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A B S T R A C T

The “sensory processing disorder” (SPD) refers to brain's inability to organize sensory input for appropriate use.
In this study, we determined the diffusion tensor imaging (DTI) microstructural and connectivity correlates of
SPD, and apply machine learning algorithms for identification of children with SPD based on DTI/tractography
metrics. A total of 44 children with SPD and 41 typically developing children (TDC) were prospectively recruited
and scanned. In addition to fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD), we
applied probabilistic tractography to generate edge density (ED) and track density (TD) from DTI maps. For
identification of children with SPD, accurate classification rates from a combination of DTI microstructural (FA,
MD, AD, and RD), connectivity (TD) and connectomic (ED) metrics with different machine learning algorithms –
including naïve Bayes, random forest, support vector machine, and neural networks – were determined. In voxel-
wise analysis, children with SPD had lower FA, ED, and TD but higher MD and RD compared to TDC – pre-
dominantly in posterior white matter tracts including posterior corona radiata, posterior thalamic radiation, and
posterior body and splenium of corpus callosum. In stepwise penalized logistic regression, the only independent
variable distinguishing children with SPD from TDC was the average TD in the splenium (p < 0.001). Among
different combinations of machine learning algorithms and DTI/connectivity metrics, random forest models
using tract-based TD yielded the highest accuracy in classification of SPD – 77.5% accuracy, 73.8% sensitivity,
and 81.6% specificity. Our findings demonstrate impaired microstructural and connectivity/connectomic in-
tegrity in children with SPD, predominantly in posterior white matter tracts, and with reduced TD of the
splenium of corpus callosum as the most distinctive pattern. Applying machine learning algorithms, these
connectivity metrics can be used to devise novel imaging biomarkers for neurodevelopmental disorders.

1. Introduction

Sensory processing disorder (SPD) is a clinical condition, referring

to challenges in modulation and organization of sensory input for ap-
propriate use (Miller et al., 2007; Mitchell et al., 2015). It is estimated
that up to 16% of children in the United States are affected by SPD (Ahn
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et al., 2004; Ben-Sasson et al., 2009). Children with SPD often have
problems with skills and abilities required for academic success in
school. Due to the disruptions in sensory processing, many children
with SPD also demonstrate delayed or atypical developmental language
and motor milestones, which become more apparent over time with
more complex and rapid tasks (May-Benson et al., 2009). As a result,
children with SPD often suffer from emotional, social, and educational
challenges, including anxiety, aggression, inattention, poor self-con-
cept, dysgraphia, and academic failure (Miller et al., 2009). Moreover,
children with atypical sensory modulation such as hyper- or hypo-re-
sponsivity to sound or touch may also meet criteria for other behavioral
conditions such as autism spectrum disorder (ASD) and attention deficit
hyperactivity disorder (ADHD) (Koziol and Budding, 2012; Tomchek
and Dunn, 2007). While most children with SPD do not have social
communication challenges that meet criteria for ASD, up to 92% of
patients with ASD suffer from hyper- or hypo-responsivity (Tomchek
and Dunn, 2007). Furthermore, symptoms of ADHD are often present in
SPD, with over 40% of children with SPD presenting with prominent
inattention and/or hyperactivity (Brandes-Aitken et al., 2018; Koziol
and Budding, 2012). Up until recently, SPD was not recognized as a
brain-based condition; thus, confirmation of a behavioral diagnosis
with an objective biomarker is important step for a better under-
standing and categorization of the condition. As we continue to search
for better means of characterization and diagnosing sensory-based
challenges, we can treat the root of the dysfunction rather than
downstream behavioral consequences such as prominent oppositional
behavior (Chang et al., 2014). It is therefore crucial to define the neural
underpinnings of this increasingly recognized neurodevelopmental
condition, and devise objective biomarkers for identification and
prognostication.

Prior DTI studies in a small cohort of children with SPD revealed
impaired white matter microstructure predominantly in the posterior
projection and commissural tracts with decreased fractional anisotropy
(FA) and increased radial diffusivity (RD) (Chang et al., 2015; Owen
et al., 2013). While these conventional DTI measures of water diffu-
sivity are used as a proxy for white matter connectivity and integrity,
they represent spatially averaged properties over voxels, and include
many discrete, and often opposing, directional components (Mukherjee
et al., 2008a,b). By contrast, probabilistic tractography applies
streamline construction of diffusion fiber tracks with attention to the
directionality of water molecule movements, and thus constructs track
density (TD) maps, which may provide new perspective regarding un-
derlying white matter microstructural changes (Calamante et al., 2010,
2012a,b). The complex network of neuronal connections in human
brain can also be studied using graph theory, with cortical and sub-
cortical gray matter regions represented by “nodes”, and the inter-
connecting white matter pathways by “links” or “edges” (Bullmore and
Sporns, 2009). Edge density (ED) imaging offers a framework to re-
present the spatial anatomic embedding of such connectomic edges
within the white matter (Greene et al., 2017; Owen et al., 2015).

In order to fully characterize the neural circuitry correlates of SPD,
we applied a voxel-wise analysis to examine the diffusion properties of
white matter using conventional DTI metrics including FA, RD, mean
diffusivity (MD), and axial diffusivity (AD). Next, by applying prob-
abilistic tractography, we generated TD and ED maps to compare the
white matter connectivity in children with SPD versus typically devel-
oping children (TDC). Then, we applied stepwise penalized logistic
regression to identify the independent predictor(s) of SPD among tract-
based DTI microstructural and connectivity metrics, which can illumi-
nate the most distinctive pattern of white matter changes in children
with broadly defined SPD and has the potential to serve as a region-of-
interest (ROI) –based diagnostic tool. Finally, we test the feasibility of
machine learning classifiers in devising novel imaging biomarkers for
SPD – integrating a multitude of topographic DTI microstructural and
connectomic inputs. We present the comparative results, combining
different supervised machine learning algorithms with tract-based DTI

microstructural and connectivity metrics.

2. Methods

2.1. Subjects

Children aged 8 to 12 years were prospectively recruited through
UCSF Sensory Neurodevelopment and Autism Program. Exclusion cri-
teria included positive screening for ASD using the social communica-
tion questionnaire (Rutter et al., 2003), history of premature birth, and
presence of a psychiatric, genetic, or neurologic diagnosis on interview.
The research designation of SPD was based on scores on the “Definite
Difference” range for at least one section of the parent report Sensory
Profile (Chang et al., 2014, 2015; Owen et al., 2013). The TDC were
recruited from the community, and were screened to rule out ASD and
SPD. The study design was approved by the Institutional Review Board.
Written, informed consents/assents from primary caregivers/study
participants were obtained.

2.2. Image acquisition protocol

Brain scans were performed using a 12-channel head coil on a 3-
Tesla MRI scanner (Siemens, Tim Trio, Erlangen, Germany). Whole
brain DTI scans were acquired using a diffusion-weighted echoplanar
sequence with Echo Time=8000ms; Time to Repeat= 109ms, field of
view=220mm; voxel size= 2.2×2.2×2.2mm; 64 diffusion direc-
tions at b value of 2000 s/mm2; and one image with b value of 0 s/mm2.
The T1-weighted images were obtained using 3-dimensional magneti-
zation-prepared rapid acquisition gradient echo for anatomical regis-
tration (Echo Time= 2.98ms, Time to Repeat= 2300ms, inversion
time=900ms, flip angle= 9°) (Chang et al., 2014, 2015; Owen et al.,
2013).

2.3. DTI post-processing

The FSL 5.0.8 (Oxford, UK) software was used for image post-pro-
cessing; and all steps have been described previously (Chang et al.,
2015; Chang et al., 2014; Owen et al., 2015; Payabvash et al., 2019a,b).
First, the brain tissue was extracted using the Brain Extraction Tool
(BET) from FSL. Then, the Diffusion Toolbox in FSL (DTIFIT) was used
for preliminary data check, and to confirm that the principal eigen-
vectors (V1) are correctly oriented. Afterwards, TOPUP and EDDY
functions from FSL were consecutively applied to correct for suscept-
ibility-induced distortion, eddy currents, and subject motion. After
these corrections, the FTIFIT was applied on corrected diffusion scans to
generate FA, MD, RD, and AD maps. The BEDPOSTX tool was applied to
estimate diffusion parameters at each voxel, and modeling multiple
fiber orientations per each voxel (Chang et al., 2014, 2015; Owen et al.,
2015). The BEDPOSTX toolbox automatically determines the number of
crossing fiber at each voxel; applying the default recommendations
from software, the number of fibers modelled per each voxel was set to
2, with multiplicative “weight” factor of 1, and 1000 “burn in” itera-
tions. For TD maps, probabilistic tractography was performed using
probtrackx2 with 5000 streamlines initiated from each white matter
voxel (Owen et al., 2015). For edge density imaging (EDI), 82 cortical
and subcortical regions were extracted from T1-weighted images using
Freesurfer 5.3.0 (Massachusetts General Hospital, Boston, MA), and
then registered to diffusion space serving as seed/target regions (con-
nectome nodes) for probabilistic tractography (Greene et al., 2017;
Owen et al., 2015). The FA maps were first registered to the structural
T1-weighted image by linear affine transformation; then the reverse
matrix was used for registration of seed/target regions to original dif-
fusion space. The total number of connectome edges passing through
each voxel was calculated as the ED value for that voxel (Greene et al.,
2017; Owen et al., 2015).
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2.4. Voxel-wise analysis

The FSL Tract-Based Spatial Statistics (TBSS) was used for coregis-
tration and voxel-wise comparison of DTI microstructural and con-
nectivity metrics (Owen et al., 2013). As per software recommenda-
tions, all FA maps were aligned to every other one to identify the “most
representative” map, which was then used as the target image. This
target FA map was then affine-aligned into MNI152 standard space.
Then all other FA maps were transformed into MNI152 space by com-
bining the nonlinear transform to the target map with the affine
transform from that target to MNI152 space (Payabvash et al., 2019b).
We also applied Voxel-based morphometry (VBM) to evaluate for voxel-
wise differences in focal gray matter volume/topography between two
study groups (Douaud et al., 2007; Smith et al., 2004). The FSL “Ran-
domise” tool was used for voxel-wise comparison of study groups, ap-
plying 5000 nonparametric permutations, and threshold-free cluster
enhancement (TFCE) for family-wise error correction. The age and
gender were included as covariates in General Linear Model (GLM)
constructs.

2.5. Statistics and machine learning algorithms

The continuous, and nominal variables were compared with Student
t and Fisher's exact-tests, respectively. Using the matrixes from TBSS
coregistration step for inverse spatial transformation of JHU ICBM-DTI-
81 template to native diffusion space, the average DTI and tractography
metrics of 48 white matter tracts were extracted and used as input for
stepwise penalized logistic regression and machine learning algorithms.
The scatter plot distribution of tract-based average TD and ED values
for select 8 white matter tracts, along with independent t-test com-
parison, and Cohen's d effect size were determined using the “effsize”
package from “R”. For penalized logistic regression analysis, we used
the “stepPlr” package from “R” applying forward and backward step-
wise variable selection without interaction. Different supervised ma-
chine learning algorithms were applied for classification of children
with SPD, including naïve Bayes, random forest, support vector ma-
chine (SVM), and neural networks. Similar to radiomics analysis
methodology, and given the high-throughput data-mining nature of our
analysis, feature selection was applied to reduce overfitting of models
and increase the generalizability (Parmar et al., 2015). For feature se-
lection among DTI/tractography metrics, we only included the top 10
tract-based variables with the greatest area under the curve (AUC) in
receiver operating characteristics (ROC) analysis for prediction of
children with SPD. Notably, our preliminary results showed improve-
ment in average accuracy of predictive models in cross validation after
application of feature selection. For naïve Bayes, we applied the “nai-
vebayes” package with a Laplace smoothing value of 0. For random
forest, we applied the “randomForest” package with 500 random trees
in each model and a randomly selected one-third subset of variables
tried at each split. For SVMs, we applied the “e1071” package using a
linear kernel with a cost of 0.1, and a polynomial kernel with a sigma of
1. For neural networks, we applied the “neuralnet” using a single
hidden layer network with 3 nodes, and double hidden layer network
with 3 nodes in the first layer and 2 nodes in the second layer. For cross-
validation of each machine learning algorithm, subjects were randomly
split into training and validation samples with 4:1 ratio for 500 itera-
tions; and the average (95% confidence interval) of test characteristics
were calculated among 500 validation samples using confusion matrix –
i.e., classification accuracy, sensitivity, specificity, positive predictive
value (PPV), and negative predictive value (NPV). All statistical ana-
lysis was performed using the R free software (https://cran.r-project.
org/).

3. Results

3.1. Participants' characteristics

A total of 44 children with SPD, and 41 TDC were included in this
study. Table 1 summarizes the subjects' demographic characteristics.
There was no significant difference between children with SPD and TDC
with regards to age, gender ratio, or general cognitive performance.
Nevertheless, age and gender were included as covariates in the voxel-
wise statistical analysis to account for any within-group or between-
group variation due to axonal development or sex.

3.2. White matter microstructural and connectomic changes in children with
SPD

The TBSS voxel-wise analysis of DTI microstructural metrics re-
vealed lower FA but higher MD and RD in children with SPD compared
to TDC, throughout much of the white matter. In voxel-wise analysis of
DTI tractography connectivity metrics, children with SPD had lower ED
and TD compared to TDC, throughout much of the white matter. Fig. 1
shows that the posterior white matter tracts, including posterior corona
radiata, posterior thalamic radiation, and posterior body and splenium
of the corpus callosum, had the greatest voxel-wise differences between
the two study groups. There was no significant difference in AD be-
tween the two study groups. In GLM analysis, patient's age and gender
had no significant effect on voxel-wise TBSS results.

Table 2 also lists white matter tracts with significant voxel-wise
difference in DTI microstructural and connectivity metrics comparing
children with SPD and TDC groups. The scatterplots in Fig. 2 depicts the
distribution and Cohen's d effect size of average TD and ED among eight
white matter tracts comparing SPD and TDC.

In multivariable stepwise penalized logistic regression model,
among all tract-based DTI microstructural and connectivity metrics, the
only independent variable distinguishing children with SPD from TDC
is the average TD in splenium of corpus callosum (p < .001). The ROC
AUC for the average TD of corpus callosum splenium in identifying
children with SPD was 0.692 (95% confidence interval: 0.579 to 0.804,
p= .002).

3.3. Gray matter macrostructural analysis

The VBM analysis showed no significant voxel-wise difference in
regional volume or morphometry of the gray matter in SPD versus TDC.
In GLM constructs, patients' age and gender also revealed no significant
difference in voxel-wise analysis comparing the two study groups.

3.4. Applying machine learning algorithms for classification of SPD

Fig. 3 and Supplemental Table 1 summarize the cross-validation
performance for combination of different machine learning algorithms
with DTI microstructural and connectivity metrics in classification of
children with SPD after 500 iterations. Overall, the models using TD
and ED had greater accuracy, sensitivity, specificity, PPV, and NPV,
when compared to those using FA, MD, or RD. With regard to different
machine learning methods, the naïve Bayes and random forest models

Table 1
Subjects characteristics.

SPD (n=44) TDC (n= 41) P value

Age (years) 9.6 ± 1.8 10.2 ± 1.9 0.139
Gender (girl) 14/44 (32%) 9/41 (22%) 0.338
Perceptual Reasoning Index 115.2 ± 11.3 113.2 ± 13.9 0.467
Verbal Comprehension Index 118.2 ± 12.8 119.2 ± 12.5 0.717
Working Memory Index 105.2 ± 13.1 108.9 ± 10.9 0.162
Processing Speed Index 97.2 ± 12.9 101.1 ± 13.5 0.177
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demonstrate better classification performance. Overall, the combina-
tion of random forest and tract-based TD had greater accuracy, sensi-
tivity, specificity, PPV, and NPV compared to other combinations –
77.5%, 73.8%, 81.6%, 82.7%, and 74.7%, respectively.

4. Discussion

This study represents the first exploration of the white matter mi-
crostructural and connectivity correlates for SPD. We found extensive
microstructural impairment manifested by lower FA and increased MD
and RD in anterior and posterior white matter tracts. In addition,
children with SPD compared to TDC, had lower density of probabilistic
fiber tracks and connectomic edges passing through posterior white
matter pathways, with the greatest difference at the splenium of the
corpus callosum. Notably, among different tract-based DTI micro-
structural and connectivity metrics, the average TD of the corpus cal-
losum splenium was the only independent predictor for SPD. This
finding not only highlights the crucial role of splenial microstructure
and connectivity in the neurobiology of SPD, but also offers an ROI-
based tool for diagnosis of children with SPD, which can potentially be
incorporated in clinical interpretation of brain scans in children with
suspected neurodevelopmental disorders. However, further studies are
needed to determine whether this ROI-based biomarker can also dis-
criminate children with SPD from those with other neurodevelopmental

conditions, given considerable phenotypic and neural co-morbidity.
Finally, our comparative study of supervised machine learning algo-
rithms demonstrates the feasibility of these models for objective and
accurate classification of children with SPD based on a multitude of
topographic microstructural and connectivity data extracted from DTI
scans. Although future studies should aim at teasing out the con-
nectomic-based machine learning classifiers distinguishing children
with SPD from those with other neurodevelopmental disorders, such as
ASD.

This study extends our previous neuroimaging work in children
with SPD showing impaired white matter microstructure, pre-
dominantly involving the posterior cerebral tracts using conventional
DTI metrics (Chang et al., 2014, 2015; Owen et al., 2013). In 2013,
comparing 16 boys with SPD and 24 TDC, Owen et al. found disrupted
microstructural integrity primarily in posterior white matter as well as
strong correlations between the FA and RD of these tracts with atypical
unimodal and multisensory integration behavior (Owen et al., 2013). In
2014, Chang et al. showed that children with SPD and ASD have de-
creased FA and elevated MD and RD in parieto-occipital tracts, which
are involved in sensory perception and multisensory integration (Chang
et al., 2014). Notably, children with ASD – but not SPD – had impaired
microstructure in temporal tracts involved in social-emotional proces-
sing compared to TDC (Chang et al., 2014). Using a larger study group
with inclusion of direct measures of auditory and tactile processing in

Fig. 1. The results of TBSS voxel-wise analysis: children with SPD had lower FA, TD, and ED but higher MD and RD compared to TDC. The mean skeletonized FA is
overlaid on MNI-152 brain map in green color; and white matter tracks with significant voxel-wise difference after applying TFCE correction, are filled with red. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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2015, Chang et al. reported reduced FA in bilateral posterior thalamic
radiation and splenium of corpus callosum in children with SPD (Chang
et al., 2015). It is also notable that some prior studies in ASD subjects
have shown impaired microstructural integrity and reduced con-
nectome ED in genu of corpus callosum (Nickel et al., 2017; Payabvash
et al., 2019b); whereas, in our cohort of children with SPD, the mi-
crostructural and connectivity impairment was more striking in the
splenium of corpus callosum. Our findings suggest a potential role for
connectomic biomarkers to potentially differentiate children with SPD
from those with ASD.

While conventional DTI metrics, such as FA, are sensitive to mi-
crostructural impairment, they do not include any information re-
garding the directionality of water molecule diffusion. TD applies the
inherently high directional accuracy of diffusion fiber tractography to
more directly estimate connectivity (Calamante et al., 2010, 2012a,b).
The ED maps, on the other hand, represent the anatomic embedding of
white matter connectomic edges (Owen et al., 2015). While, in TD
maps, there is no constraint on the streamline tractography; in ED
maps, parcellation of cortical and subcortical gray matter is applied to
define connectome nodes, and to constrain streamline tracks to direct
connections between pairs of connectome nodes (Owen et al., 2015). In
normal brain white matter, the ED had negative correlation with
neurite orientation dispersion, and positive correlation with neurite
density and TD at voxel levels (Owen et al., 2015). Moreover, the ED
was higher in posterior cerebral white matter than in anterior white
matter, more strikingly so, compared to FA and TD differences (Owen
et al., 2015). A disproportionately higher ED in posterior and peri-
ventricular white matter of the normal brain may lend itself to eva-
luation of disorders that preferentially affect these posterior and/or

periventricular regions.
Our findings of diminished TD and ED in posterior white matter

tracts imply reduced density of posterior projection and commissural
neuronal fibers in children with SPD – notably in the absence of re-
gional gray matter differences in VBM analysis. Thus, while the volume
of gray matter may not be significantly different in children with SPD
compared to control subjects, SPD was associated with reduced number
of posterior commissural fibers traversing through the splenium of
corpus callosum. Also, in multivariate stepwise penalized logistic re-
gression analysis, the only independent variable distinguishing children
with SPD from TDC was the average TD in the splenium of the corpus
callosum. Penalized regression model offers a statistical solution for
multivariate analysis with a high number of collinear predictors, and
binary or ordinal dependent variables (Park and Hastie, 2008;
Payabvash et al., 2017, 2018). In recent years, the penalized estimation
methods have been proposed to stabilize the selection process in re-
gression models, and to prevent data over-fit due to collinearity of the
covariates or high-dimensionality (Frost et al., 2015; Park and Hastie,
2008). The penalized logistic regression analyses were originally ap-
plied for detecting gene-gene interactions (Park and Hastie, 2008), but
recently became popular in image analysis in order to overcome the
shortcomings of standard logistic regression analysis given the large
number of adjacent voxels/regions in comparison to the small number
of subjects (Teipel et al., 2015). Correction for collinearity of predictors
was particularly crucial in our study since connectomic and diffusion
metrics of adjacent white matter tracts tend to change in similar di-
rection. Thus, applying penalized regression seems appropriate to
identify the “independent” microstructural or connectivity predictor of
SPD among a large number of tract-based variables that have significant
differences between study groups in univariate analyses. Hence, among
all connectomic/DTI variables, the average TD in the splenium of the
corpus callosum can provide an independent predictor for SPD. These
results point to the crucial role of splenial commissural neural fiber
density in the neurobiological mechanism of SPD, implicating inter-
hemispheric communication among sensory cortical areas. The sple-
nium of the corpus callosum connects homotopic regions of the occi-
pital, parietal, and temporal lobes, which mainly involve visual pro-
cessing (Knyazeva, 2013). White matter microstructural dysintegrity in
the splenium of patients with ASD were attributed to abnormalities of
visual processing, such as face recognition processing (Hubl et al.,
2003; Pryweller et al., 2014). With further validation in future studies,
the splenial average TD potentially offers a quantitative biomarker for
differentiating children with SPD from neurotypical controls. Such
quantitative and objective measures can add value to the clinical in-
terpretation of brain MRI scans in children with suspected neurodeve-
lopmental disorders.

The machine learning algorithms are statistically well suited for
multivariate analysis that account for the known inter-regional corre-
lations of white matter microstructure (Li et al., 2012, 2017; Wahl
et al., 2010). Using atlas-based regional DTI metrics and SVM algo-
rithms, Jin et al. achieved an accuracy of 76% in classification of infants
at high risk of ASD (Jin et al., 2015). Our study is the first in the lit-
erature applying machine learning algorithms for classification of
children with SPD based on DTI microstructural and connectivity in-
formation. Given the relatively small population size, we opted to re-
port the performance of different models after cross-validation among
500 randomly selected validation samples. Overall, tractography vari-
ables (i.e., TD and ED) applying random forest and naïve Bayes algo-
rithms yielded greater accuracy and test performance than micro-
structural metrics (i.e., FA, MD, AD and RD), with the most accurate
combination from random forest classification based on tract-based TD.
While these findings should be confirmed in larger cohorts, our results
suggest that future studies applying machine-learning models for clas-
sification of SPD should consider random-forest models and con-
nectivity metrics (e.g. TD) in their prediction model.

Future studies can determine whether the machine-learning

Table 2
White matter tracks with significantly different DTI and tractography metrics
between children with SPD and TDC on voxel-wise analysis.

FA MD RD TD ED

Genu of corpus callosum 0 0 742 0 0
Body of corpus callosum 0 0 1808 1470 519
Splenium of corpus callosum 0 1 1746 2205 2289
Anterior corona radiata – Left 0 0 1477 0 0
Anterior corona radiata – Right 0 0 1207 0 495
Superior corona radiata – Left 0 0 859 286 0
Superior corona radiata – Right 0 0 778 0 538
Posterior corona radiata – Left 0 0 587 204 171
Posterior corona radiata – Right 0 49 610 422 511
Superior longitudinal fasciculus – Left 0 0 592 760 0
Superior longitudinal fasciculus – Right 0 15 644 0 1016
Anterior limb of internal capsule – Left 0 0 454 0 0
Anterior limb of internal capsule – Right 0 0 0 0 288
Posterior limb of internal capsule – Left 0 0 526 0 258
Posterior limb of internal capsule – Right 0 428 621 9 609
Retrolenticular part of internal capsule – Left 0 0 597 0 13
Retrolenticular part of internal capsule – Right 0 0 54 0 480
Posterior thalamic radiation – Left 0 0 870 140 158
Posterior thalamic radiation – Right 209 700 813 84 863
External capsule – Left 0 0 806 0 17
External capsule – Right 0 8 109 0 854
Cingulum – Left 0 0 126 0 3
Cingulum – Right 0 0 0 22 83
Fornix – Left 0 0 156 0 143
Fornix – Right 0 5 13 0 105
Cerebral peduncle – Left 0 0 324 0 9
Cerebral peduncle – Right 0 0 0 0 170
Tapetum – Left 0 0 12 24 24
Tapetum – Right 0 35 54 44 68
Sagittal stratum – Left 0 0 114 0 136
Sagittal stratum – Right 0 122 320 0 215

Each cell represents the number of voxels with significantly different DTI and/
or tractography metrics between children with SPD and TDC on voxel-wise
TBSS analysis after applying TFCE correction (p < .05, Fig. 1). Children with
SPD had significantly lower FA, TD, and ED but higher MD and RD compared to
TDC.
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algorithms can also help distinguish SPD from other neurodevelop-
mental disorders. Our results provide the first step in understanding the
underlying connectomic correlates of SPD, and provide the preliminary
results for methodological design of future machine learning classifiers.
If in fact, the DTI/connectomic predictors of SPD are found to be similar
to other conditions such as ASD, then it is probable that these condition
present overlapping genetics and behavioral dysfunction, and this is
compelling for moving the field towards understanding neurodevelop-
ment as a broader concept with each child having a more unique subset
based on their brain connectivity and function. Eventually, longitudinal
follow-up studies can determine the trajectory of microstructural
changes over time, or help determine the efficacy of treatment inter-
ventions.

Our findings should be interpreted in light of some limitations.
Although the current study presents the largest imaging cohort with
SPD, the sample size remains too small to draw firm conclusions about
diagnostic accuracy. Moreover, children with SPD represent a hetero-
geneous cohort with sensory hyper- or hypo-responsivity, and tactile,
auditory, and/or visual processing disorders. Future exploration of
more specific sensory phenotypes, such as auditory over-responsivity,
will further define our understanding of this heterogeneous condition.
Another limitation in generalizability of these results is the restriction
of participant age to 8 to 12 years – in an effort to reduce the con-
founding effect of subjects' age.

In conclusion, these findings reveal the white matter connectivity
and connectomic correlates of SPD, with reduced TD and ED along

Fig. 2. Scatterplot of track-based average TD and ED in 8 white matter tracks. For each white matter track, the children with SPD are on the right and TDC are on the
left. The student t-test p values and effect size are reported for each white matter track. The boxplot represents the mean ± 95% confidence interval. Applying
Bonferroni correction, the corrected p value for multiple comparison among 48 white matter tracts would be< 0.001.

Fig. 3. Heat map summary for classification perfor-
mance of different machine learning algorithms
using DTI and tractography metrics. The test char-
acteristics (e.g. accuracy, sensitivity, …) were cal-
culated in validation datasets from ×500 cross va-
lidation – details in Supplemental Table 1.
* The neural networks were designed to have one
(single) or two (double) hidden layers.
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posterior projection and commissural fiber tracts representing lower
neural fiber density and connectome edge density, respectively, but
without appreciable gray matter morphological changes. These white
matter alterations may serve as a neurobiological marker of SPD.
Indeed, the average TD in splenium of corpus callosum was the most
distinctive DTI/tractography metric for identification of SPD, which can
lend itself to a ROI-based quantitative measure for the diagnosis of
children with SPD, and potentially add value to clinical interpretation
of brain MRI in the pediatric population. Finally, we demonstrated the
feasibility and accuracy of supervised machine learning algorithms in
devising a classification biomarker for SPD with integration of a mul-
titude of tract-based DTI and tractography metrics. These tools can
potentially transform interpretation of clinical scans in children with
suspected neurodevelopmental disorders by devising objective and
quantitative measures for timely diagnosis based on microstructural
and connectomic integrity along with the traditional visual macro-
structural evaluation.
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