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Abstract

Background: The size of the cerebral cortex varies widely within human populations, and a large
portion of this variance is modulated by genetic factors. The discovery and characterization of
these genes and their variants can contribute to an understanding of individual differences in brain
development, behavior, and disease susceptibility. Here we use unbiased stereological techniques
to map quantitative trait loci (QTLs) that modulate the volume of neocortex.

Results: We estimated volumes bilaterally in an expanded set of BXD recombinant inbred strains
(n = 56 strains and 223 animals) taken from the Mouse Brain Library http://www.mbl.org. We
generated matched microarray data for the cerebral cortex in the same large panel of strains and
in parental neonates to efficiently nominate and evaluate candidate genes. Volume of the neocortex
varies widely, and is a heritable trait. Genome-wide mapping of this trait revealed two QTLs — one
on chromosome (Chr) 6 at 88 + 5 Mb and another at Chr || (4] £ 8 Mb). We generated both
neonatal and adult neocortical gene expression databases using microarray technology. Using these
databases in combination with other bioinformatic tools we have identified positional candidates
on these QTL intervals.

Conclusion: This study is the first to use the expanded set of BXD strains to map neocortical
volume, and we found that normal variation of this trait is, at least in part, genetically modulated.
These results provide a baseline from which to assess the genetic contribution to regional variation
in neocortical volume, as well as other neuroanatomic phenotypes that may contribute to variation
in regional volume, such as proliferation, death, and number and packing density of neurons

BackGround

The cerebral cortex is among the most complicated struc-
tures in the brain of mammals, and comprises a large but
highly variable fraction of the total brain volume. The vol-
ume of the human cortex varies by as much as 60%
among normal adults. Much of this variation is genetic
[1,2] and has been linked with measures of intelligence

[3,4], as well as with differences in susceptibility to disor-
ders including developmental dyslexia [5], anxiety-related
personality traits [6], and schizophrenia [7,8]. Dissecting
those genetic variants that modulate normal variation of
the cerebral cortex could have an impact on our under-
standing of cortical development, normal function, and
the etiology of several pervasive diseases.
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In the present study we use BXD recombinant inbred (RI)
strains of mice to investigate the genetic basis of normal
variation in the size of the neocortex. This genetic refer-
ence population, which is both genetically diverse and
phenotypically well-characterized, provides an experi-
mental system to test relations and interactions between
normal variation among a potentially unlimited variety of
traits [9]. Thus, the scientific community has been able
use these mice to systematically accumulate a vast amount
of morphometric, behavioral, and physiologic data for
each strain. This in turn enables scientists with different
interests and expertise to test and verify entire systems of
traits, their covariance, and their genetic causes [10-13].

Recently, Beatty and Laughlin [14] identified a QTL for
neocortical volume on chromosome (Chr) 11 using
images of BXD cases taken from the Mouse Brain Library
(MBL; http://www.mbl.org). Donget al. [15] also used the
same BXD reference population - and many of the same
cases and images from the MBL - and found suggestive
QTLs for gray matter volume on Chrs 2, 8, 16, and 19, but
not on Chr 11. These studies were constrained by the rel-
atively small number of strains (n = 34) and cases. The
recent addition of many new BXD strains and cases to the
MBL [16] has significantly increased the utility of this RI
set and improved both the power and precision of QTL
mapping. In this experiment, we used unbiased stereology
to estimate the neocortical volume in both right and left
hemispheres in 54 BXD RI lines, and both parental
strains. We mapped QTLs modulating neocortical volume
to intervals on Chrs 6 and 11. We exploited a variety of
bioinformatic resources, as well as our own neonatal and
adult databases of gene expression in the neocortex, to
identify potential candidate genes within these QTLs.

Results

Neocortical volume is highly variable

All estimates of volume are fully corrected for case-by-case
differences in shrinkage and should be considered close to
the original size of these regions in well-fixed tissue. Bilat-
eral neocortical volume of individual mice has a remarka-
bly wide range - from 61.6 to 162.2 mm3 (mean + SEM =
102.5 + 0.9 mm3), and is normally distributed (Fig 1A).
Strain averages extend from a low of 73.4 + 4.5 mm? in
BXD30 to a high of 126.9 + 3.8 mm3 in BXD5 (Fig 1B).
The right and left hemisphere neocortical volumes of indi-
vidual mice ranged from 30.4-82.3 mm?3 and from 31.2-
79.9 mm3, with means of 51.5 + 0.45 mm?3 and 51.1 =
0.45 mm?3, respectively.

There is no significant left/right asymmetry in the
neocortex

We computed an asymmetry coefficient 6, by subtract-
ing the volume of the left from right hemisphere and
dividing by one half of the total volume. To determine
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whether there were overall asymmetric biases irrespective
of direction, we calculated an absolute asymmetry coeffi-
cient (Jy,) by taking the absolute value of J;,,,,- We com-
puted the distribution of both &, and &, for the
neocortex (mean + SEM = -0.007 + 0.003 and 0.039 +
0.002 mm3, respectively). ANOVA with strain as the inde-
pendent measure and &, and &, as the dependent
measures revealed no significant effects of strain (Fs3 ;59 <
1, NS in both cases). These results suggest that there is no
significant left/right neocortical asymmetry in this popu-
lation.

Neocortical volume is heritable, but asymmetry is not

In order to determine the heritability of neocortical vol-
ume, we computed an ANOVA with strain as the inde-
pendent measure and bilateral volume as the dependent
measure. We found a significant effect of strain (Fss,,4; =
3.2, P <.001). The strain main effect accounts for 51% of
the variance, which provides a reasonable upper bound
on the fraction of variance that might be explained by
additive and epistatic interactions. (Dominance effects
cannot be measured using RI strains because there are no
heterozygous genotypes or heterozygote phenotypes to
analyze.)

There were no significant main effects for &,y (Fss,167 <
1, NS) or &, (F55 167 = 1.1; explained variance = 22-27%).
These results strongly support the notion that there are
significant differences between strains on the volumetric
measures, but that strain differences in asymmetry are not
apparent.

We also computed heritability (h2) using inbred strain
data and the adjustment method of Hegmann and Possi-
dente [17]. Neocortical volume is a moderately heritable
trait (h2= 0.29). The broad sense estimate of heritability,
which takes into account the large sample sizes of geneti-
cally identical members of R strains, yielded an h20f 0.67.
The heritability factor for d,,,,, and J,,,was 0.10 and 0.02,
respectively. This low heritability strongly suggests that
neither of these traits could be profitably mapped.

Mapping neocortical volume

We mapped bilateral neocortical volume and detected
two loci (Fig 2A) with closely matched likelihood ratio
statistics (LRS) linkage scores but with opposite allelic
effects (that is, B6 vs D2 alleles contributing to greater vol-
ume). The first locus on Chr 6 peaks between 88 and 92
Mb (LRS = 13.3, LOD = 2.9). This region corresponds to
human Chr 3 at = 134 Mb (3p25.1). The second locus on
Chr 11 peaks between 35 and 40 Mb (LRS = 12.7, LOD =
2.6, corresponding to human Chr 5 at = 158 Mb, 3q35.1).

In order to map variation related to volume of neocortex

rather than possible confounding covariates, we per-

Page 2 of 11

(page number not for citation purposes)


http://www.mbl.org

BMC Neuroscience 2009, 10:44

A

Frequency

65 70 75 80 85 80 85 100105110116 120125130135140145 160166160165
Cortical Volume (in mm?)

140 -

10+

130
120

3
8

Cortical Volume (in mm?®)
g &

~
3
!

2
3

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

ao

Strain

Figure |

A. Neocortical volume is normally distributed. B.
Mean * SEM neocortical volume in BXD Rl lines (gray bars)
and their parental strains, C57BL/6) (black bars) and DBA/2)
(white bars).

formed multiple regression to remove all covariance asso-
ciated with differences in age, sex, plane of section, strain
epoch (the original Taylor BXD set versus the newer
UTHSC BXD set; see [16], for an explanation of the history
of BXD strains), and non-neocortical brain weight (brain
weight — neocortical weight). There were significant effects
of non-neocortical brain weight (F, o9 = 10.8, P < .01)
and epoch (F, 559 = 8.2, P < .01; Taylor strains = 103.5 +
1.1 mm3; UTHSC strains = 100.3 + 1.4). Effects of sex
(F1200 < 1, NS; females = 101.1 + 1.2 mm3; males = 102.6
+ 1.3 mm?3), plane of section (F, o9 = 2.1, NS; horizontal
= 101.2 + 1.3 mm3; coronal = 103.5 + 1.2 mm?3), or age
(F1 200 = < 1, NS) were modest and did not reach statistical
significance. We regressed neocortical volume for each
subject against age, sex, plane of section, epoch, and non-
neocortical brain weight and calculated residuals. The use
of all variables, even those that do not reach an alpha level
of .05, is warranted and removes that variable as a poten-
tial confound in mapping. These residuals were used to
compute adjusted strain means.

http://www.biomedcentral.com/1471-2202/10/44

When we re-mapped the variation in adjusted neocortical
volume, we detected the same two loci as the original val-
ues (Fig 2B), but with a modest increase in the strength of
linkage (Chr 6 at 88 + 5 Mb LRS = 14.5, LOD = 3.1; Chr
11at37 + 5 Mb LRS = 14.4, LOD = 3.1). The D2 allele has
a positive effect of about 4 mm?3 per allele at the Chr 6
locus, whereas the B6 allele has a similar positive effect at
the Chr 11 locus (Additional File 1). We did not detect any
epistatic interactions that could account for adjusted neo-
cortical volume. Composite interval mapping of neocorti-
cal volume did not reveal any significant or consistent
secondary loci for this trait.

Candidate gene analysis

The Chr 6 and Chr 11 loci can be subdivided into large
blocks that have common haplotypes in B6, D2, and BXD
strains. These blocks are essentially identical by descent
(except for any recent mutations) and have low densities
of single nucleotide polymorphisms (SNPs). Such regions
are less likely to contain polymorphisms that modulate
the volume of forebrain derivatives. In contrast, several
large blocks have dissimilar haplotypes and much higher
densities of SNPs (Figs 2C, D). Genes within these regions
have a higher prior probability of containing functional
polymorphisms.

Chr || candidate analysis

We combined data on SNP density with LRS values to
rank positional candidate genes. Of = 70 genes in the Chr
11 interval (34-49 Mb), 17 were located in regions that
were highly polymorphic (1 to 6 SNPs per kb). Members
of this subset are good positional candidates, irrespective of
any role that they may have in brain development or adult
forebrain structure (Additional File 2). An additional 9
candidates were located in regions with low SNP densities
but had either missense mutations or SNPs in their pro-
moters or UTRs. The restrictive criteria for inclusion were
increased by requiring that strong candidates also have
moderate to high expression in the neocortex at some
stage of development. To apply this filter, we extracted
data on expression of all of these genes in the neocortex
from the adult and P1 databases. This subset of 26 genes
was ranked using data on missense SNPs in these genes
and by evidence of local regulatory variation that controls
their own expression - so-called cis-QTLs. Those genes
with SNPs in Illumina microarray probes that produced
high cis-QTLs were excluded from the analysis. Fifteen
genes met these criteria: Slit3, Odz2, Gabrg2, Gabral,
Gabrb2, Atp10b, Pttgl, Slu7, Ttcl, Ublepl, Ebfl, Adam19,
Cyfip2, Thgll, and Itk (Table 1).

Chr 6 candidate analysis

The Chr 6 interval identified here was previously associ-
ated with striatal volume, and the identification of candi-
date genes (using the criteria outlined above), was
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Mapping neocortical volume. A. Likelihood ratio statistic
(LRS) scores for neocortical volume across the entire
genome. The x-axis represents the physical map of the chro-
mosome; the y-axis and thick blue line provide the LRS of the
association between the trait and the genotypes of markers.
The two horizontal lines are the suggestive (blue) and signifi-
cance (red) thresholds computed using 1000 permutations.
There are QTLs (red arrows) on the distal end of Chr 6 and
the proximal end of Chr | |. B. QTLs for residual neocortical
volume (regressing out the effects of age, sex, plane of sec-
tion, epoch, and non-neocortical brain weight) are identical
to those seen in A, but with higher LRS scores. C. LRS map
of all of Chr 6 (left) and Chr || (right) where the peak LRS
score can be seen. Orange lines on x-axis represent high
density SNP map. Discontinuous track along the top are the
genes on this chromosome. D. A 10 Mb interval bordering
the QTL on Chr 6 (left) and Chr || (right).

identical to those recently described [18]. A subset of 10
genes met all the criteria: Htra2, Tial, Mxd1, Anxa4, Aakl,
Nful, Nup210, Hdacl11, Fbin2, and Slc25a26 (Table 2).

Gene Expression correlations with neocortical volume

We asked which subset of the positional candidates at
both QTLs also had differences in expression across BXD
strains that co-varied well with our trait. We produced a
correlation matrix based on the subset of 47 strains for
which we have data of all types. This matrix was then
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thresholded at a Pearson r = |0.4| and plotted as a graph.
There were 7 genes — Gabral, Gabrb2, Pttgl, Slu7, Ublcpl,
Ebf1, and Thg1l - that co-varied with neocortical volume
on Chr 11 (Fig 3). We further found confirmatory evi-
dence from the Allen Brain Atlas and GENSAT that these
genes are expressed either in the adult brain, the develop-
ing brain, or both. In marked contrast, none of the Chr 6
gene expression profiles co-vary with neocortical volume.

Trait correlation analysis

One advantage of employing the BXD RI set is the ability
to test for covariation with other phenotypes that have
also been studied in this population. We correlated neo-
cortical volume (adjusted and non-adjusted) with the
BXD Published Phenotypes Database of GN, which con-
tains a large number of behavioral, anatomic, and physi-
ologic phenotypes gathered from BXD RI sets. Alpha
levels were adjusted after permuting neocortical volume
and adjusted neocortical volume 20 times each, determin-
ing the top 50 correlations with the BXD Published Phe-
notypes Database for each permutation, and determining
the computed alpha level of the top 5% of all correlations.
From this analysis, it was determined that computed cor-
relations by GN with P < .001 were significant at an
adjusted alpha level of .05.

Both neocortical and adjusted neocortical volume corre-
lated highly with a large number of morphological traits,
including volume of dorsal thalamus, dorsal striatum, lat-
eral geniculate nucleus, hippocampus, basolateral amy-
gdala, fimbria, trigeminal tract, nucleus accumbens, and
corpus callosum. There were no significant correlations
with non-morphological traits.

Discussion

We systematically explored sources of genetic variation in
the size of the neocortex. Using unbiased stereological
estimations of this trait in the BXD RI genetic reference
population, we found that neocortical volume is highly
heritable and variable. There was a 2.6-fold difference
between the neocortical volume of the smallest and larg-
est individuals in this study, and a 1.7-fold difference
when strain means were compared. The heritability of this
trait is consistent with that reported for similar neuroana-
tomic traits including olfactory bulb, hippocampus, stria-
tum, neocortex, and thalamus [12,14,19-24]. Even with a
large sample size and a powerful paired t-test design, we
did not find any significant asymmetry between the left
and right hemispheres of mice. Neocortical volume was
associated with QTLs on Chrs 6 and 11. Large microarray
data sets were used to efficiently nominate small numbers
of viable candidate genes, one or more of which may
modulate the volume of the neocortex, and these results
supported candidates on the Chr 11 interval as modulat-
ing neocortical volume.
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There is a lack of anatomic asymmetry in the neocortex
Because previous research has found evidence of volumet-
ric asymmetry in the rodent brain [25-31], we attempted
to assess this variable in the BXD RI set. We found that
there was little evidence of asymmetry in the neocortex.
This was true both for measures that assessed directional
(right vs. left) asymmetry and those that assessed magni-
tude (without considering directionality). These results
are consistent with previous reports that failed to reveal
neocortical asymmetries in the mouse brain [32]. The
results reported here suggest that there are no population
level anatomic asymmetries in the neocortex, but do not
discount the possibility that anatomic asymmetries at the
individual level may correlate with functional asym-
metries.

QTLs for neocortical volume

Using images from the MBL, Beatty and Laughlin [14]
reported significant QTLs for neocortical volume on Chr
11 and for non-neocortical brain volume on Chr 19. A
more recent study, which again used images from the MBL
[15], did not find any statistically significant QTLs for gray
matter volume, although there were suggestive QTLs on
Chrs 2, 8, 16, and 19.

We find some support in this study for the Chr 11 QTL
reported by Beatty and Laughlin [14]. Although the Chr
11 interval identified by Beatty and Laughlin is more prox-
imal than that described in the current study, the intervals
do overlap. In some ways, this was not surprising given
that both Beatty and Laughlin and we analyzed brains
from the MBL. Yet there were a number of methodological
differences that could have worked against this. Our esti-
mations of cerebral volume were performed using unbi-
ased stereology on histologic tissue that was corrected for
section thickness, whereas Beatty and Laughlin used plan-
imetric techniques on images from the MBL to estimate

Table I: Candidate genes in QTL interval on Chr |11
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volume. Despite these differences in methodology, there
was a highly significant correlation (r = 0.78, P < .001)
between the neocortical volume estimates of Beatty and
Laughlin and our own for the 36 strains common to both
studies, and the correlation between the regressed cerebral
volume estimates — the variable used to map these traits —
is also quite high (r=0.68,P <.001). This was encouraging
given that we regressed out the effects of brain weight
(minus the weight of the cortex itself), age, plane of sec-
tion, epoch, and sex, whereas Beatty and Laughlin
regressed out brain weight and logarithm of age only.

There were differences, however, between our results and
those published previously. None of the early data sets
detect a QTL on Chr 6, and we find no support for any of
the QTLs identified by Dong et al. [15]. The most obvious
difference among these studies is the inclusion of the new
BXD strains [16]. QTL detection and map precision
improves with number of strains, whereas increasing the
number of subjects within a strain has only marginal
effects [33,34]. We have increased the number of strains
by over 50% (34 to 54) in this experiment, and it is likely
that our ability to detect QTLs that modulate a smaller
percent of the variance of neocortical volume is improved.

Positional candidate genes

Before considering positional candidate genes, it may be
useful to review factors that are likely to impact normal
variation in brain volume. Cerebral cortical volume can
be modified by a variety of developmental factors, as well
as those that appear during adulthood. Thus, genes mod-
ulating cell proliferation, differentiation, and/or death
may contribute to the variation in cerebral cortical vol-
ume reported here. In adulthood, cerebral cortical volume
can be modified by neurodegenerative changes, some of
which may be under genetic control. In the current exper-
iment, age was not a significant predictor of cerebral cor-

Symbol Gene Description SNP Region

Slit3 slit 3 exons 34, 35

0dz2 odz, odd Oz/ten-m 2 exon 9

Gabrg2 GABA A receptor, gamma 2 promoter

Gabral GABA A receptor, alpha | Promoter, exon | (2%)
Gabrb2 GABA A receptor, beta 2 Prom, exons 2 and 10
Atp10b ATPase, class V, type 10B promoter

Pttg! pituitary tumor-transforming |

Slu7 SLU7 splicing factor promoter

Ttcl tetratricopeptide repeat domain | promoter, exon 7
Ublep | ubiquitin-like domain containing CTD phosphatase | promoter, exon | (3%)
Ebfl early B-cell factor | promoter, exon |
Thgll tRNA-histidine guanyltransferase |-like promoter

Adam|[9 ADAM metallopeptidase domain 19 (meltrin beta) promoter, exon 23
Cyfib2 cytoplasmic FMRI interacting protein 2 promoter, exon | (2x)
Itk IL2-inducible T-cell kinase exon | (2x%)
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tical volume, and none of the mice would be qualified as
senescent. When considering potential candidate genes,
we therefore concentrated our efforts on those genes
known to modulate factors in brain development.

We have recently reported a QTL modulating striatal vol-
ume on the same interval on Chr 6 as that in the current
report [18]. A detailed analysis of the genes lying within
that chromosome (see Table 2) identified a number of
potential candidate genes. Analysis of gene expression
strain distribution profiles revealed that a number of these
genes correlated well with striatal volume. In contrast,
none correlated with cerebral cortical volume in the cur-
rent study. In a complementary manner, none of the Chr
11 candidates reported here correlated with striatal vol-
ume.

There are a number of genes in the Chr 11 interval whose
functions suggest that they could play a role in modulat-
ing neocortical volume. Slit3 is a well-characterized gene
that is part of the Slit family of ligands for the Robo recep-
tors [35], and which are important for neuronal migra-
tion, axon outgrowth, and dendritic development [e.g.,
[36]]. Moreover, it has recently been demonstrated that
this gene is upregulated in the caudal ganglionic emi-
nence, which gives rise to neocortical GABAergic neurons
[37]. This is particularly intriguing given the inclusion of
three GABA receptor subtype genes (Gabrg2, Gabral, and
Gabrb2) in the QTL interval. Odz2 is expressed in the
mouse brain quite early during development [38],
although its specific role is not yet known. Cyfip2 has been
shown to be an interactor with FMRP (fragile x mental
retardation protein), which has been implicated in Fragile
x syndrome, and is highly expressed in neurons through-
out the brain [39].

Of the candidate genes on Chr 11, we found seven whose
expression levels were highly correlated with neocortical
volume. All are strong cis-QTLs; that is, a sequence variant
in or very close to the gene itself controls its expression
(Fig 3). Many of these genes have been documented to

Table 2: Candidate genes in QTL interval on Chr 6
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have roles during brain development. GABA receptors
(see above) are obvious candidates given their roles in
brain development in general and neocortical functioning
in specific [e.g., [40]]. Pttg1 is upregulated during develop-
ment of the mouse telencephalon [41]. Likewise, Ublcp1 is
upregulated in fast growing or tumor tissues perhaps
through its activity as a regulator of the phosphorylation
state of RNA Polymerase II [42]. The transcription factor
Ebf1 plays a pivotal role in ensuring that a set of thalamic
axons reaches the neocortex as well as in the development
of striatal neurons [43,44]. Though the last two tran-
scripts, Slu7 and Thgll, have not yet been implicated in
neural growth, their molecular functions suggest a devel-
opmental role. The homolog of Slu7 is well characterized
in S. cerevisae as essential during the second catalytic step
in the pre-mRNA splicing process [45]. Additionally,
Thg1l is important for tRNA priming for protein transla-
tion [46].

Future Directions

Mechanisms that control numbers of neurons and glial
cells assigned during development to the neocortex are
crucial in understand human behavior, human evolution,
and the basis of individual differences. This study can be
considered an essential step in a more refined regional
genetic anatomy of the several dozen distinct cytoarchitec-
tonic regions that together make up the entire neocortex.
The cellular demographics of the neocortex are a strong
determinant of functional repertoire. This is most obvious
when comparisons are made at a coarse taxonomic level
comparing, for example, the massive auditory cortex of
echo-locating bats and the complex, highly evolved
whisker fields of mice and rats, and the expanded prefron-
tal cortical regions of humans. But even within a species,
pronounced differences in cytoarchitecture are associated
with function [47-49]. Now that we have a baseline, we
can begin the more painstaking genetic studies of discrete
regions of the mouse neocortex and determine if there are
QTLs with smaller but regionally intense effects on, for
example, barrel cortex, primary visual cortex, or temporal
regions.

Symbol Gene Description SNP Region
Htra2 HtrA serine peptidase 2 exon 8

Tial T-cell restricted intracellular antigen | promoter (2%), 3' UTR (2x)
Mxd| MAX dimerization protein | exon 6

Anxa4 annexin A4 exon |3

Aak | AP2-associated kinase | exon |5

Nful NFU I iron-sulfur cluster scaffold homolog exon 2

Nup210 nucleoporin 210 exons 10,17,19,21
Hdacl | histone deacetylase || promoter (% 5)
Fbin2 fibulin 2 exons 2 (X 3), 6
Slc25a26 solute carrier family 25 (mitochondrial carrier, phosphate carrier), member 26 promoter
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Figure 3

Covariation of neocortical volume with candidate
genes on Chr 1 1. A. Correlations among expression levels
across the BXD RI set of positional candidate genes (blue
squares) on Chr || and neocortical volume (green squares).
Red and orange lines indicate Pearson correlations of > +0.7
and +0.5 to +0.7, respectively. Blue and green lines indicate
correlations of < -0.7 and -0.5 to -0.7, respectively. Black
lines have correlations between |0.4| and |0.5]. Line thickness
varies with strength of correlation. Neocortical volume cor-
relates with these transcripts, and there are strong intercor-
relations among the transcripts themselves. B. QTL cluster
map of transcripts and phenotypes listed in A. This is a "hot
map" of LRS scores, with red indicating modulation by DBA/
2| alleles, and blue indicating modulation by C57BL/6] alleles.
The enlarged portion of Chr | | indicates that the 7 tran-
scripts are cis-acting QTLs, i.e., genes that modulated their
own expression (orange triangles indicate genetic location of
the transcript).

A number of research strategies that can further refine the
QTL interval are available. Higher density maps of the B6
and D2 parental strains will allow a more refined screen
for sequence variants. Knockouts of the candidate genes
are another potentially productive avenue of investiga-
tion. Although none of the Chr 11 candidates have been
knocked out, Pttgl, Ebf1, Ublepl, Slu7, Thgll, and Gabrb2
have been targeted by the Knockout Mouse Project http://
www.komp.org. Additionally, there are a number of for-
ward genetic methods that can be employed to confirm
our results. The interval identified here using the BXD RI
line could be confirmed in other recombinant inbred
lines, including the AXB, BXA, and LXS. The Collaborative
Cross - an 8-strain cross to generate hundreds of RI lines,
each with more recombinations than existing RI strains -
will enhance precision of QTL mapping [50-52]. Recom-
binant Inbred Intercross (RIX) schemes — whereby selec-

http://www.biomedcentral.com/1471-2202/10/44

tive generation of F1 progeny from recombinant inbred
parents allows for the examination of known hetero-
zygous and homozygous intervals - extends the number
of genomes that can be phenotyped by n(n-1)/2, where n
is the number of original recombinant inbred strains (in
our case, 54). The RIX lines have known genomes and
quantifiable phenotypes and, therefore, will contribute to
mapping traits to their genetic determinants [53].

Conclusion

This study is the first to use the expanded set of BXD
strains to map neocortical volume. With the enhanced
precision garnered from the addition of over 20 strains,
we found that neocortical volume is a heritable trait with
large inter-strain variability. By quantifying cerebral corti-
cal volume for both the right and left hemispheres, we
were able to conclude that asymmetry is most likely not
genetically modulated, at least in this group of inbred
mice. We identified two QTLs, one on Chr 6 and another
on Chr 11, that are likely to contain gene variants that
modulate neocortical volume. From correlational analysis
to gene expression data, we identified a number of candi-
dates on the Chr 11 interval that may modulate this trait.
Future research exploiting this expanded BXD genetic ref-
erence population will allow us to further dissect other
important neuroanatomic phenotypes that may contrib-
ute to variation in regional volume, such as proliferation,
death, and number and packing density of neurons.

Methods

All experiments were approved by the Institutional Ani-
mal Care and Use Committees at Beth Israel Deaconess
Medical Center and University of Tennessee Health Sci-
ence Center.

Subjects

All histologic data for this study were obtained from The
Mouse Brain Library (MBL) - a physical and Internet
resource that contains high-resolution images of histolog-
ically processed slides from over 2900 adult mouse brains
http://www.mbl.org with roughly balanced numbers of
male and female specimens [9]. The ages ranged from 21—
694 days of age (mean + SEM = 103 + 5), with most of the
cases ranging from 50 - 120 days. Mice were obtained
from either the Jackson Laboratory (Bar Harbor, ME) or
the University of Tennessee Health Science Center
(UTHSC) as detailed previously [24]. All procedures were
approved by institutional animal care and use committees
and conform to NIH guidelines for humane treatment of
animals. Mice were deeply anesthetized with Avertin (0.8
ml i.p.) and transcardially perfused with 0.9%saline, fol-
lowed by fixative (1.25% glutaraldehyde/1.0% parafor-
maldehyde in phosphate buffer), and their brains
removed and weighed. After variable post-fixation times,
the brains were embedded in 12% celloidin and sliced in
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either a coronal or horizontal plane at a width of approx-
imately 30 pm. Actual section thickness was determined
by direct examination of 10 sections for each brain using
an x100 oil immersion objective and a z-axis micrometer.

Estimation of neocortical volume

The volume of the neocortex was estimated in 223 mice
(114 female and 109 male) from 54 BXD RI strains and
the two parental strains (C57BL/6] and DBA/2], abbrevi-
ated B6 and D2, respectively) by one of us (SMG) using a
computer controlled microscope (Nikon E800, Nikon,
Inc., Melville, NY) and Stereo Investigator (MBF Bio-
sciences, Williston, VT). For most strains, 4 mice were
used with the exception of BXD2 (N = 3), BXD15 (N = 5),
and BXD83 (N = 3). Neocortex was parcellated by the cri-
teria of the Allen Brain Atlas (mouse.brain-map.org), and
includes agranular insular (Ald, Alv, Alp), auditory
(AUDv, AUDd, AUDv), cingulate (ACAd, ACAv), ectorhi-
nal (ECT), gustatory (GU), infralimbic (ILA), motor
(MOs, MOp), orbital (ORBI, ORBvl, ORBm), parietal
(PPLp), prelimbic (PL), perithinal (PERI), retrosplenial
(RSPv, RSPd, RSPagl), somatosensory (SSp, SSs), tempo-
ral (TEa), visceral (VISC), and visual (VISam, VISp, VISal)
cortices. Volume was estimated by point counting using
Cavalieri's method. Grid spacing for horizontal (N = 110)
and coronal (N = 113) sections was 800 pm and 400 pm,
respectively. For each brain, two interleaved 1-in-10 series
of sections were examined, representing every fifth sec-
tion. For horizontal sections, volume was estimated by
measuring every tenth section on each slide, whereas
every thirtieth section was measured for coronal sections
(six to ten sections per slide). Volume was independently
estimated for both the right and left hemispheres, and the
sum of these measures estimated total neocortical vol-
ume. In cases where there were missing or damaged sec-
tions, a piece-wise parabolic estimation was used [54].
Final volume estimates were individually corrected for
histological shrinkage by determining the previously
computed ratio between the brain volume at fixation
(brain weight) and that after processing. Neocortical vol-
ume was blindly re-measured on 10 slides to assess intra-
observer reliability. The experimenter was blind with
respect to strain and sex.

Measurement error

Intra-observer reliability was high for estimation of neo-
cortical volume. The percentage difference between the
original and repeated volume estimations ranged from 0-
5% and the average difference was 0.42%. A correlation
coefficient between the two measurements was highly sig-
nificant (r = 0.99) indicating that technical error at this
level of the analysis contributes little to case variation or
strain variation. A paired t-test confirmed that the differ-
ence between the first and second estimations was not sig-
nificant (¢t < 1, NS).

http://www.biomedcentral.com/1471-2202/10/44

Analysis

Data were analyzed using standard ANOVA and multiple
regression techniques (JMP, SAS Institute, Cary, NC). QTL
analysis was performed using the WebQTL module of
GeneNetwork (GN, http://www.genenetwork.org). This
online resource includes all known morphometric data
for the BXD strains, several neocortical transcriptome data
sets, high density marker maps based on approximately
3795 fully informative markers distributed on all chromo-
somes except Chr Y [55], and a database containing = 8.3
million SNPs taken from dbSNP [56]. WebQTL incorpo-
rates three common mapping methods: (1) simple inter-
val mapping, (2) composite interval mapping, and (3) a
scan for two-locus epistatic interactions [57].

Array data

We exploited an expression data set available at http://
www.genenetwork.org that was generated with support
from the CHDI Foundation. This data set estimated
steady-state mRNA levels in the neocortex of 73 strains of
adult (P60 + 5) mice, of which 44 are common to the
morphometric data described here. Strains for which we
have morphometric data but no array data include
BXD22, BXD24, BXD25, BXD30, BXD35, BXD48, BXD63,
BXD83, BXD85 and BXD92. We specifically used the
GeneNetwork database named "HQF BXD Neocortex
ILM6.1 (Feb08) RankInv," which can be accessed in the
main search page by selecting Species = Mouse, Group =
BXD, Type = Neocortex mRNA. Data were generated using
the Illumina Sentrix Mouse-6.1 microarray. This array esti-
mates expression for a great majority of mouse genes with
confirmed protein products and consists of sets of ~
46,000 unique 50-nucleotide-long probe sequences. Like
other array data in GeneNetwork [10], the original Illu-
mina bead array data (rank invariant transform) were
logged and re-centered to a mean of 8 units and a standard
deviation of 2 units - essentially a Z transform of the data.
For complete metadata on the adult neocortex data set,
including quality control procedures, error-checking, and
normalization see http://www.genenetwork.org/dbdoc/

HQFNeoc 0208 RankInv.html.

Comparing adult morphometric data with adult cortical
expression data is potentially insufficient since it is possi-
ble that the transient expression of a small number of
genes during development may leave a lasting imprint on
differences in volume maturity [but see [58]]. For this rea-
son, we generated a companion expression data set of
neonatal (P1) neocortical expression data for the two
parental strains, B6 and D2 (NIH Neuroscience Microar-
ray Consortium http://arrayconsortium.tgen.org, rosen-
illu-mouse- 588443). Data were generated using the Illu-
mina MouseWG-6 v2 Expression Beadchip. We have
exploited this companion developmental data to 1) test
whether genes with expression differences that co-vary
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with neocortical volume at maturity are also expressed
during a key stage of development in the neocortex, and
2) to test whether any genes in QTL intervals have high
expression only during development.

All genome coordinates in this paper are given using the
mouse genome assembly of February 2006 (UCSC
Genome Browser release mm8, NCBI Build 36). These
position coordinates differ slightly (usually less than 1-3
Mb) from mm9 and NCBI Build 37.1.

Correlation analysis

To evaluate candidate genes and to study other molecular
co-variates of neocortical volume we correlated our esti-
mated volumes with the P1 and P60 neocortical transcrip-
tome data sets. Co-variation networks were constructed
using on-line tools in GN. We additionally correlated our
neocortical volume data set with a database of over 1000
previously published and unpublished BXD traits http://

www.genenetwork.org/dbdoc/BXDPublish.html.

On-line data access

Phenotypes for the BXD strains generated as part of this
study are all available at Genenetwork.org using the acces-
sion numbers:

Neocortical volume (mm3): GN BXD Phenotypes Trait ID:
10995

Neocortical volume adjusted (mm3): GN BXD Pheno-
types Trait ID: 10997

Cerebral cortex volume (mm3, Beatty and Laughlin,
2006): GN BXD Phenotypes Trait ID: 10992

Neocortex expression data exploited in this study are

directly accessible at http://www.genenetwork.org (adult)

or arrayconsortium.tgen.org (P1 data set).

Abbreviations

B6: C57BL/6); Chr: Chromosome; D2: DBA/2J; GN:
GeneNetwork; MBL: Mouse Brain Library; QTL: Quantita-
tive Trait Locus; SNP: single nucleotide polymorphism.
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