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Abstract
The foraging and nesting performance of bees can provide important information 
on bee health and is of interest for risk and impact assessment of environmental 
stressors. While radiofrequency identification (RFID) technology is an efficient tool 
increasingly used for the collection of behavioral data in social bee species such as 
honeybees, behavioral studies on solitary bees still largely depend on direct observa-
tions, which is very time-consuming. Here, we present a novel automated methodo-
logical approach of individually and simultaneously tracking and analyzing foraging 
and nesting behavior of numerous cavity-nesting solitary bees. The approach consists 
of monitoring nesting units by video recording and automated analysis of videos by 
machine learning-based software. This Bee Tracker software consists of four trained 
deep learning networks to detect bees that enter or leave their nest and to recognize 
individual IDs on the bees’ thorax and the IDs of their nests according to their posi-
tions in the nesting unit. The software is able to identify each nest of each individual 
nesting bee, which permits to measure individual-based measures of reproductive 
success. Moreover, the software quantifies the number of cavities a female enters 
until it finds its nest as a proxy of nest recognition, and it provides information on the 
number and duration of foraging trips. By training the software on 8 videos record-
ing 24 nesting females per video, the software achieved a precision of 96% correct 
measurements of these parameters. The software could be adapted to various experi-
mental setups by training it according to a set of videos. The presented method allows 
to efficiently collect large amounts of data on cavity-nesting solitary bee species and 
represents a promising new tool for the monitoring and assessment of behavior and 
reproductive success under laboratory, semi-field, and field conditions.
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1  |  INTRODUC TION

Bees provide pollination services to wild plants and crops and are 
essential for biodiversity and human food supply (Garibaldi et al., 
2014; Klein et al., 2007; Ollerton et al., 2011). They include im-
portant flagship and indicator species and are used for the mon-
itoring and impact assessment of environmental stressors such 
as habitat degradation, pesticide exposure, or pathogens (Potts 
et al., 2010, 2016; Schönfelder & Bogner, 2017; Woodard et al., 
2020). An important component in the evaluation of bee health 
is the assessment of reproductive success and foraging behavior, 
as key drivers of population development and provisioning of pol-
lination services (Artz & Pitts-Singer, 2015; Ganser et al., 2020; 
Henry et al., 2012; Siviter et al., 2021). Such assessments require, 
however, accurate and efficient tools to collect the often large 
amount of data required to assess bee health, especially if data on 
individual bees shall be collected (Crall et al., 2018; Nunes-Silva 
et al., 2019).

Recent research and environmental risk assessments have mainly 
focused on the honeybee, Apis mellifera, and a few other social bee 
species (e.g., Bombus terrestris) as indicator species (Goulson et al., 
2015; Potts et al., 2016). Only relatively recently, there is increased 
recognition of the fact that the effect of different environmental driv-
ers can substantially vary between bee species and depend on their 
functional and life-history traits such as sociality, body size, foraging, 
or nesting traits (Brittain & Potts, 2011; Sgolastra et al., 2019). While 
social bee species may compensate for temporary limited stress ex-
posure (e.g., pesticide applications) at a later point in time (Straub 
et al., 2015), it should directly impair reproductive output in solitary 
bees (Sgolastra et al., 2019). Risk assessments therefore increasingly 
consider also solitary bee species for the monitoring of impacts of 
stressors on bee pollinators, prominently including cavity-nesting 
species (Boff et al., 2020; Rundlöf et al., 2015; Stuligross & Williams, 
2020; Zurbuchen et al., 2010). In Europe for example, the European 
Food Safety Authority (EFSA) has proposed to integrate two cavity-
nesting solitary bee species, Osmia bicornis and O. cornuta for risk 
assessment of plant protection products on bees, including higher-
tier assessments of sublethal effects on reproductive success (EFSA, 
2013; Franke et al., 2021).

Solitary bees can respond through changes in their nesting and 
foraging behavior to various environmental stressors as pesticides, 
habitat degradation, or pathogens (Artz & Pitts-Singer, 2015; Boff 
et al., 2020; Klaus et al., 2021; Klinger et al., 2021; Siviter et al., 
2021; Stuligross & Williams, 2020). However, while foraging be-
havior of individuals of social bee species such as A. mellifera can 
automatically be recorded with RFID technology (Nunes-Silva et al., 
2019), no such tool is, to our knowledge, currently available for the 
collection of such data for solitary bees. As studies with cavity-
nesting solitary bees typically require nesting units with numerous 
scattered nesting cavities (Figure 1), RFID, which has a short reach 
of the signal (Nunes-Silva et al., 2019), is difficult to implement. 
Furthermore, tracking foraging behavior and reproductive success 
of multiple individual females requires correct identification and 
assignment of the cavities used for nesting by individual females, 
which can only be achieved with a large number of readers at high 
costs. So far, studies on solitary bee species have therefore largely 
depended on direct visual observation to monitor foraging behavior 
or the nesting progress of individual females (Artz & Pitts-Singer, 
2015; Franke et al., 2021), which is very time-consuming, hamper-
ing research and environmental risk assessment with solitary bee 
species.

Software can be used to automatically detect animals in images 
or analyze animal behavior recorded with videos (Eikelboom et al., 
2019; Pennington et al., 2019). For bees, automated image classifi-
cation was used to count nests of ground-nesting solitary bees (Hart 
& Huang, 2014), to monitor the activity of individually tagged hon-
eybees (Chen et al., 2012; Odemer, 2021) and for the detection of 
parasites and pollen-bearing in honeybees (Rodriguez et al., 2018; 
Schurischuster et al., 2018). Here, we present new machine learning-
based software, which can automatically extract and analyze data 
on the foraging and nesting behavior of individually marked, cavity-
nesting solitary bees from videos. The software is provided free and 
open-source including the underlying Python code, as well as a user 
manual, which makes the software also accessible to users who have 
no programming background. The machine-learning networks that 
permit to train the software and parameters of the input file can be 
adapted to specific requirements, which allows to use the software 
in a wide range of experimental setups.

F I G U R E  1 (a) Nesting Osmia bicornis 
female bee marked with an ID tag (unique 
color–digit combination) attached to 
its thorax, (b) nesting unit composed of 
layers (wooden boards) with 10 cavities 
each, (c) layer with cavities covered with 
plastic foil for which nesting progress and 
offspring production can be tracked, and 
(d) specifications of layers used for nesting 
units—black: 170 mm; red: 18 mm; green: 
11.5 mm; blue: 9 mm; and yellow: 8 mm
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2  |  METHODS

2.1  |  Bee Tracker software

The Bee Tracker software is able to recognize bees entering and leav-
ing cavities at a nesting unit. Individual bees can be identified if they 
are marked with ID tags from marking kits conventionally used for 
honeybee queen rearing (Figure 1). In the published open-source 
version of the software, digits from 1 to 8 and the colors white, yel-
low, and green (up to 24 unique digit–color combinations) can be rec-
ognized. Moreover, the software can identify each nesting cavity of 
nesting units (constructed as in Figure 1). Cavities get an ID based 
on their position in the nesting unit (according to its “row” and “col-
umn” in the nesting unit, see the manual provided in the Supporting 
Information for further details). In the published version of the soft-
ware, cavities of up to 12 rows and 10 columns (up to 120 cavities) 
per nesting unit can be identified. The software is further capable 
to detect and measure the entering and leaving of a cavity by an 
individual bee and the video timestamp of each of these events. 
From the collected list of events and some set input parameters (see 
below), the software can assign females to the cavity they are nest-
ing in, calculate flight duration, and count the number of cavities a 
bee probes until it finds the one it is nesting in (nest recognition; see 
Artz & Pitts-Singer, 2015).

Before the software can be used for the collection of this data, 
the precision of the software needs to be evaluated for the setup 
in use and, if unsatisfactory, the software must be trained on a set 
of representative videos. The machine-learning network (see below: 
Machine-learning algorithms and training of models) can further be 
used to expand the spectra of bee and cavity IDs that the software 
is able to recognize. How the software can be trained to the setup in 
use and/or additional bee and cavity IDs is described in the manual 
(provided in the Supporting Information).

2.2  |  Input videos

The input videos must be in MP4 format and have an aspect ratio 
of 16:9. The software was developed and validated with an aspect 
ratio of 3860 × 2160 (4K), which returns well-resolved images that 
generate outputs with a high measurement precision. A lower reso-
lution could impair the precision, but the software can still process 
the input.

2.3  |  Generated output

The software will create a new subfolder within the selected result 
folder for each input video. Inside each subfolder, the following out-
puts are stored by the software:

1.	 all_events_unfiltered: Inside this csv file, all detected events 
are listed containing the video timestamp, the bee ID, the 

event type (entering or leaving), and the cavity ID. This list 
is completely unfiltered and may contain errors.

2.	 error_corrected_events: This csv file contains all events that 
remain after error correction: Events with unidentified bee IDs 
get removed. The software additionally identifies missing events 
within sequences of enter–leave–enter. Such sequences with 
missing events are not considered for the creation of below-
described output files (address_book, nest_recognition, flight_
list). Besides the video timestamp, the bee ID, the cavity ID, and 
the type of event (entering or leaving a cavity), this file therefore 
also indicates for each event whether it was used for the output 
files address_book, nest_recognition, and flight_list.

3.	 address_book: This csv file contains all bees that were assigned 
to a nest and lists the according bee and cavity IDs. These data 
(assignments between individual bees and the cavity (or cavities, 
respectively) they are nesting in) are of interest for assessments 
of nesting progress and reproductive success of individual nest-
ing females. In order to assign females to cavities that are used for 
nesting (in contrast to simply probed cavities not used for nest-
ing), a cavity is only assigned to an individual bee if (i) the bee 
stays inside the cavity for a time span that is minimally required 
by a nesting bee to unload collected pollen for offspring provision, 
and (ii) the bee does not enter another cavity during a time span 
that is minimally required by a bee to collect pollen or material 
such as mud for nest construction (e.g., construction of brood cell 
walls). The default setting of these two time spans is both 40 s in 
the published open-source version of the software. These values 
were chosen based on over 20 h of direct observation of Osmia 
bicornis females nesting in a natural habitat in Switzerland (Bättig 
D., unpublished data). However, the species under study or the 
experimental setting may require adjustment of these threshold 
values. This can be done in the “config” file of the software, which 
can be selected as an optional input file for the analysis (see soft-
ware manual in the Supporting Information).
Nesting progress, that is, the number of produced brood cells 
and offspring, can be tracked by repeatedly photographing 
the nest cavities (Figure 1), for example, before and after an 
assessment day. Linking these data with the address_book file 
(created from a video recorded on the same assessment day) 
based on cavity IDs permits to measure individual reproductive 
success per female for this time period.

4.	 nest_recognition: This csv file contains the number of cavities 
a female enters before finding its nest (i.e., number of probed 
“wrong” cavities before finding the “correct” nesting cavity). 
Besides the bee ID and the number of probed cavities, the file 
also lists the video timestamp.

5.	 flight_list: This csv file provides flight durations of individual fe-
males from leaving the nesting cavity until returning to it again 
(i.e., foraging trip or mud collection duration). Besides the bee ID 
and the flight duration, the file also lists the video timestamp. If 
of interest, flight activity, defined here as females that perform at 
least one flight during the observation time, can be assessed by 
classifying females that are listed in the flight_list file as active. 
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For this measurement, the number of total, alive females needs to 
be known, however, which can be assessed by taking pictures of 
the nest layer (Figure 1) during the night when females are roost-
ing inside cavities.

6.	 Visualization: Through the “visualize results” option, a video file 
in mp4 format can be created with all detected events visualized. 
This file can be used to manually check the performance of the 
software and to find potential errors, which can be used to retrain 
the software (see below) and improve the precision.

2.4  |  Measurement of precision

To measure the precision of the software in a set of videos, the 
created visualization videos can be manually checked and the cor-
rect assignment of the bee ID, cavity ID, and event type (entering 
or leaving) can be reviewed for single events. Only events listed in 
the error_corrected_events file as events that were used to create 
measurements in output files (last column contains a yes) should 
be checked and used for the measurement of precision. Precision 
can be calculated as the proportion of fully correct assignments as 
Precision = TP / (TP + FP), where TP is the number of true positives 
and FP the number of false positives. The measured precision is valid 
for all extracted measurements: assignment of females to their nest 
cavity, flight duration, and number of probed cavities.

The software was designed to achieve a high precision at the 
expense of the recall (fraction of events that was retrieved), which is 
of minor interest in this type of analysis as it only affects the sample 
sizes but not the extracted measurements themselves. We therefore 
did not implement the possibility to assess the recall.

2.5  |  Machine-learning algorithms and 
training of models

The Bee Tracker software uses a combination of three machine-
learning algorithms to generate the above-mentioned outputs: the 
Faster R-CNN object detection pipeline (Ren et al., 2017), a YoloV3 
(Redmon & Farhadi, 2018) object detection network, and a custom 
Keras image classification network (Chollet, 2015). The software 
takes a video of a nesting unit as described above as input and 
as a first step detects all marked bees and cavities in each video 
frame using two trained Faster R-CNN networks. Subsequently, 
the marker tags (unique digit–color combination; Figure 1) are 
identified by a YoloV3 network on each previously detected bee. 
Additionally, all identified markers are further classified into the 
digits 1–8 by a custom Keras network. Knowing the cavity posi-
tions and bee positions alongside with the bee ID for each individ-
ual frame, a custom object tracking algorithm is applied to these 
data in order to link the individual frames together and obtain a 
movement path for each bee. By analyzing the start and end point 
of each detected movement path, the software is able to detect 
cavity entering and leaving events.

The software relies on the four previously mentioned trained 
machine-learning models. The model for detecting the bees was 
trained on 1303 individual images. The cavity detection model was 
trained on 120 individual images of nesting units; each nesting unit 
contained between 60 and 130 cavities. The color tag detection 
model was trained on 4921 individual images of bees, and the digit 
classification model was trained with 10,347 individual images of 
number tags. Additionally, various data augmentation techniques 
were applied such as rotations, random brightness adjustments, ran-
dom contrast adjustments, and random saturation. Further detailed 
information about the model trainings is provided in the software 
manual (see Supporting Information).

2.6  |  Software evaluation

To evaluate the software and measure the precision of the analy-
ses and generated outputs, we recorded a total of 23 videos from 
15 nesting units during two consecutive days using the nesting 
units as described in Figure 1. All nesting units were placed in 
large flight cages (54 m2) that contained sufficient floral sources 
for offspring provisioning by nesting female Osmia bicornis (sown 
purple tansy, buckwheat, and/or field mustard). A total of 24 fe-
males marked with the above-described 24 unique digit–color 
ID tags were released into each of these flight cages, and vid-
eos were recorded after initiation of nesting. Each video was re-
corded between 9 a.m. and 3 p.m. when flight activity was high; 
recording times ranged between 2 and 4 h. Cameras were placed 
at a distance of 1 m from the nesting unit with frontal view (cam-
era placed at same height as nesting unit). From the recorded vid-
eos, 8 randomly selected ones were used to train the software 
to this experimental setup, while the remaining 15 videos were 
used to measure precision. Precision was assessed by manually 
checking 180 randomly selected events (12 events per video) for 
their correctness using the visualization option of the software 
(see above). Only events that were used for the generation of out-
put csv files (after error correction) were inspected as described 
above.

For the comparability of bee health under different environ-
mental conditions (e.g., different field sites with variable habi-
tat quality or flight cages with/without pesticide application), a 
similar precision across videos is required. We therefore tested 
whether precision varied between videos in our set of evaluated 
videos in a generalized linear model with a binomial distribution. 
The correctness of the detected event (correct or wrong) was in-
cluded as the response variable and the video ID as explanatory 
variable. As the software only assigns females to a nest that are 
active during recording and fulfill certain criteria (as described in 
the section address_book), we further fitted a generalized linear 
model with a binomial distribution to test whether the propor-
tion of females that can be assigned to a nest cavity per video 
depends on the video recording time. The analysis was done in R 
4.1. (R Core Team, 2021).
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3  |  RESULTS

On average, the Bee Tracker software could successfully assign 67% 
(lower CI: 61%, upper CI: 71%) of the alive females to a nest per 
video. The probability that a female gets assigned to a nest did not 
depend on video recording time (χ2 = 1.82, p =  .18), which ranged 
between 2 and 4 h. Per video, the software generated on average 
nest_recognition files with 80  measures of nest recognition (the 
number a female enters any cavity until it finds the one it is nesting 
in) per hour and flight_list files with 61 flights per hour.

The precision of the software was evaluated by manually check-
ing the created visualization videos and reviewing the correct assign-
ment of the bee ID, cavity ID, and event type (entering or leaving) of 
single events. Per video, 96.1% (lower CI: 92.6%, upper CI: 98.3%) 
of the checked events were detected correctly on average, whereas 
precision did not depend on the video that was used for the analysis 
(χ2 = 13.95, p = .45; Figure 2). The seven errors that were found all 
related to the bee ID. Three errors were caused by a wrong color 
detection: Green was classified falsely as yellow in all these cases. 
The remaining four errors were caused by an ID swap between two 
bees that had crossing movement paths, which led to a commutation 
of the IDs between bees.

4  |  DISCUSSION

4.1  |  Software performance

The Bee Tracker software is a helpful tool to collect large amounts of 
data on the nesting and foraging behavior of cavity-nesting solitary 
bees in an automated way. It identifies individual nesting females 
and assigns them to their nests. This permits to obtain robust data 
on per female reproductive success, if nesting progress within nests 

is additionally recorded. Moreover, the software counts the number 
of cavities a female probes until it finds its nest, collects information 
on the flight duration, and allows to assess flight activity. Once the 
software is trained for the experimental setup in use, the method 
requires low labor input but can generate large data sets with a high 
measurement precision. Here, we showed that a precision of 96% 
can be achieved with a relatively low training effort of about 30 
working hours. Minor adaptations may further improve the perfor-
mance of the software.

The precision of the Bee Tracker exceeds precision values typi-
cally found in automated image analysis software (Eikelboom et al., 
2019; Gallmann et al., 2020), but reaches values typical for bee 
counters (Odemer, 2021). The software may, however, only achieve 
the here reported precision of 96% in experiments with a similar 
setup, with respect to light conditions during video recording, hues 
and digits of bee IDs, and the shape, size, and location of the nest 
cavities in the nesting units. For variant setups, the training of the 
software may need to be repeated to achieve a comparable mea-
surement precision of the software analysis. While errors by bee 
ID swapping cannot be entirely avoided due to the limitations of 
the centroid object tracking algorithm used by the software, errors 
caused by color misclassifications between green and yellow were 
probably caused by the convergence of spectra under different light 
conditions and could likely be reduced by choosing colors for ID tags 
with more distinct spectra. Thus, while an increased training effort 
may reduce the error rate, replacing either green or yellow by, for ex-
ample, blue or red ID tags may completely eliminate color misclassi-
fications, which would increase the precision to 98% in our data set.

A main advantage of the Bee Tracker is the large data sets that can 
simultaneously be collected with relatively low time and labor input. 
Direct observations of the nesting activity of individually marked 
bees, in comparison, are very challenging and nearly impossible in 
experimental setups with large individual numbers and several sites 
(or plots/cages), where bees needed to be observed simultaneously. 
Researchers therefore used videos for the assessments of individual 
behavior in solitary bees (McKinney & Park, 2012), which are very 
time-consuming to manually evaluate. Despite this advantage of the 
Bee Tracker, the method also has some limitations. The use of the 
software is restricted to relatively large bee species that allow fixing 
ID tags on the bees’ thorax. Furthermore, the current version of the 
Bee Tracker software was trained on the model bee species Osmia bi-
cornis. Although bee recognition and the classification of movement 
(entering or leaving a cavity) seemed to work equally precise when 
tested on the closely related species O. cornuta (Knauer A., personal 
observation), further training may be required when working with 
other solitary bee species to obtain full precision of the software. 
Furthermore, the current version of the software can only analyze 
the above-described 24 unique color–digit-based bee IDs and iden-
tify cavities with a certain size and shape that are arranged in the 
nesting unit as described (Figure 1). These limits can, however, be 
adapted by training the software to additional bee IDs (with more 
digits or colors) and different nesting units. In field studies of nat-
ural populations, where bees cannot be tagged after hatching (and 

F I G U R E  2 Number of events that were detected correctly or 
with an error by the Bee Tracker software in the 15 videos that were 
checked manually

0
1
2
3
4
5
6
7
8
9

10
11
12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Video

N
um

be
r o

f e
ve

nt
s

Detection
correct

wrong



6 of 8  |     KNAUER et al.

before the release into flight cages), nesting units as the ones de-
scribed in Figure 1 with nest cavities open at the top can be used to 
capture bees from the cavities during inactivity (e.g., during rain or at 
night when bees are usually roosting inside cavities) for tagging. The 
software could therefore be used in various experimental setups to 
study the behavior of solitary, cavity-nesting bees that can be estab-
lished in standardized nesting units.

4.2  |  Research purpose

The effect of different stressors can vary between species and de-
pend on their functional traits such as body size, sociality, or mode 
of nesting (Brittain & Potts, 2011; Sgolastra et al., 2019). A range 
of solitary bee species are therefore increasingly studied for the 
assessment and monitoring of stressors on pollinators (Boff et al., 
2020; Ganser et al., 2020; Klaus et al., 2021; Stuligross & Williams, 
2020; Zurbuchen et al., 2010). The Bee Tracker software can be a 
helpful tool to efficiently collect robust data on individual nesting 
and foraging behavior of cavity-nesting solitary bees.

The assessment of foraging behavior can be a relevant addition 
to the direct measurement of fitness in bees. In social bee species, 
the number of adult bees, brood cells, and the amount of food stores 
(honey and pollen) are used as indicators of colony strength and vi-
tality (Dainat et al., 2020; Hernandez et al., 2020). RFID technology 
has furthermore been used for the monitoring of foraging behavior 
in social species as it can perform individual bee recognition and de-
tect the inbound and outbound movements of tagged bees at the 
nest entrance where the antenna and reader are placed (Nunes-Silva 
et al., 2019). With this technology, flight activity, homing ability, 
and flight duration of social bees can be studied (Henry et al., 2012; 
Schneider et al., 2012; Stanley et al., 2016; Tenczar et al., 2014). In 
solitary bees, reproductive success, measured by brood cell or off-
spring production, is the most important proxy of fitness (Rundlöf 
et al., 2015; Stuligross & Williams, 2020; Zurbuchen et al., 2010). 
The Bee Tracker software can furthermore be used to measure re-
productive output for individual nesting females and to collect 
large amounts of behavioral data to supplement and better under-
stand measurements of reproductive success and fitness in solitary, 
cavity-nesting bees.

Behavioral data can contribute to the understanding of behavior-
mediated impacts of environmental stressors on reproduction of 
solitary bee species (Artz & Pitts-Singer, 2015). Pesticide exposure, 
for example, can impair orientation and memory (Siviter et al., 2018) 
and cause a reduction in nest recognition or foraging activity (Artz 
& Pitts-Singer, 2015; Franke et al., 2021). Flight duration may also 
be increased by habitat degradation or food competition, which 
can cause increased flight distances to food sources (Gathmann 
& Tscharntke, 2002). Pathogens can reduce homing ability in hon-
eybees (Li et al., 2013) or cause a premature onset of foraging and 
reduce the total activity span of foragers (Benaets et al., 2017). 
Overall, understanding bees’ foraging and flight activities can pro-
vide valuable information for evaluating the impact of a wide range 

of environmental stressors on bees. For example, behavioral data 
collected with RFID contributed to the detection of sublethal ad-
verse effects of neonicotinoids, which finally led to the ban of sev-
eral compounds from this class of insecticides in the European Union 
(Gross, 2013).

5  |  CONCLUSION

The Bee Tracker software is an efficient tool to collect large amounts 
of data on foraging and nesting behavior of cavity-nesting solitary 
bee species. We hope it will contribute to a more accurate and in-
depth study of these behavioral aspects and to an increased consid-
eration of solitary species for the monitoring of impacts of stressors 
on bees. Such monitoring is essential for the protection of wild pol-
linators and the vital pollination services they provide to wild plants 
and crops.
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