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Université de Lyon, Bron, France, 3 Research Center on Animal Cognition, Université de Toulouse, CNRS,
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Abstract

Differences in learning and memory dynamics between populations are suspected to result

from differences in ecological constraints such as resource distribution. The two reproduc-

tive modes (strains) of the parasitoid wasp Venturia canescens share the same geographi-

cal areas but live in contrasting habitats: arrhenotokous wasps live in the wild (generally

orchards), whereas thelytokous ones live mostly in stored-products buildings (e.g. grana-

ries). This species thus represents a relevant biological model for understanding the rela-

tionship between the ecological constraints faced by a species and its memory and learning

ability. We showed that after having laid eggs in presence of both a synthetic odour and nat-

ural olfactory cues of their host, arrhenotokous wasps exhibited a change in their beha-

vioural response towards the synthetic odour that was at least as pronounced as in

thelytokous ones even though they were faster in their decision-making process. This is

consistent with better learning skills in arrhenotokous wasps. The corresponding memory

trace persisted in both strains for at least 51 h. We compare and discuss the learning and

memory ablities of both strains as a function of their costs and benefits in their preferential

habitats.

Introduction

Most animals forage for patchily distributed resources in fluctuating environments. Learning

is a process allowing to acquire information on resource availability and distribution and

which thus reduces the uncertainty of the environment [1]. Similarities in the basic traits that

define learning and memory are shared between phylogenetically distant animals, from the

existence of similar associative processes and memory phases [2], to commonalities in the neu-

ral and genetic pathways underlying these processes [3–5]. However, differences in specific

learning and memory features exist between closely related taxa, such as in the case of memory

duration [6–9]. Such differences may reflect ecological and evolutionary differences between

related taxa and may constitute, therefore, species-specific adaptations to different lifestyles

[10].
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The idea that ecological constraints shape memory and learning features is supported by

different approaches. First, in the honeybee Apis mellifera the dynamics of memory phases is

correlated with the dynamics of foraging cycles, with short travels between flowers inside a

patch in the range of seconds corresponding to short-term memories and foraging bouts

occurring after days, weeks or overwintering months, to stabilized long-term memories [10].

Second, theoretical works also predict that the speed of changes or the spatial distribution of

resources should influence the duration of information retention in memory (e.g. [11–13]):

fast changes favor short lasting memories, spatial heterogeneity promotes longer memory

traces. At last, comparative studies between populations or closely related species that do not

share the same environment allow testing whether environmental constraints on foraging can

be correlated with learning and memory differences. For example, food-caching birds facing

limited and unpredictable food supply and whose survival hangs on accurate food-cache

recovery display better spatial memory than birds of the same species living in milder environ-

ments [14].

Parasitoid insects, whose larvae develop at a host’s expense, generally another arthropod,

are relevant for these comparative studies [4]. These insects represent a highly ecologically

diverse group [15] and show remarkable learning abilities (e.g. [16–18]). Moreover, in the con-

text of associative learning, natural variations in learning and memory traits were highlighted

between species, as in Nasonia spp. (e.g. N. vitripennis, N. giraulti: [19]). Another series of stud-

ies examined the associative learning ability and memory dynamics of two closely related spe-

cies of the genus Cotesia and suggested that adaptation to different host distributions led to

different memory dynamics. While C. glomerata, which parasites aggregated hosts in homoge-

neous environments, is able to form a memory lasting at least 5 days after one single host-

plant association encounter, C. rubecula, which meets scattered hosts in heterogeneous envi-

ronments, needs several host-plant association encounters to build a long term memory ([8,

20]). Although these studies focused on the interspecific level, one could expect variations in

learning ability and memory dynamics at the intraspecific level if populations live under differ-

ent environmental conditions and thus are submitted to different selective pressures.

V. canescens is of particular interest because it offers the opportunity to compare learning in

two strains that live in contrasting environments. In this species, two reproductive modes are

found: arrhenotoky, where males arise from unfertilised eggs and females from fertilised eggs,

and thelytoky, that corresponds to obligate parthenogenesis that produces only females. Indi-

viduals of both reproductive modes share the same geographical areas [21, 22], but live in dis-

tinct preferential habitats. Arrhenotokous wasps live exclusively outdoors, in orchards [22, 23]

whereas thelytokous wasps are mostly found in stored-product buildings, such as mills or gra-

naries [22, 23]. Although females of each reproductive mode are indistinguishable to human

eyes, they differ in a number of phenotypic traits, correlating with the divergent selective pres-

sures they experience (e.g. egg production and energy allocation: [24]; information use and

host patch exploitation: [25–27], genetic variability: [28], phenotypic plasticity: [29]).

In outdoor conditions, arrhenotokous wasps face a low-density host distribution: host lar-

vae are concealed in fruits, with each infested fruit holding only one or two larvae [30]. In the-

lytokous wasps’ indoor environments, hosts can reach much higher densities than in the wild

and tend to aggregate in large patches [31]. Two main differences in host-seeking resulting

from these different distributions can be outlined. First, in the wild, wasps have to fly from

host to host because they are widely scattered in the environment, whereas indoors, a wasp

walking inside a patch can find numerous hosts in close vicinity. Indoor flights are limited to

travels between large patches. Host-seeking in the wild therefore implies a higher investment

in flight, an energetically costly behaviour [32]. Second, when searching for hosts while flying,

both wasp strains can rely on a volatile secretion produced by host larvae (a kairomone) which
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innately attracts these parasitoids [33]. Although this cue of host presence should be of compa-

rable reliability in both habitats, the detectability of outdoor solitary larvae based on the

presence of this cue should be lower compared to indoor host patches, due to the compara-

tively higher amount of kairomone produced by aggregated larvae in the latter situation [34].

Environmental cues associated with host presence and easily perceptible at a distance, like

olfactory cues related to the host feeding substrate, should enhance the detectability of larvae

in outdoor habitat [35], but would only be redundant with host kairomone in indoor habitat.

Learning such environmental cues should then decrease flight time in larger proportions in

arrhenotokous wasps. Since there is also a longer flight time to save in those wasps, learning

environmental cues associated with host presence should result in a higher fitness gain in

arrhenotokous wasps due to a greater time-, energy- and risk-saving [36], and should be

selected for in that strain.

According to the host distributions, arrhenotokous wasps should then have evolved better

skills at learning new indirect cues of host presence than thelytokous ones. This should trans-

late into a greater behavioural plasticity, that is a more pronounced change in behaviour, in

arrhenotokous wasps, allowing them to come back more easily to cues encountered in associa-

tion with hosts. From an evolutionary perspective, the duration of memory resulting from that

learning process should depend on the balance between the value of information—that is, the

benefit of learning [37]—and the cost of storing information, which can be physiological [38]

or ecological (the cost of using wrong or out-of-date information; [39]). Assessing this balance

is not straightforward and prevents predictions of which strain should retain information for a

longer time.

Here we evaluated whether different learning abilities and memory durations evolved in

the two strains of V. canescens by testing wasps after several generations of rearing under the

same lab conditions. The wasps were trained to associate an artificial odour and host presence,

a procedure classically used in the study of parasitoid learning (e.g. [4]).

Materials and methods

Biological material

Venturia canescens is an endoparasitoid whose females parasitize lepidopteran larvae, mainly

Pyralidae [40, 41]. V. canescens females search for hosts that are concealed in the substrate,

such as stored products or fruits, by probing the host-exploited substrate with their ovipositor.

The females respond innately to a mandibular gland secretion that the host deposits in its food

substrate [42]. These chemical acts as a pheromone and mediates host population regulation.

But they also act as a kairomone that confers a benefit only for the receivers (i.e. the parasit-

oids). In addition to guiding parasitoids to hosts at a distance, this volatile substance elicits ovi-

position behaviours (drumming the host-exploited substrate with antennae and probing into

it with the ovipositor). If the host-exploited substrate and then the kairomone are removed, a

wasp does not try to oviposit even in the presence of host larvae (L.F. personal observation).

Thus, the kairomone triggers a series of innate behaviours implied in host detection and ovipo-

sition. Oviposition is recognized based on a characteristic movement of the abdomen called

‘cocking’, which follows egg-laying [43, 44]. Previous studies showed that V. canescens learns

olfactory and visual cues in the contexts of host- and food-searching, respectively (e.g. [45,

46]).

In our experiment, we used two strains of wasps (one of each reproductive mode) origi-

nated from individuals captured in two sites 12 km far from each other near Valence, France:

an organic orchard (cherries and apples) in Gotheron (GPS coordinates: N44 58.344 E4

55.659, Institut National de la Recherche Agronomique (INRA)), with the permission of
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Vincent Mercier from INRA and hedges near a grain silo in Montélier (N44 56.300 E5

00.115). No permission was required in the latter case, since sampling occurred in a public

area. Venturia canescens is moreover not an endangered or protected species. This large field

sampling was conducted in summer 2008. The reproductive mode of each sampled individual

was assessed in the lab based on the sex-ratio of their progeny. In each strain, the initial labora-

tory population was set from 70 individuals. The wasps were reared on Ephestia kuehniella Zel-

ler (Lepidoptera: Pyralidae) larvae, a pest of stored products. Host larvae were obtained from a

mass-rearing facility (Biotop, Antibes, France) and grown on wheat semolina. Venturia canes-
cens females parasitise E. kuehniella larvae in the second to the fifth instar [40]. The parasitoids

and hosts were kept in a controlled environment (rearing conditions: 25±1˚C, 75±5% relative

humidity and 12:12 h light:dark).

The experiment was conducted in July 2010 after 30 generations of rearing both strains

under the same lab conditions. This excludes the possibility to highlight differences due to

individual experience in a given environment, or due to maternal effects. For the experiments,

the wasps were isolated immediately after their adult emergence in a plastic tube (30 mm

diameter, 70 mm height). They were provided with water and fed with 50% water-diluted

honey 24 h after emergence. When not manipulated, all wasps were kept under the rearing

conditions in a room without any host odour, or chemicals used during the experiment (see

below). The reproductive mode of each individual tested was checked a posteriori through the

sex-ratio of its progeny.

The experiment performed complies with French law about animal care and experimenta-

tion. Insects were killed by freezing at the end of the experiment.

Learning ability and memory duration

Overview. We compared the memory retention established in the two strains after a train-

ing session (Fig 1, see section “Training session” for the details). Each trained wasp was indi-

vidually exposed to a synthetic odour (hereafter called the training odour) simultaneously with

host kairomone and allowed to oviposit. It was afterwards subjected to a test session (Fig 1, see

section “Test session” for the details) in which we recorded its choice of the training odour vs.
no odour, in the absence of host kairomone. To investigate if the training session resulted in a

change in the choice behaviour, the response of trained individuals was compared to that of

naïve wasps that had neither encountered the training odour, nor host kairomone. This

Fig 1. Wasp’s training and testing: Overview. A training trial consisted in allowing a wasp to oviposit once in the presence of host kairomone and the

training odour.

https://doi.org/10.1371/journal.pone.0177581.g001
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comparison was conducted at different time intervals after training (from 30 min to 2 days,

Fig 1), each individual being tested alone and at only one time interval.

Training session. The day after emergence, females of each strain were randomly

assigned to 2 groups: “naïve” (control) and “trained”. The trained wasps were submitted to a

“training session”.

The training session consisted of three “training trials” spaced 30 min apart. Such spaced

training is known to favour long-term memory formation in Hymenoptera [8, 47]. During a

training trial, a single wasp was deposited on a “training patch”, where it was allowed to ovi-

posit once in the presence of both host kairomone and the training odour. A solution of fur-

furyl heptanoate (FFH, Sigma-Aldrich, Saint-Quentin-Fallavier, France; purity 98%) diluted at

the rate of 1% V/V in ethanol (purity 96%) was chosen as the training odour. This non-natural

and synthetic odourant molecule has been previously used successfully in classical condition-

ing experiments on the parasitoid Lariophagus distinguendus [48].

A training patch was created by laying 100 fourth-instar host larvae (without food medium

and hence without host kairomone) on a plastic Petri dish (5 mm deep, 55 mm diameter) that

was covered by a thin mesh to prevent the larvae from escaping. 5 μL of FFH solution (i.e.

the training odour) and 200 μL of a host kairomone solution were deposited on two other

meshes, tightened on the first one. The host kairomone solution was obtained by washing

host-exploited semolina with a 50% acetone and 50% ethanol solution (adapted from [42]).

The solution, that is attractive and triggers oviposition attempts in V. canescens females [33], as

do natural host patches and pure kairomone [42], was deposited the day before the experiment

and left to dry for approximately 24 h. A new training patch was used every 30 min (a given

wasp never oviposited twice in the same patch, but 12 to 15 individual trainings happened suc-

cessively on the same patch).

The trained wasp left its emergence tube on its own being attracted by kairomone. Once on

the training patch, in most of the cases, it immediately drummed its surface with its antennae

and started probing the layers with its ovipositor. Because of the high number of host larvae in

the training patch, oviposition usually occurred within a few seconds after the beginning of

probing (approximately 10 sec). Any wasp that did not cock within 3 min was discarded.

Given that arrhenotokous females lay eggs at a lower rate than thelytokous ones [27], more

trained arrhenotokous (37% out of 261) than trained thelytokous wasps (11% out of 270) were

discarded. Each wasp was allowed to walk back to its emergence tube once the cocking move-

ment happened, indicating oviposition. Four arrhenotokous and 11 thelytokous trained wasps

died before the testing session start.

Arrhenotokous wasps spent in average (+SE) 51.13 s (+1.49 s, N = 133) on each training

patch while thelytokous wasps spent 45.33 s (+1.09 s, N = 126). This small difference (Cohen’s

d +95% confidence limit = 0.24+0.14) is not biologically relevant to account for behavioural

differences in the test session.

The training trials were performed inside a plastic-net box (30x30x30 cm) under the same

temperature and humidity conditions as rearing. The training trial of an arrhenotokous wasp

was followed by one of a thelytokous wasp. Each day, the first training trial of the first trained

wasp began between 10:00 AM and 10:30 AM and the third training trial of the last trained

wasp ended between 11:30 and 12:00 AM.

Test session. During the test session, each wasp of the trained group had the choice

between the training odour and no odour in an olfactometer (see below). The behaviour of

each wasp was assessed once at one given time interval after their last training trial.

The olfactometer was a glass Y-shaped tube (foot length: 24 cm, arm length: 11 cm, angle

between arms: 80˚, inner diameter: 35 mm; see [49]). Each arm of the tube was connected to a

“target chamber”, a 7-cm glass tube in which odour sources could be placed. A fan produced
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laminar airflow from the arms to the base at a speed of 20 cm.s-1. The air was filtered through

activated charcoal. Lighting came from a daylight tube that was placed beyond and 90 cm

above the target chambers. To ensure an environment devoid of visual cues that could attract

the wasps, the olfactometer was placed in the center of a white-painted wooden box (200x140

cm and 70 cm high).

Ten pieces of 5-mm diameter filter paper fixed with a needle hanging on a plastic cork were

placed in each target chamber. On one side of the olfactometer, each piece of filter paper was

soaked with 5 μL of FFH solution (hereafter called “training odour”). On the other side, the

pieces of filter paper were left without FFH or solvent (hereafter called “no odour”). The olfac-

tometer was cleaned with water and detergent (Microson, Fisher Scientific) and the filter

papers renewed at most every 1.5 h (at most each 15 tested wasps) to remove potential chemi-

cal marks left by females in the Y tube. This cleaning procedure and the random alternation of

trained and naïve wasps in the olfactometer represents a conservative approach. Indeed an

effect of a potential chemical mark should at worst buffer the difference due to treatment. The

position of each target chamber was randomized each day to control for a potential side effect.

The tested wasp was individually introduced into the olfactometer through a hole near the

base. A wasp was considered to have made a choice when it reached one target chamber. The

choice of the wasp (training odour vs. no odour) as well as the time needed to choose were

recorded. Wasps that did not move within 3 min or did not reach a target chamber within 5

min were discarded. All of the tests were conducted between 11:30 AM and 04:00 PM under

the same temperature and humidity conditions as rearing. Preliminary experiments ensured

that for both strains, the wasps’ choice was random in the olfactometer in the absence of

odour.

Wasps were tested for their response to the training odour 30 min, 1 h, 2 h, 4 h (± 2 min),

26 h or 51 h (± 20 min) after the last training trial (Figs 1 and 2). Each wasp was tested only

once in the olfactometer. Because the last training trial happened always between 11:00 and

12:00 retention tests in the Y tube at a given time interval were always performed in the same

time window (e.g. 1-h tested wasps were tested between 12:00 AM and 01:00 PM, and 4-h

tested wasps were tested between 15:00 and 16:00 according to the exact timing of their last

training trial). Therefore, time of the day and age of the trained wasps were positively corre-

lated with the time interval after training, and may constitute confounding factors for this vari-

able. As a consequence, the effect of the time after training can properly be evaluated only

through the comparison of naïve and trained wasps (see “Data analysis” section). Training ses-

sions were planed on series of 5 or 6 successive days, two consecutive series being separated by

a break of one or two days, so that the response of the wasps of both strains from all time inter-

vals after training could be assessed each day.

Control: Naïve wasps. As a control, the response of individuals that had neither encoun-

tered the training odour, nor host kairomone were tested in the olfactometer. Each of these

naïve wasps was tested immediately before or after (±10 min) a same-aged trained wasp of the

same strain. This allows to determine (1) whether the wasps are innately attracted, indifferent

or repulsed by the training odour and (2) whether that behaviour varies in the course of the

time of the day (or with age). In other words, it allows to determine the baseline behaviour.

Then, any behavioural plasticity due to training can be detected by comparing the response

towards the training odour of the trained with that of the naïve individuals, whatever the

innate response (positive, neutral or negative) or the variation in the course of the day (or with

age).

In total, 775 wasps were tested: 161 naïve and 161 trained arrhenotokous, and 225 naïve

and 228 trained thelytokous wasps. Among these wasps, for each time interval after training,

21–25 naïve (that is 81–89% of the naïve arrhenotokous wasps tested) and 22–23 trained
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(73–88%) arrhenotokous females and 24–34 naïve (58–87%) naïve and 20–22 trained (50–

66%) thelytokous females were considered to have made a choice.

Data analysis

The response variable that we analysed as a proxy of memory retention following learning was

the side chosen by the wasp in the olfactometer (choice outcome: training odour vs. no odour).

According to the predictions of a speed-accuracy trade-off [50], any difference in choice

behaviour can be attributed to the speed at which it is made: slower individuals are expected to

make the more accurate choices. Then, the time needed to reach one of the target chambers

(choice duration) was also analysed to determine if differences in choice behaviour between the

strains could be attributed to differences in the speed of the choice.

Fig 2. Proportion of females choosing the training odour at different times after a training session. Trained wasps were allowed to oviposit in the

presence of FFH solution and host kairomones in three training trials spaced 30 min apart. Naïve wasps that did not experience such a treatment were

tested at the same time and day. Each wasp was only tested once at a given time interval after its last training trial. (a) Arrhenotokous wasps. (b)

Thelytokous wasps. Open symbols: naïve wasps. Full symbols: trained wasps. Sample sizes are indicated in brackets at the top (trained wasps) and

bottom (naïve wasps) of each panel. The time after training is represented according to a logarithmic scale along the x axis. Since this variable is partly

correlated with the time of the day and age (see Material and methods), its effect in trained individuals can only be evaluated through the evolution of the

difference between trained and naïve individuals. The grey curves represent the predictions of the statistical model in each treatment. The grey shadows

represent the corresponding 95% confidence interval of the predictions.

https://doi.org/10.1371/journal.pone.0177581.g002
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The choice outcome was analysed using generalised linear models (binomial distribution of

error, logit link). The explanatory variables were the strain, the training treatment (naïve vs.
trained), the time after training (0.5, 1, 2, 4, 26 or 51 h). Since data points were not evenly

spaced according to time after training, and to avoid leverage by data points obtained at 26 and

51 h, this variable was included in the model after log-transformation. All the interactions

between these variables up to the triple interaction were considered: (1) the analysis of the

interaction between time after training and training treatment allowed us to seek whether the

choice behaviour varies with time after training in a similar manner between naïve and trained

wasps. It then allowed to control in trained wasps by comparison with naïve ones, the effect of

age and time of the day (that correlates with time after training, see Material and method, Test

session). (2) The triple interaction allowed to seek for a difference in memory duration

between the two strains: it tests whether the choice behaviour difference between naïve and

trained individuals changed similarly in the course of time in both strains.

To determine if the choice outcome differed from a random 50–50 choice, that is if the

wasps were attracted, repulsed or indifferent to the training odour, we performed χ2 goodness-

of-fit tests in each group of wasps, on the data pooled from all time points after training.

The choice duration was analysed by means of a generalised linear model with a Gamma

distribution of error (inverse link) and explained by the training treatment, the strain and their

interaction.

All statistical analyses and the figure were performed with the software R 3.0.3 ([51]; librar-

ies: faraway, lattice and effects). All the variables and interactions were introduced sequentially.

Non-significant effects were removed from the models through backward selection.

Results

Training modifies the wasps’ response towards the training odour

The response of the wasps towards the training odour was found to be plastic following the

training, since choice outcome was influenced by training treatment (Table 1 and Fig 2): the

percentage of individuals choosing the training odour was higher in trained than in naïve

individuals.

Overall, naïve individuals from both strains were found to avoid the training odour (27%

out of 135 arrhenotokous wasps chose the training odour, Chi-square goodness-of-fit test:

Table 1. Analysis of choice outcome (training odour vs. no odour).

df Deviance P>|χ2|

strain 1 0.53 0.46

training treatment 1 63.44 <0.0001

time after training 1 10.39 0.001

strain x time after training 1 5.96 0.015

training treatment x time after training NS

strain x training treatment 1 3.33 0.068

strain x training treatment x time after training NS

Generalised linear model (binomial distribution of error, logit link).

NS: non-significant, corresponding to factors excluded during the model selection procedure. We keep the

interaction between strain and training treatment in the final model because it leads to the best model, that is

the model with the lowest Akaike’s Information Criterion (AIC = 692.28). The second best model

(ΔAIC = 1.33) includes the same explanatory variables as the best model but excludes the interaction

between strain and training treatment.

https://doi.org/10.1371/journal.pone.0177581.t001
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w2
1
¼ 29:4, P< 0.0001; 32% out of 161 thelytokous wasps chose the training odour, Chi-square

goodness-of-fit test: w2
1
¼ 21:62, P< 0.0001). Trained wasps prefered the training odour over

no odour (67% out of 133 arrhenotokous wasps chose the training odour, Chi-square good-

ness-of-fit test: w2
1
¼ 15:22, P< 0.0001; 59% out of 126 thelytokous wasps chose the training

odour, Chi-square goodness-of-fit test: w2
1
¼ 21:62, P = 0.05).

Trained wasps of both strains were slower to choose than naïve ones in the olfactometer

(Table 2, effect of training treatment; naïve females: mean choice duration +SE = 105+4 s,

N = 296; trained females: mean choice duration +SE = 139+4 s, N = 259).

Arrhenotokous wasps choose faster, but the choice response is as

plastic in both strains

Arrhenotokous females, both naïve and trained, chose faster in the olfactometer than thelyto-

kous ones (Table 2, effect of strain; arrhenotokous females: mean choice duration +SE = 106+4

s, N = 268; thelytokous females: mean choice duration +SE = 135+4 s, N = 287). This result is

consistent with the fact that more arrhenotokous than thelytokous wasps were considered to

have made a choice after 5 min in the olfactometer.

The plasticity of the choice response is equivalent in both strains (Table 1, effect of strain x

training treatment; Fig 2), even though naïve arrhenotokous wasps tend to choose the training

odour less than naïve thelytokous wasps, and trained arrhenotokous wasps tend to choose the

training odour more than trained thelytokous wasps.

The effect of training persists up to 51 h in both strains

The difference between the percentage of naïve and trained individuals moving towards the

training odour evolved in the same way in arrhenotokous and thelytokous wasps in the course

of time after training (Table 1, strain x training treatment x time after training: NS). This differ-

ence between naïve and trained wasps persisted from 30 min to 51 h after training (Table 1,

training treatment x time after training: NS). In other words, in both strains, the plasticity of

the choice response following training did neither vanish nor was it weakened 51 h later.

Arrhenotokous wasps decrease their choice of the training odour along

the time of the day and/or with age

Considering the absolute response of the whole group of arrhenotokous wasps, and not the dif-

ference between the response of naïve and the one of trained arrhenotokous wasps (preceding

paragraph), it appeared that the percentage of arrhenotokous wasps choosing the training

odour globally decreased with the time after training; this was not the case in thelytokous

wasps (Table 1, effect of time after training, strain x time after training; coefficient +95% confi-

dence limit of (log-transformed) time after training in arrhenotokous wasps = -0.34+0.18, in

thelytokous wasps = -0.04+0.22; Fig 2). But the time after training cannot explain that decrease

Table 2. Analysis of choice duration.

df Deviance P>|χ2|

strain 1 8.06 <0.0001

training treatment 1 11.83 <0.0001

strain x training treatment NS

Generalised linear model (Gamma distribution of error, inverse link).

NS: non-significant, corresponding to factors excluded during the model selection procedure.

https://doi.org/10.1371/journal.pone.0177581.t002
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in naïve individuals. However the time of the day at which the wasps were tested and their age,

both correlated with time after training (see Material and methods, Test session) could account

for this decrease. The percentage of trained arrhenotokous wasps choosing the training odour

decreased at the same rate as that of naïve arrhenotokous wasps (Table 1, strain x training
treatment x time after training: NS, training treatment x time after training: NS): thus, the

decrease in training odour choice observed in trained arrhenotokous wasps could also be

attributed to an effect of age and/or time of the day, and not to a decay of the effect of training.

Discussion

We showed that the response towards an odour is modified after its association with a host kai-

romone in an oviposition context in both Venturia canescens strains: naïve females avoided the

odour while trained females were attracted to it. This behavioural difference shows memory

formation in trained wasps. It was as pronounced in both strains even if arrhenotokous wasps

made their decision faster. These results suggest that arrhenotokous wasps learn more effi-

ciently about odours than thelytokous ones in an oviposition context. Memory persisted in

both strains up to at least 51 h.

Naïve individuals of both strains differed in their choice behaviour. While naïve thelytokous

wasps choose the training odour at a stable rate, a decrease was found in naïve arrhenotokous

wasps along the day (and/or with age). The same pattern was found in trained individuals (Fig

2). This difference was not an artefact linked to differences in the conditions under which the

animals were tested as wasps of both strains were tested in parallel and in the same experimen-

tal conditions. Nevertheless, we cannot exclude an effect of an environmental variable varying

with the time of the day (such as atmospheric pressure), to which only arrhenotokous wasps

would be particularly sensitive. An effect of age is unlikely as all wasps tested were young (the

51 h-tested wasps were 3 days old) in regard of their life expectancy, which is about 1 month

[49]. Thus they were not senescent. Further experiments are required to uncover to what

extent the behavioural pattern observed in arrhenotokous wasps can be generalised and

whether it depends on circadian factors [52].

Trained wasps of both strains preferred the training odour over no odour. On the contrary,

naïve individuals of both strains, which never experienced host kairomone, oviposition or the

training odour, avoided the training odour (Fig 2). This behavioural difference can be attrib-

uted to the retention of olfactory information following a learning process. Indeed, other pro-

cesses that could explain such a preference shift [53, 54] can be excluded. For example, the

training odour could impair the animal’s olfactory system, as some pesticides do (e.g. [55]). In

such a case, the innate avoidance of the training odour should be reduced at best to a random

choice, but this could not explain preference inversion. The behavioural plasticity could also

be explained by a sensitizing effect of host kairomone and oviposition [56]. But individuals

that were allowed to oviposit in the absence of the training odour (S1 Supporting information)

chose the training odour at a lower rate than trained individuals. Thus, oviposition and/or the

exposition to host kairomone alone cannot explain the behavioural plasticity evinced the

trained wasps.

Arrhenotokous wasps made decisions of better quality, which suggests, in agreement with

our predictions, better learning skills in this strain. Arrhenotokous wasps were faster to choose

than thelytokous ones. This higher choice speed should have conspire against their choice

accuracy [50]. But arrhenotokous wasps, both naïve and trained, were at least as accurate as

thelytokous ones. Their higher speed then indicates that arrhenotokous wasps made decisions

of better quality. This cannot be linked to a difference between the strains regarding the value

of the reward (i.e. the larvae onto which the wasp oviposits): the host parasitised during
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training is a pest of stored products and thelytokous wasps should then be the most rewarded

when laying an egg in that host species. We interpret the better decision making in arrhenoto-

kous wasps as a sign of better learning skills in the context of host-seeking at a distance. This

conclusion does not rule out potential effects of other processes, such as sensitivity to the

stimulus, attention, motivation or propensity to explore [57]. Such a difference in informa-

tion-processing ability has rarely been documented at the inter-population level, and to our

knowledge, our work provides the first demonstration in parasitoids (see [14, 57] for birds,

and [58] for bumblebees).

Contrary to the inter-population variability in memory retention observed in Nasionia
vitripennis [59], memory lasted at least 51 h in both strains of V. canescens. Indeed, the extent

to which the choice behaviour was modified did not vary with the time elapsed after training.

This result is in contradiction with that of Thiel et al. [60] reporting that olfactory memory

acquired in an oviposition context had vanished at 24 h in thelytokous wasps whilst it was

detectable from 24 h in arrhenotokous wasps but not before. Procedural differences, such as

the training odour used (FFH vs. geraniol) or the number of hosts available during training

(100 vs. 2), could be cited to account for this discrepancies. Furthermore, some flaws in the

protocol (e.g., low sample sizes, modalities missing in the control group) cast doubts on these

findings. These points preclude comparing thoroughly these results and ours.

In our experiment, the absence of differences between strains up to 51 h does not mean that

such differences do not exist. First, memory after 51 h could decay following different func-

tions in both strains. Second, its molecular support could differ between strains; a 51 h mem-

ory can be protein-synthesis dependent or independent (e.g. [9, 10, 61, 62]). Third, the two

strains may differ in the inter-trial time interval (ITI) necessary to form a given phase of mem-

ory (as in e.g. Cotesia rubecula and C. glomerata, [8]). At last, the number of training trials

needed to form a given memory phase may also differ between strains.

Because both arrhenotokous and thelytokous V. canescens are time-limited, that is, they

produce more eggs than they can lay within their lifetime [63, 64], they are expected to be rate-

maximizers. Saving time during host-searching by learning environmental cues associated

with host presence should then be selected for [36]. However, the higher travel requirements

faced by arrhenotokous wasps in the field (see Introduction) makes host-searching at a dis-

tance much critical for them than for thelytokous wasps. Combined with the fact that outdoor

host larvae should also be more difficult to find on the basis of the kairomone they produce,

we expected arrhenotokous females to display a greater capacity to learn new environmental

cues associated with hosts than thelytokous ones. Our results match this prediction and even if

studying more populations is required to allow their generalisation to the whole V. canescens
species, they support the litterature, which tends to find a relation between host distribution

and learning and memory features in parasitoids (for Cotesia glomerata and C. rubecula: [20];

for Nasonia vitripennis and Lariophagus distinguendus: [65]; but see [60] for V. canescens and

[66] for Leptopilina heterotoma). Our results in addition to previous ones [24, 27, 29, 32, 67–

72] strongly suggest that the two strains are each adapted in behavioural, physiological and life

history traits to different environments. These numerous studies strengthen the findings and

interpretation of the present work. However we cannot exclude that the genetic divergence

linked to the reproductive modes—which could themselves also result from the different selec-

tive pressures occurring in the different habitats–may also explain the difference in cognitive

traits we observed.

The arrhenotokous wasps’ greater ability to use the learned information could also be

linked to ecological differences between strains other than host distribution. First, according

to the classification of Vet and Dicke [73], arrhenotokous wasps are generalist, and thelytokous

wasps are specialists [69, 70]; learning of host associated cues is expected to be more frequent
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in generalist than in specialists [74]. Second, the variability and heterogeneity in the field may

facilitate the evolution of better information-processing skills, including learning [75]. Finally,

learning in the context of courtship is known to occur in other insects (e.g. male fruit flies:

[76]), and male V. canescens were shown to use complex information to find mates [77, 78].

Under the hypothesis of the evolution of a general learning ability [69, 56], the enhancement

of cognitive ability in the context of mating could facilitate the evolution of cognitive ability in

other contexts, including host-searching. Obviously the higher genetic variability in sexuals

[28] may also favour the evolution of these cognitives capacities.

We could not find differences in memory dynamics between strains, although it is thought

that differences in ecological constraints shape memory dynamics [4, 10]. Specific ecological

constraints of each preferential habitat do not seem either to select for different number of

training trials to form memory [60]. The possibility of an absence of selective pressure in stable

environments on learning abilities may also explain these results [79]: in such a case, thelyto-

kous wasps would only exhibit ancestral abilities. This argument is supported by observation

data in a 50-years lab reared Lymnaea strain, which was shown to have similar learning abili-

ties as the wild strain [80].

Our results also raise the question of the adaptive value of a memory lasting more than 51

h. From an evolutionary perspective, as long as a stored information piece remains reliable, it

should not be dropped from memory [13, 81]. In our protocol, wasps did not receive any

information questioning the association between the training odourand host presence, which

could explain the observed length of memory. Differences between both strains could lie in the

susceptibility of individuals to contradictory information: since information reliability is

expected to decrease faster in variable environments, arrhenotokous wasps should be selected

for a higher sensibility to retroactive interference, or for enhanced reversal learning, a way to

forget out-of-date information, than thelytokous ones [82].

Our comparative approach is a contribution designed to address both ultimate and proxi-

mate questions regarding the evolution of cognitive abilities. It echoes the call for an increase

in the number of experimental studies and species considered in cognitive ecology to reinforce

the bridge between ecology and cognition [83].

Supporting information

S1 Dataset. Data on training and testing of each individual wasp.

(XLSX)

S1 Supporting information. Effect of oviposition and kairomone on the wasps’ choice

behaviour.

(DOCX)

Acknowledgments
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24. Pelosse P, Bernstein C, Desouhant E. Differential energy allocation as an adaptation to different habi-

tats in the parasitic wasp Venturia canescens. Evol Ecol. 2007; 21(5):669–85.

25. Amat I, Desouhant E, Bernstein C. Differential use of conspecific-derived information by sexual and

asexual parasitic wasps exploiting partially depleted host patches. Behav Ecol Sociobiol. 2009; 63

(4):563–72.

26. Lucchetta P, Desouhant E, Wajnberg E, Bernstein C. Small but smart: the interaction between environ-

mental cues and internal state modulates host-patch exploitation in a parasitic wasp. Behav Ecol Socio-

biol. 2007; 61(9):1409–18.

27. Thiel A, Driessen G, Hoffmeister TS. Different habitats, different habits? Response to foraging informa-

tion in the parasitic wasp Venturia canescens. Behav Ecol Sociobiol. 2006; 59(5):614–23.

28. Mateo Leach I, Ferber S, van de Zande L, Beukeboom LW. Genetic variability of arrhenotokous and

thelytokous Venturia canescens (Hymenoptera). Genet. 2012; 140(1–3):53–63.

29. Foray V, Desouhant E, Gibert P. The impact of thermal fluctuations on reaction norms in specialist and

generalist parasitic wasps. Funct Ecol. 2014; 28(2):411–23.

30. Driessen G, Bernstein C. Patch departure mechanisms and optimal host exploitation in an insect para-

sitoid. J Anim Ecol. 1999; 68(3):445–59.

31. Bowditch TG, Madden JL. Spatial and temporal distribution of Ephestia cautella (Walker) (Lepidoptera:

Pyralidae) in a confectionery factory: causal factors and management implications. J Stored Prod Res.

1996; 32(2):123–30.

32. Amat I, Besnard S, Foray V, Pelosse P, Bernstein C, Desouhant E. Fuelling flight in a parasitic wasp:

which energetic substrate to use? Ecol Entomol. 2012; 37(6):480–9.

33. Castelo MK, Corley JC, Desouhant E. Conspecific avoidance during foraging in Venturia canescens

(Hymenoptera: Ichneumonidae): the roles of host presence and conspecific densities. J Insect Behav.

2003; 16(2):307–18.

34. Liu Y-Q, Thiel A, Hoffmeister TS. Odor-mediated patch choice in the parasitoid Venturia canescens:

temporal decision dynamics. Entomol Exp Appl. 2009; 132(2):110–7.

35. Vet LEM, Wackers FL, Dicke M. How to hunt for hiding hosts—the reliability-detectability problem in for-

aging parasitoids. Neth J Zool. 1991; 41(2–3):202–13.

36. Papaj DR, Vet LEM. Odor learning and foraging success in the parasitoid, Leptopilina heterotoma. J

Chem Ecol. 1990; 16(11):3137–50. https://doi.org/10.1007/BF00979616 PMID: 24263300

37. Eliassen S, Jorgensen C, Mangel M, Giske J. Exploration or exploitation: life expectancy changes the

value of learning in foraging strategies. Oikos. 2007; 116(3):513–23.

38. Mery F, Kawecki TJ. A cost of long-term memory in Drosophila. Sc. 2005; 308(5725):1148-.

39. Dukas R. Evolutionary ecology of learning. In: Dukas R, editor. Cognitive ecology. Chicago: University

of Chicago press; 1998. p. 129–74.

40. Harvey JA, Thompson DJ. Developmental interactions between the solitary endoparasitoid Venturia

canescens (Hymenoptera: Ichneumonidae), and two of its hosts, Plodia interpunctella and Corcyra

cephalonica (Lepidoptera: Pyralidae). Eur J Entomol. 1995; 92(2):427–35.

41. Salt G. Hosts of Nemeritis canescens, a problem in host specificity of insect parasitoids. Ecol Entomol.

1976; 1(1):63–7.

42. Mudd A, Corbet SA. Mandibular gland secretion of larvae of stored products pests Anagasta kuehniella,

Ephestia cautella, Plodia interpunctella and Ephestia elutella. Entomol Exp Appl. 1973; 16(2):291–2.

43. Amat I, Bernstein C, van Alphen JJM. Does a deletion in a virus-like particle protein have pleiotropic

effects on the reproductive biology of a parasitoid wasp? J Insect Physiol. 2003; 49(12):1183–8. PMID:

14624890

44. Rogers D. Ichneumon wasp Venturia canescens—oviposition and avoidance of superparasitism. Ento-

mol Exp Appl. 1972; 15(2):190–4.

45. Arthur AP. Associative learning by Nemeritis canescens (Hymenoptera: Ichneumonidae). Can Entomol.

1971; 103(8):1137–41.

Learning and memory in wasps

PLOS ONE | https://doi.org/10.1371/journal.pone.0177581 May 12, 2017 14 / 16

https://doi.org/10.1007/BF00979616
http://www.ncbi.nlm.nih.gov/pubmed/24263300
http://www.ncbi.nlm.nih.gov/pubmed/14624890
https://doi.org/10.1371/journal.pone.0177581


46. Desouhant E, Navel S, Foubert E, Fischbein D, Thery M, Bernstein C. What matters in the associative

learning of visual cues in foraging parasitoid wasps: colour or brightness? Anim Cogn. 2010; 13(3):535–

43. https://doi.org/10.1007/s10071-009-0304-2 PMID: 20020167

47. Giurfa M, Fabre E, Flaven-Pouchon J, Groll H, Oberwallner B, Vergoz V, et al. Olfactory conditioning of

the sting extension reflex in honeybees: memory dependence on trial number, interstimulus interval,

intertrial interval, and protein synthesis. Learn Mem. 2009; 16(12):761–5. https://doi.org/10.1101/lm.

1603009 PMID: 19933880

48. Müller C, Collatz J, Wieland R, Steidle JLM. Associative learning and memory duration in the parasitic

wasp Lariophagus distinguendus. Anim Biol. 2006; 56(2):221–32.

49. Desouhant E, Driessen G, Amat I, Bernstein C. Host and food searching in a parasitic wasp Venturia

canescens: a trade-off between current and future reproduction? Anim Behav. 2005; 70:145–52.

50. Chittka L, Skorupski P, Raine NE. Speed-accuracy tradeoffs in animal decision making. Trends Ecol

Evol. 2009; 24(7):400–7. https://doi.org/10.1016/j.tree.2009.02.010 PMID: 19409649

51. R Development core team. R: a language and environment for statistical computing. Vienna: R founda-

tion for statistical computing; 2013.

52. Saunders DS. Insect clocks. 3rd ed. Amsterdam: Elsevier; 2002.

53. Searle LV. The organization of hereditary maze-brightness and maze-dullness. Genet Psychol Monogr.

1949; 39:279–325.

54. Holliday M, Hirsch J. A comment on the evidence for learning in Diptera. Behav Genet. 1986; 16

(4):439–47. PMID: 3753374

55. Tricoire-Leignel H, Thany SH, Gadenne C, Anton S. Pest insect olfaction in an insecticide-contaminated

environment: info-disruption or hormesis effect. Front Physiol. 2012; 3.

56. Shettleworth SJ. Cognition, evolution and behavior. New York: Oxford university press; 2010.

57. Shettleworth SJ. Memory and hippocampal specialization in food-storing birds: challenges for research

on comparative cognition. Brain Behav Evol. 2003; 62(2):108–16. https://doi.org/72441 PMID:

12937349

58. Raine NE, Chittka L. The correlation of learning speed and natural foraging success in bumble-bees.

Proc R Soc Lond B. 2008; 275(1636):803–8.

59. Koppik M, Hoffmeister TS, Brunkhorst S, Kiess M, Thiel A. Intraspecific variability in associative learning

in the parasitic wasp Nasonia vitripennis. Anim Cogn. 2015; 18(3):593–604. https://doi.org/10.1007/

s10071-014-0828-y PMID: 25523189

60. Thiel A, Schlake S, Kosior D. Omnia tempus habent: habitat-specific differences in olfactory learning

and decision making in parasitic wasps. Anim Cogn. 2013; 16(2):223–32. https://doi.org/10.1007/

s10071-012-0567-x PMID: 23065185

61. Schurmann D, Sommer C, Schinko APB, Greschista M, Smid H, Steidle JLM. Demonstration of long-

term memory in the parasitic wasp Nasonia vitripennis. Entomol Exp Appl. 2012; 143(2):199–206.
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