
sampling. Therefore, in the future, when setting up experiments, we can consider eliminating the outliers so as 
to improve the accuracy of the model, or introducing a deep learning model to further mine the data features so 
as to improve the prediction performance.

Conclusions
The hyperspectral-based grape LCC determination technique covers both wine grapes and table grapes categories 
in different periods, thus improving the model coverage and generalizability. In this study, grapevine leaf spectra 
and LCC were collected during three key reproductive periods, Cabernet Sauvignon (2022.08.19, ripening) 
and Sunny Rose (2023.08.23 and 2023.11.04, berry growth and ripening), to reveal the spectral response 
characteristics of the grapevine LCC using standardization by variables (SNV) and multiple far scattering 
correction (MSC) preprocessing variations. The sensitive spectral range was determined by the Pearson 
algorithm, and the sensitive bands of the raw hyperspectral data were mainly concentrated in the vicinity of 
550 nm and 770–1350 nm; after SNV processing, the sensitive bands were mainly concentrated in the vicinity 
of 370 nm, 550 nm, 720 nm, and 1270 nm; and the sensitive bands of the MSC processing were concentrated in 
the vicinity of 400 nm, 1950 nm, and 2450 nm. Sensitive features were further extracted and redundant variables 
were eliminated using XGBoost, RFE, and PCA in this range. Three regression models based on GA-BP, RFR, 
and SVR were constructed to estimate grape LCC. A SNV-RFE-GA-BP framework for predicting hyperspectral 
LCC in grapes is proposed, where R2=0.835 and NRMSE = 0.091. The study showed that the framework has a 
high potential for efficient detection of LCC in different categories of grapes, and the related research techniques 
can also be useful for the rapid monitoring of biochemical indicators related to grapes or other fruit crops.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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