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Downregulation of TLX induces TET3 expression
and inhibits glioblastoma stem cell self-renewal and
tumorigenesis
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Glioblastomas have been proposed to be maintained by highly tumorigenic glioblastoma stem

cells (GSCs) that are resistant to current therapy. Therefore, targeting GSCs is critical for

developing effective therapies for glioblastoma. In this study, we identify the regulatory

cascade of the nuclear receptor TLX and the DNA hydroxylase Ten eleven translocation 3

(TET3) as a target for human GSCs. We show that knockdown of TLX expression inhibits

human GSC tumorigenicity in mice. Treatment of human GSC-grafted mice with viral

vector-delivered TLX shRNA or nanovector-delivered TLX siRNA inhibits tumour

development and prolongs survival. Moreover, we identify TET3 as a potent tumour

suppressor downstream of TLX to regulate the growth and self-renewal in GSCs. This study

identifies the TLX-TET3 axis as a potential therapeutic target for glioblastoma.
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G
lioblastoma (GBM) is the most common and aggressive
primary brain tumour with median survival time of 14
months after diagnosis1. No effective treatment has been

developed for GBM patients yet. It has been proposed that
GBMs are maintained by a small population of cancer stem cells
that retain stem cell properties, are highly tumorigenic and
resistant to radiotherapy and chemotherapy2–4. The cancer stem
cell hypothesis proposes cancer stem cells reside at the top of a
cellular hierarchy and have the ability to give rise to the
heterogeneous populations of the tumour bulk5–7. The presence
of cancer stem cells together with the heterogeneity of the tumour
mass renders GBM treatment resistant and recurring8. Therefore,
new therapies are needed to target these cancer stem cells4,9.

TLX (NR2E1) is a nuclear receptor expressed in vertebrate
forebrains10 and essential for neural stem cell self-renewal11,12.
Recently, TLX has been shown to be expressed in human GBM
tissues and cell lines13,14, and play a role in GBM development in
mouse tumour models14. However, the function of TLX in
human glioblastoma stem cell (GSC)-initiated tumorigenesis and
the effect of modulating TLX expression in human GSCs on the
development of GBM remain to be determined.

5-Hydroxymethylcytosine (5hmC) is a form of DNA
modification derived from hydroxylation of 5-methylcytosine
(5mC). The level of 5hmC is considerably reduced in many types
of human cancers15–17, including gliomas18–20. The level of
5hmC is tightly controlled by the TET family of dioxygenases,
which catalyse the conversion of 5mC to 5hmC21,22. TET
proteins have been shown to inhibit haematopoietic
transformation23–25, breast and prostate cancer invasion and
metastasis26. However, the role of TET proteins, especially TET3,
in GBM tumorigenesis remains largely unknown.

RNA interference holds great promise for tumour therapy.
However, efficient delivery of small RNAs in vivo represents a
major challenge preventing RNA interference from achieving the
potency required for successful clinical applications. After ups
and downs, RNA interference is now regaining its momentum27.
Various delivery technologies have been developed for RNA
interference. Viral vectors have high delivery efficiency and allow
sustained gene silencing with a single injection, offering practical
advantage for diseases associated with hard-to-reach organs, such
as the brain27,28. Non-viral vectors, such as cationic lipids and
polymers, are developed to increase safety and efficiency of
delivery29,30.

Dendrimers are one of the most promising non-viral vectors
for delivering small RNAs by virtue of their well-defined structure
and unique multivalent cooperativity alongside the high payload
confined within a nanosized volume31–33. In particular,
ploy(amidoamine) dendrimers bear amine groups at the
terminals, which can effectively interact with negatively charged
nucleic acids under physiological conditions34. They also have
tertiary amines in the interior, which can promote the
intracellular release of nucleic acids through the ‘proton sponge’
effect35. However, dendrimer-based delivery of small
interfering RNAs (siRNAs) into tumour stem cells is largely
unexplored.

In this study, we demonstrate that knockdown of TLX using
dendrimer nanovector-delivered synthetic siRNAs or virally
expressed short hairpin RNAs (shRNAs) dramatically
reduces GSC growth and self-renewal. By transplanting TLX
shRNA-transduced GSCs into immunodeficient NOD SCID
Gamma (NSG) mice, we show that knockdown of TLX leads to
almost complete failure of GSCs to develop tumours in
transplanted mouse brains. Furthermore, intratumoral delivery
of TLX siRNAs using a dendrimer nanovector or TLX shRNAs
using a viral vector inhibits GSC-induced tumorigenesis and
prolongs the lifespan of GSC-grafted animals substantially.

Moreover, we identify TET3 as a critical TLX downstream target
that inhibits GSC self-renewal and tumorigenesis.

Results
TLX shRNA reduces GSC self-renewal and tumorigenesis. To
determine the role of TLX in human GSCs, we isolated ten pri-
mary GSC lines from tumour tissues of newly diagnosed human
World Health Organization grade IV GBM patients and cultured
them as three-dimensional tumourspheres in a culture condition
for GSC enrichment36. We classified these GSCs into GBM
subtypes using a method previously reported37. Among them,
PBT003, PBT022, PBT726 and PBT1030 are classical, PBT017,
PBT030 and PBT1008 are mesenchymal, whereas PBT024,
PBT111 and PBT707 are proneural. These GSCs expressed
human neural stem cell markers, Nestin and TLX (Supplemen-
tary Fig. 1a). They are also multipotent. When cultured in
differentiation condition, they were able to differentiate into bIII
tubulin-positive neurons and glial fibrillary acidic protein
(GFAP)-positive astrocytes (Supplementary Fig. 1b). After
transplantation into NSG mice, these cells could form brain
tumours with typical infiltrative features of GBM (Supplementary
Fig. 1c).

To study the function of TLX in GSCs, two shRNAs were
designed to knockdown TLX expression in GSCs with two
scrambled RNAs as negative controls. After stably transducing
TLX shRNA-expressing lentivirus into GSCs, efficient knock-
down of TLX was confirmed (Fig. 1a). Knockdown of TLX
expression dramatically reduced the growth rate of all GSC lines
tested (Fig. 1b), indicating that TLX plays an important role in
GSC expansion.

We next determined the effect of knocking down TLX on the
self-renewal ability of GSCs using clonal analysis and limiting
dilution assay. Knockdown of TLX dramatically reduced the
self-renewal capacity of GSCs, as revealed by the sharply
decreased sphere formation rate and stem cell frequency in
TLX shRNA-transduced cells (Fig. 2 and Supplementary Figs 2,
3). Together, these results indicate that TLX is essential for
maintaining GSC growth rate and self-renewal ability.

The dramatic inhibitory effect of TLX shRNAs on GSC growth
and self-renewal in vitro prompted us to test whether knockdown
of TLX affects the ability of GSCs to form tumours in vivo. Two
GSC lines, PBT003 and PBT707 cells, were transduced with a
lentiviral vector expressing a TLX shRNA and a green fluorescent
protein (GFP) reporter. The transduced cells were transplanted
into the frontal lobe of NSG mouse brains. Tumour formation
and expansion by the TLX shRNA-transduced GSCs were
compared with scrambled control RNA-transduced GSCs.
Although the same number of GFP-positive cells was injected
into each mouse, GFP fluorescence imaging revealed large masses
of GFP-positive cells in brains transplanted with control
RNA-transduced GSCs, but there was barely any GFP signal in
brains transplanted with TLX shRNA-transduced GSCs (Fig. 3a).
Haematoxylin and eosin (H&E) staining showed that mice
received control GSCs developed large tumour masses with
typical infiltrative features of GBM (Fig. 3b,c). Conversely, GSCs
treated with TLX shRNAs did not form tumours, or only formed
small lesions that were confined to the injection sites (Fig. 3b,c).
Stereological measurement of tumour volumes confirmed
significantly smaller tumours in brains transplanted with GSCs
treated with TLX shRNA, compared with that in brains
transplanted with control GSCs (Fig. 3d).

Mice transplanted with TLX shRNA-transduced PBT003 cells
had much better survival outcome compared with mice
transplanted with scrambled control RNA-transduced cells
(Fig. 3e). All mice that were transplanted with TLX
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shRNA-transduced PBT003 cells survived for more than 70 days
post transplant, and 40% of them survived beyond 80 days,
whereas all mice that received PBT003 cells transduced with
control RNA died before 60 days post transplant. Similarly, all
mice that received PBT707 cells transduced with the control RNA
died before day 85 post-transplant, whereas most mice that
received PBT707 cells transduced with the TLX shRNA
survived beyond this point, and 40% survived beyond day

110 (Fig. 3e). Together, these results indicate that knockdown of
TLX suppresses tumour growth and increases the lifespan of
GSC-grafted mice.

Knockdown of TLX in vivo suppresses tumour progression.
Next we tested if knocking down TLX in vivo could suppress the
progression of human GSC-initiated tumours in a xenograft
model. PBT003 cells were transduced with luciferase-expressing
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Figure 1 | Knocking down TLX expression dramatically reduced the growth of GSCs. (a) RT–PCR analysis of TLX expression in GSCs transduced with

TLX shRNAs. Scrambled RNAs (SC1 and SC2) were included as negative controls. N¼ 3, *Po0.05, **Po0.01, ***Po0.001 by Student’s t-test. Error bars

are s.d. of the mean. (b) Growth kinetic analysis of the GSC lines transduced with scrambled control RNAs (SC1, SC2) or TLX shRNAs (shTLX1, shTLX2).

N¼4. Error bars are s.d. of the mean.
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lentivirus, which allowed us to monitor tumour growth in vivo by
bioluminescence imaging. The resultant PBT003 cells were
orthotopically transplanted into the frontal lobe of NSG mouse
brains to establish tumours. One week after, mice were treated
with scrambled control RNA or TLX shRNA-expressing lenti-
virus by intratumoral injection (Fig. 4a). Knockdown of TLX in
PBT003 cells in vivo was confirmed by reverse transcription
(RT)–PCR using human TLX-specific primers (Fig. 4b). Tumour
formation was monitored using bioluminescence xenogen
imaging (Fig. 4c). Mice received control RNA-expressing
virus developed large tumours, whereas mice treated by TLX
shRNA-expressing lentivirus had much smaller tumours
(Fig. 4c,d). Bioluminescence measurement showed a significant

decrease of tumour signal in mice treated with TLX
shRNA-expressing virus at 5 weeks after treatment (Fig. 4d).

Moreover, PBT003-grafted mice treated with TLX
shRNA-expressing virus had much better survival outcome
compared with mice treated with scrambled control RNA
(Fig. 4e). All mice that received control RNA died before day
60 post-treatment and the median survival was 56 days after viral
treatment, whereas 60% of mice treated with TLX shRNA
survived beyond 200 days post-treatment (Fig. 4e).

When mice in control group died, brain samples were collected
for histological analysis. H&E staining revealed the development
of big tumour mass and aggressive tumour invasion across the
hemisphere in brains of control mice, whereas in brains of TLX
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Figure 2 | Knocking down TLX expression dramatically reduced the self-renewal of GSCs. (a) Quantification of sphere formation rate of GSCs

transduced with scrambled control RNAs (SC1, SC2) or TLX shRNAs (shTLX1, shTLX2). N¼ 6, **Po0.01, ***Po0.001 by Student’s t-test.

Error bars are s.d. of the mean. (b) Limiting dilution assay (LDA) analysis of GSCs transduced with scrambled control RNAs (SC) or TLX shRNAs (shTLX).

N¼ 20.
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shRNA-treated mice collected at the same time, no or much
smaller tumour was detected (Fig. 4f–h). The tumours developed
in control mice exhibited typical infiltrative features of GBM
(Fig. 4h). These results indicate that TLX shRNA-expressing virus
suppressed the progression of established tumours and increased
the lifespan of treated animals.

To determine the effect of TLX shRNA treatment on tumour
progression at a different time point after tumour establishment,
we treated mice with control RNA or TLX shRNA-expressing
lentivirus 2 weeks after transplantation with luciferase
reporter-bearing PBT003 cells (Supplementary Fig. 4a). Biolumi-
nescence imaging showed that TLX shRNA-expressing lentivirus
dramatically inhibited tumour growth, compared with control
virus (Supplementary Fig. 4b). Bioluminescence measurement
showed a significant decrease of tumour size in TLX shRNA-
expressing lentivirus-transduced mice, at 3 and 5 weeks after
treatment (Supplementary Fig. 4c). These results demonstrate
that treatment with TLX shRNA-expressing lentivirus suppressed
the progression of established tumours and increased the lifespan
of treated mice. The above results together strongly support our
hypothesis that TLX could be an effective target to suppress
human GSC self-renewal and tumorigenesis.

The TLX siRNA nanocomplex inhibits GSC tumour progression.
In addition to knocking down TLX using a TLX shRNA-
expressing viral vector, we explored delivering TLX siRNA oli-
gonucleotides using a non-viral nanovector. We chose the
poly(amidoamine) PAMAM dendrimer of generation
5 (referred to as G5 thereafter) to deliver TLX siRNA because it
has been shown to deliver siRNAs effectively by forming stable
and compact nanoparticles with siRNAs and protect siRNAs
from degradation, leading to efficient and long-term gene
silencing34,38. The dendrimer-mediated delivery is also relatively
safe without discernible toxicity39.

We first tested whether the G5 dendrimer could form stable
nanoparticles with siRNAs and deliver siRNAs into GSCs
effectively. The G5 dendrimer could form stable complexes with
TLX siRNA, as revealed by significant retardation on migration of
the G5-siRNA complex at an N/P ratio of 1.0 or above in a gel
shift assay (Supplementary Fig. 5a). G5 and TLX siRNA readily
formed stable and uniform nanoparticles with an average size
slightly smaller than 100 nm in diameter at N/P ratio of
5 (Supplementary Fig. 5b). Consistently, the G5-TLX siRNA
complexes were able to protect siRNA from RNase-mediated
degradation, whereas naked siRNA was rapidly degraded upon
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Figure 3 | Knocking down TLX reduced the tumour growth and prolonged the survival of tumour-bearing mice. (a) GFP fluorescence images of PBT003
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RNase digestion (Supplementary Fig. 5c). When incubated with
PBT003 cells, G5 efficiently delivered Cy3-labelled siRNA
(Cy3-siRNA) into cells compared with Cy3-siRNA alone control
(Fig. 5a). The cellular uptake of G5 delivered Cy3-siRNA was
further confirmed by flow cytometry analysis (Fig. 5b).

To achieve tumour cell-targeted delivery, we coated the
dendrimer-TLX siRNA nanoparticles with a targeting peptide
that contains the dual targeting RGDK motif40. The RGD motif
directs tumour-specific homing through integrin-dependent
binding to tumour cells specifically41, whereas the RXXK motif
promotes cell and tissue penetration through interaction with
neuropilin-1 (refs 41–44). Both integrin av and neuropilin-1 were
expressed on the surface of PBT003 cells (Fig. 5c and
Supplementary Fig. 5d). Decoration of the TLX siRNA-G5
complexes with the RGDK peptide led to the formation of
nanoparticles with a size B100 nm in diameter (Supplementary
Fig. 5e), within a size range required for effective cellular uptake.
Coating the G5 dendrimer with the RGDK peptide enhanced the
uptake of Cy3-siRNA into GSCs, compared with the uptake of G5
dendrimer-delivered Cy3-siRNA or Cy3-siRNA alone, as revealed
by increased intensity of intracellular Cy3 fluorescence (Fig. 5d).

We then treated PBT003 cells with the G5 dendrimer-TLX
siRNA nanocomplex with or without RGDK coating. RT–PCR
confirmed efficient TLX knockdown by dendrimer-delivered TLX
siRNA. Treatment with RGDK-coated dendrimer-TLX siRNA
nanocomplex induced even more potent TLX knockdown,
presumably due to better cell penetration (Fig. 5e). Compared
with control RNA, TLX siRNA delivered by dendrimer
dramatically reduced the growth of PBT003 cells, and TLX
siRNA delivered by RGDK-coated dendrimer suppressed the
growth of PBT003 cells even more (Fig. 5f). Together, these
results demonstrated that RGDK-coated dendrimer-TLX siRNA
complex efficiently knocked down TLX expression in GSCs and
suppressed GSC growth potently.

Next we investigated whether TLX siRNA delivered by RGDK-
coated dendrimer could suppress tumour progression in a human
GSC-induced xenograft tumour model. PBT003 cells with a
luciferase reporter were transplanted into the frontal lobe of NSG
mouse brains to establish tumours. One week after transplanta-
tion, mice were treated with the RGDK-coated dendrimer-TLX
siRNA or dendrimer-control RNA complex by intratumoral
injection (Fig. 6a). The in vivo TLX knockdown was confirmed by
RT–PCR (Fig. 6b). No obvious body weight loss was resulted
from surgery or nanoparticle treatment before tumour-induced
symptoms developed (Supplementary Fig. 6). Bioluminescence
imaging revealed that mice treated with the RGDK-coated
dendrimer-TLX siRNA complex had dramatically reduced
tumour growth compared with control mice (Fig. 6c). Biolumi-
nescence measurement confirmed that the tumour signals in
siRNA complex-treated mice were significantly decreased com-
pared with that in control mice (Fig. 6d). Moreover, treatment
with the TLX siRNA complex significantly extended the lifespan
of GSC-grafted mice (Fig. 6e). Tumours developed in control
mice exhibited typical infiltrative features of GBM (Fig. 6f,g),
whereas mice treated with the RGDK-dendrimer-TLX siRNA
nanoparticles developed smaller tumour. These results indicate
that RGDK-coated dendrimer-delivered TLX siRNA could
effectively decrease tumour growth and increase the lifespan of
tumour-bearing mice.

TET3 suppresses GSC self-renewal and tumorigenicity. To
investigate the mechanism by which TLX controls the
self-renewal and tumorigenesis of GSCs, microarray analysis was
performed to compare gene expression profiles in control and
TLX shRNA-treated GSCs. TLX was identified in the

No tumour expansion
& infiltration

shTLXSCSC

Tumour infiltrationTumour infiltration

shTLX-treated mice
over 200 days

shTLX

8.5 wk

SC

8.5 wk

P < 0.05

shTLX

SC

Days

S
ur

vi
va

l (
%

)

shTLX

SC
**

wk5wk4wk2

Tu
m

ou
r 

lu
ci

fe
ra

se
 a

ct
iv

ity
(p

ho
to

n 
pe

r 
s 

×
10

6 )

w
k5

w
k4

w
k2

shTLXSC

SC shTLX

**

R
el

at
iv

e 
T

LX
 e

xp
re

ss
io

n

GSC
transplant

Viral
injection

wk –1 wk 0

1.2

1

0.8

0.6

0.4

0.2

0

7

100

80

60

40

20

0

40 60 80 10
0

12
0

14
0

18
0

20
0

16
0

6

5

4

3

2

1

0

3.0

2.5

2.0

P
ho

to
n 

pe
r 

s 
×

10
6

P
ho

to
n 

pe
r 

s 
×

10
6

1.5

1.0

0.5

3.0
2.5
2.0
1.5
1.0
0.5

wk 2 wk 4 wk 5

Xenogen
imaging

a

b c

d e

f
g

h

Figure 4 | Viral delivery of TLX shRNA inhibits GSC-initiated tumour

formation in vivo in a xenograft mouse model. (a) Schematic of the

experimental design, including GSC transplantation, viral treatment and

xenogen imaging of xenografted tumours. (b) RT–PCR analysis showing

TLX knockdown in vivo. N¼ 3, **Po0.01 by Student’s t-test. Error
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downregulated gene cohort, whereas the cyclin-dependent kinase
inhibitor p21, a known downstream target that is repressed by
TLX45, was among the upregulated genes, confirming the
effectiveness of TLX knockdown in TLX shRNA-treated cells.
Several potential downstream targets that were not linked with
TLX before were identified in our array analysis (Fig. 7a).
Specifically, the expression of TET3, TDG and DICER1 genes
were upregulated and the expression of ID3, ID4 and MBD2
genes were downregulated in TLX-shRNA-treated PBT003 cells
(Fig. 7a). The regulation of TET3 by TLX knockdown was
confirmed in PBT003 cells and other GSC lines by RT–PCR
(Fig. 7b,c and Supplementary Fig. 7a). Up–regulation of TET3
upon TLX knockdown was also confirmed in PBT003-grafted
brain tumours from NSG mice treated with virus expressing TLX
shRNA compared with that in tumours from control mice
(Supplementary Fig. 8). Of note, TET3, TDG and MBD2 are all
involved in DNA methylation modification, suggesting epigenetic
regulation of DNA methylation may be an important
downstream event of knocking down TLX in GSCs.

Based on the negative regulation of TET3 expression by TLX,
we hypothesized that TET3 could function as a tumour
suppressor to control GSC growth and self-renewal. To test this
hypothesis, two shRNAs were designed to knockdown TET3 in
GSCs. Knockdown of TET3 was confirmed in PBT003 and
PBT707 cells (Supplementary Fig. 7b). PBT003 cells expressing
TET3 shRNAs showed increased cell growth compared with
control RNA-treated cells (Fig. 7d). Consistent with increased cell
growth, PBT003 cells with TET3 knockdown also showed
increased sphere formation rate compared with control cells
(Fig. 7e). The increased cell growth and sphere formation rate
after knockdown of TET3 were also observed in PBT707 cells
(Fig. 7d,e). Taken together, these results demonstrated that
knockdown of TET3 increased GSC growth and self-renewal.

To investigate if TET3 is sufficient to regulate the growth and
self-renewal of GSC, we tested the effect of TET3 overexpression
in GSCs. Human TET3 gene TET3-1 (with the CXXC domain) or
TET3-2 (without the CXXC domain; Fig. 7f) was cloned into a
lentivirus vector. Both TET3-1 and TET3-2 contain the
dioxygenase domain that is present in all TET proteins.
Overexpression of TET3-1 and TET3-2 was confirmed by
RT–PCR in PBT003 and PBT707 cells transduced with the
TET3-expressing virus (Fig. 7i and Supplementary Fig. 7c,d).
Overexpressing either TET3-1 or TET3-2 reduced the growth of
both PBT003 and PBT707 cells (Fig. 7g). Consistent with
decreased cell growth, PBT003 and PBT707 cells overexpressing

TET3-1 or TET3-2 also showed decreased sphere formation rate
compared with control cells (Fig. 7h). These results together
indicate that TET3 inhibits GSC growth and self-renewal.

To investigate if TET3 regulates GSC tumorigenicity, PBT003
cells were transduced with a lentiviral vector expressing a TET3
shRNA or a control shRNA. The transduced cells were then
transplanted into the frontal lobe of NSG mouse brains. Tumour
formation and expansion by the TET3 shRNA-treated GSCs were
compared with that by control RNA-treated GSCs maintained
under identical conditions. Stereological measurement of tumour
volumes confirmed the development of significantly larger
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tumours in brains transplanted with GSCs treated with TET3
shRNA, compared with that in brains transplanted with control
GSCs (Fig. 7j). Mice transplanted with TET3 shRNA-transduced
PBT003 cells had significantly shorter survival compared with

mice transplanted with control RNA-transduced cells (Fig. 7k).
Together, these results indicate that knockdown of TET3
increases tumour progression and decreases the lifespan of
GSC-grafted mice, in a manner opposite to knockdown of TLX.
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TET3 acts downstream of TLX to regulate GSC self-renewal.
To test whether TET3 acts downstream of TLX to regulate GSC
growth and self-renewal, an inducible system to double knock
down TLX and TET3 was established. PBT003 and PBT707 cells
were transduced with lentivirus that expresses doxycycline (dox)-
inducible TLX shRNA together with a puromycin-resistant
reporter gene. After puromycin selection, the stably transduced
cells were then transduced with lentivirus expressing dox-
inducible TET3 shRNA. Induced knockdown of TLX and TET3
was confirmed in dox-treated PBT003 and PBT707 cells
transduced with lentivirus expressing dox-inducible TLX shRNA
(Fig. 8a) or TET3 shRNA (Fig. 8b). As expected, the expression of

TET3 was upregulated after dox-induced knockdown of TLX
(Fig. 8c). Dox-induced TET3 knockdown reversed the expression
of TET3 to control levels in cells expressing both inducible TLX
shRNA and inducible TET3 shRNA (Fig. 8c).

Next we tested whether inducible TET3 knockdown could
rescue the inhibitory effect of inducible TLX knockdown on GSC
growth and self-renewal. After dox induction, the growth of
PBT003 and PBT707 cells expressing inducible TLX shRNA was
reduced when compared with non-induced cells (Fig. 8d). The
decreased cell growth resulted from induced TLX knockdown was
rescued substantially by induced TET3 knockdown in both
PBT003 and PBT707 cells (Fig. 8d). The reduced self-renewal of
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Figure 8 | TET3 acts downstream of TLX to regulate GSC growth and self-renewal. (a–c). RT–PCR analysis of dox-induced knockdown of TLX (a) and
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alone or together with dox-inducible shTET3. N¼4 for d and N¼ 6 for e, error bars are s.e. of the mean. (f) Heat map of differentially expressed genes in

PBT003 cells transduced with virus expressing TLX shRNAs (shTLX1, shTLX2) or TET3 shRNAs (shTET3-1, shTET3-2), in microarray analysis. (g) Heat

map of six differentially expressed genes in PBT003 cells transduced with virus expressing TLX shRNAs (shTLX1, shTLX2) or TET3 shRNAs (shTET3-1,

shTET3-2), in microarray analysis. (h,i) 5hmC dot blot analysis of total 5hmC level in TLX knockdown or TET3 knockdown PBT003 cells. (j,k)

Hydroxymethylated DNA immunoprecipitation (hMeDIP)-qPCR analysis of BTG2 and PPP2R1B (PPP2R) promoter in PBT003 cells transduced with virus

expressing shTLX or shTET3. N¼4, error bars are s.d. of the mean.
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PBT003 and PBT707 cells resulted from dox-induced TLX
knockdown was also rescued by dox-induced TET3 knockdown
(Fig. 8e). These results indicate that TET3 is a critical down-
stream target of TLX in regulating GSC growth and self-renewal.

The inverse correlation between TET3 and TLX expression in
TLX knockdown GSCs led us to hypothesize that TLX, a known
transcription factor that usually works as a transcriptional
repressor45, could repress TET3 expression by directly
binding to the promoter of the TET3 gene. Chromatin
immunoprecipitation (ChIP) analysis using a TLX-specific
antibody revealed that TLX bound to the promoter and
proximal intron regions of TET3 containing the putative TLX-
binding sites in both PBT003 and PBT707 cells (Supplementary
Fig. 9a,b). At position 1 (P1, around the promoter region) and
position 5 (P5, intron 2), the binding sites of TLX was associated
with a higher level of repressive histone mark H3K9me3 than that
of active histone mark H3K4me3 in both PBT003 and PBT707
cells (Supplementary Fig. 9c). These data suggest that TLX could
regulate the transcription of TET3 by directly binding to
regulatory regions of the TET3 gene.

To identify downstream targets of TET3 in GSCs, microarray
analysis was performed. The gene expression profile of PBT003
cells treated with TET3 shRNA-expressing lentivirus was
compared with PBT003 cells expressing control shRNA. Data
sets from microarray analysis of PBT003 cells transduced with
TLX shRNA or control RNA were included for comparison.
Among the differentially expressed genes, an inverse correlation
in gene expression was observed in TLX knockdown cells and
TET3 knockdown cells (Fig. 8f), consistent with our hypothesis
that TLX represses TET3 expression. Specifically, genes related to
tumour-suppressive function, including BTG2, TUSC1, BAK1,
LATS2, FZD6 and PPP2R1B, were upregulated in TLX knock-
down cells, but downregulated in TET3 knockdown cells (Fig. 8g
and Supplementary Fig. 10), suggesting that the TLX-TET3
regulatory cascade could regulate the growth and self-renewal of
GSCs through regulating these downstream tumour suppressors.

Because TET3 is a dioxygenase that converts 5mC to 5hmC, we
next tested whether the TLX-TET3 regulatory cascade could
regulate 5hmC level in GSCs. Dot blot analysis using a 5hmC-
specific antibody revealed increased 5hmC level upon TLX
knockdown, but decreased 5hmC level upon TET3 knockdown in
PBT003 cells (Fig. 8h,i). Our DNA microarray analyses have
identified several tumour suppressors as candidate downstream
targets of TLX and TET3, including BTG2 and PPP2R1B (Fig. 8g),
which were also upregulated upon TLX knockdown in
PBT003-grafted brain tumours in NSG mice (Supplementary
Fig. 8). To test whether the TLX-TET3 cascade regulates 5hmC
level at the promoter of these potential downstream targets,
hydroxymethylated DNA immunoprecipitation-quantitative PCR
(qPCR) analysis was performed. The 5hmC levels at the promoter
region of BTG2 and PPP2R1B genes were significantly increased
in PBT003 cells transduced with TLX shRNA, compared with
control cells (Fig. 8j,k), consistent with the elevated expression of
these genes in TLX knockdown PBT003 cells (Supplementary
Fig. 10a). In contrast, knockdown of TET3 reduced 5hmC level at
the promoter region of BTG2 and PPP2R1B (Fig. 8j,k), consistent
with the reduced expression of these genes in TET3 knockdown
PBT003 cells (Supplementary Fig. 10b). These results indicate
that the TLX-TET3 regulatory cascade could regulate the
expression of downstream tumour-suppressor genes by control-
ling the 5hmC level at their promoter regions.

Discussion
Cancer stem cells are critical for tumour maintenance, metastasis
and resistance to therapy. Therefore, targeting cancer stem cells is

a priority in the development of novel cancer therapies that can
completely cure and eradicate cancer by eliminating residual
tumour-initiating cells. GSCs are implicated in the initiation and
development of GBM, the most aggressive and invariably lethal
brain tumour. This study identified the nuclear receptor TLX and
TET3 regulatory axis as a target for GSCs. The results of this
study demonstrated that TLX is fundamental for maintaining
GSC growth, self-renewal and in vivo tumour formation capacity,
whereas TET3 is a potential tumour suppressor that inhibits GSC
growth, self-renewal and tumorigenesis. Knockdown of TLX
expression using either virally expressed shRNA or nanoparticle-
delivered siRNA dramatically reduced the growth and self-
renewal of GSCs in vitro and impaired the ability of GSCs to form
brain tumours in vivo. The finding that in vivo knockdown of
TLX expression inhibits brain tumour development suggests that
TLX is a promising target for anti-GBM therapy.

A role for TLX in gliblastoma development has been proposed
in studies using mouse models14,46. A recent study by lineage
tracing demonstrated that TLX regulates the self-renewal of brain
tumour stem cells in mouse brains47. However, there is no study
yet to directly investigate the role of TLX in human GSCs in vivo.
In this study, we showed direct evidence that targeting TLX in
GSCs derived from human GBM patients efficiently inhibited the
growth, self-renewal and tumorigenicity of GSCs in vitro and
in vivo. The inhibitory effects of growth and self-renewal by TLX
suppression were seen in all GSC lines tested, including classical,
mesenchymal and proneural subtypes. These results suggest a
general role for TLX in maintaining human GSC self-renewal,
independent of GBM subtypes. Treatment of human GSC-grafted
mice with TLX siRNA dramatically reduced tumour growth and
significantly prolonged survival of GSC-grafted mice. Targeting
TLX in vivo is effective at different time points, both 1 week and 2
weeks after tumour establishment. Our study, by knocking down
TLX in vivo, provided proof-of-concept that targeting TLX is
effective to suppress the progression of human GSC-derived
tumours.

Our study, by knocking down TLX expression in GSCs,
demonstrates that TLX is necessary for GSC self-renewal and
tumorigenesis. Because TLX is an essential regulator of neural
stem cell self-renewal11, it is possible that neural stem cells
expressing high levels of TLX that beyond certain threshold may
progress into gliomas over time. However, in a study using a
transgenic model of TLX overexpression in neural stem cells, we
did not detect any tumour formation48. In a separate study using
a mouse model of TLX overexpression, no tumour formation was
detected in brains of TLX-overexpressing mice under normal
condition either14. Only when combined with loss of p53 or, to a
less extent, ageing, overexpression of TLX led to glioma
progression over time14. Therefore, although our study
indicates that TLX is necessary for GSC self-renewal and
tumorigenesis, overexpression of TLX alone may not be
sufficient for GSC tumorigenesis.

Although the importance of targeting TLX in GBM is
established, the knowledge on how TLX controls the self-renewal
and tumorigenesis of human GSC is limited. The cyclin-
dependent kinase inhibitor p21 is a known downstream target
of TLX that can control cell cycle arrest. Our microarray
confirmed that p21 is upregulated upon TLX knockdown as
previously reported by us and others45,47. We did not see
upregulation of reported tumour-suppressor genes, such as
CDKN2A, CDKN2B and PML, and factors for neuronal
differentiation, such as SMARCC1 and DLX2, in our microarray
analysis. This may be due to the difference of human samples and
mouse samples used for analyses. In our study, human GSCs after
TLX knockdown were investigated, whereas previous study
examined the expression of genes altered by TLX knockout
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using RNAs isolated from tumour tissues of a mouse tumour
model47.

In this study, we identified TET3 as a potential tumour
suppressor that acts downstream of TLX to regulate GSC growth
and self-renewal. TLX represents the first transcription factor that
has been identified to regulate TET3 expression. TET3 is a
member of the TET family proteins that are known to be
epigenetic regulators that control DNA demethylation. Although
growing evidence showing that epigenetic regulation plays an
important role in cancer development, our knowledge on the role
of TET family members, especially TET3, in tumour development
is rather limited. We show here that TET3 suppresses the growth,
self-renewal and tumorigenesis of GSCs downstream of TLX. To
our knowledge, this is the first study to define the role of TET3 in
cancer stem cells and in GBM. Decreased 5hmC level has been
observed in human cancers, including malignant glioma18–20, but
the underling mechanism remains to be discovered. Our finding
showing that TLX represses TET3 expression in GSCs could
provide a plausible explanation for the decreased 5hmC level in
GBM. Furthermore, we identified tumour suppressors, including
BTG2, TUSC1, BAK1, LATS2, FZD6 and PPP2R1B, as common
targets of TLX and TET3. These tumour suppressors could be
potential targets of the TLX-TET3 regulatory axis in GSCs that
are worthy of further studies. The knowledge we gained about the
role of TET3 in suppressing tumour stem cell growth and self-
renewal, and the potential tumour-suppressor target genes we
identified for TET3 in this study will trigger further studies to
delineate the function of TET3 in tumour stem cells in particular
and tumorigenesis in general.

Mammalian TET3 exists in isoforms either containing the
CXXC domain (TET3-1) or not containing the CXXC domain
(TET3-2)49, with estimated transcript size of 11.6 and 10.9 kb,
respectively. Of interest, the TET3-2 isoform that lack the CXXC
domain is the major isoform in the brain and retina49,50.
Although the TET3-1 isoform can bind to DNA using its
amino-terminal CXXC domain51, the TET3-2 form can also bind
to DNA, presumably through its interacting proteins, including
the CXXC domain containing protein CXXC4 (ref. 49), and
transcription factors, such as REST50. It is clear that the
TET3-2 isoform that lacks the CXXC domain is able to induce
5hmC formation and gene expression50. Therefore, it is not
surprising that the CXXC domain of TET3 seems dispensable for
the effect on inhibition of GSC growth and self-renewal we
observed in this study.

Small RNAs have gained increasing attention as candidate
agents for therapies. However, the success of therapeutic
application of small RNAs depends on efficient intracellular
delivery. Safe and efficient small RNA delivery is in urgent need.
In this study, we developed an efficient system of siRNA delivery
into GSCs using polycationic PAMAM dendrimer G5. This
dendrimer has been shown to compact small RNAs into
nanoparticles and protect RNAs from enzymatic degradation,
therefore providing an efficient delivery means for introducing
small RNAs into GSCs. Moreover, coating the dendrimer-siRNA
nanoparticles with the tumour-homing RGDK peptide allows
tumour-specific targeting. In this study, we show that GSCs
express both integrin av and neuropilin-1. Furthermore, we
demonstrated that the RGDK-coated dendrimer-TLX siRNA
nanoparticles were able to deliver TLX siRNAs into GSCs
efficiently and exert potent gene knockdown and growth
inhibitory effect. When delivered in vivo, the RGDK-coated
dendrimer-TLX siRNA nanocomplex inhibited the growth of
human GSC-initiated tumours. Moreover, treatment of the
RGDK-coated G5-TLX siRNA complex significantly extended
the lifespan of tumour-bearing mice, increasing the median
survival from 48 days after the first treatment to 53 days,

corresponding to about 7-month prolonged survival in patients.
Similarly, mild but significant increase of survival has also been
observed by targeting other important GBM targets52,53.

A potential clinical significance of this finding is derived from
the ability of knocking down TLX in GSCs via lentivirus-delivered
shRNA or nanoparticle-delivered siRNA to compromise the self-
renewal and tumour formation potential of GSCs in vivo. Our
studies demonstrated that TLX knockdown inhibited tumour
initiation and progression from human GSCs in a xenografted
tumour model and increased the survival of grafted animals
substantially. GBM is highly aggressive brain tumour with a short
life expectancy of a little over a year after diagnosis, and patient
survival is only marginally increased by current therapies. The
small RNA approach to knock down TLX in GSCs has the
potential to help improve the outcome and survival of GBM
patients.

Methods
Cell culture. Sphere cultures of GSCs were established from freshly dissociated
surgical specimens as described36. Patients were newly diagnosed as grade IV GBM
multiforme based on World Health Organization-established guidelines. All patient
tissues were obtained in accordance with the City of Hope Institutional Review
Board-approved protocols. The study uses completely anonymized specimens. No
informed consent is involved. The GSCs were maintained in DMEM-F12 medium
(Omega Scientific) supplemented with 1X B27 (Invitrogen), 5 mg ml� 1 heparin
(Sigma), 2 mM L-glutamine (Media Tech), 27.4 mM HEPES (Fisher), 20 ng ml� 1

EGF (PeproTech) and 20 ng ml� 1 FGF (PeproTech) with growth factors
replenished twice a week. GSCs were treated with accutase (Innovative Cell
Technologies) for cell dissociation and induced into differentiation using 0.5% fetal
bovine serum and 1 mM all-trans retinoic acid. All the cultures used in this study
were confirmed for the lack of mycoplasma contamination using MycoAlert PLUS
Mycoplasma Detection Kit (Lonza).

Plasmid DNA and viral preparation and transduction. shRNAs or the scrambled
control RNAs were cloned into lentiviral pHIV7-GFP or pHIV-TetR-GFP vector.
The sequences for shRNAs include TLX shRNA-1 (50-GCCGCCATTGCAGCC
CTTCAA-30) and TLX shRNA-1 scrambled control (50-CAGTCCATCAGAC
CCTCGCTG-30), TLX shRNA-2 (50-GGAAGTCAACATGAACAAAGA-30) and
TLX shRNA-2 scrambled control (50-ACTCAAAAGGAAGTGACAAGA-30),
shRNA control for TET3 (50-GTTCAGATGTGCGGCGAGT-30), shTET3-1
(50-CCGAAGCTGTGTCCTCTTA-30) and shTET3-2 (50-GGAGTCACCTCTT
AAGTAC-30)54. Lentiviruses were produced using 293T cells. To transduce GSCs,
spheres were dissociated and incubated with lentivirus and 4 mg ml� 1 polybrene
for 24 h. Human TET3-expressing vector EX-H2292-M11 was purchased from
GeneCopoeia and hTET3 sequences were subcloned into CSC lentiviral vector to
get TET3-2-expressing vector. Human TET3 CXXC domain sequences were
amplified from human neural stem cell cDNAs and subcloned into TET3-2-
expressing vector to get TET3-1-expressing vector that expresses full length of
TET3 gene.

RT-PCR. Total RNAs were isolated with Trizol reagent (Invitrogen) or RNeasy
Mini Kit (Qiagen). Reverse transcription (RT) was performed using the Tetro
cDNA synthesis Kit (BioLINE). RT–PCR reactions were performed using SYBR
Green Master Mix (Thermo Scientific) on Step One Plus Real-Time PCR
instrument (Applied Biosystems). The primers for RT–PCR are listed in
Supplementary Table 1. Actin or glyceraldehyde-3-phosphate dehydrogenase was
used as the reference gene for normalization. The DDCt method was used for
quantification analysis.

Immunostaining. For immunofluorescence, cells were fixed with 4% paraf-
ormaldehyde and permeabilized in 0.3% Triton X-100. Antibodies included rabbit
anti-TLX (1:1,000; Shi lab)45, mouse anti-nestin (1:2,000; BD Pharmingen;
Catalogue # 611659)55, rabbit anti-integrin av (1:500; Chemicon; Catalogue #
AB1923)43, mouse anti-neuropilin-1 (1:11; Miltenyi Biotec; Catalogue # 130-090-
693)43, mouse anti-GFAP (1:1,000; Sigma; Catalogue # G3893) and rabbit
anti-Tuj1 (1:6,000; Covance; Catalogue # PRB-435P)56.

Animals. All animal-related work was performed under the IACUC protocol
05050 approved by the City of Hope Institutional Animal Care and Use
Committee. Both male and female NSG mice (the Jackson Laboratory) at 6–8
weeks old were used at age- and gender-matched manner. The sample size was
determined based on using t-test for two-group independent samples to reach
power of 0.8 and the significance level of 0.05. Po0.05 was considered statistically
significant. When monitoring tumour growth, investigators were blind to the group
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allocation during the bioluminescence xenogen imaging and aware of group allo-
cation when assessing the outcome.

Viral transduction followed by transplantation. GSCs were transduced with
control RNA or relevant shRNA expressing lentivirus. Two days after virus
transduction, 5� 104 cells were transplanted into the frontal lobes of brains of 6- to
8-week-old NSG mice by stereotaxic intracranial injection. Briefly, 2 ml dissociated
cells in PBS were injected into the following site (AP¼ þ 0.6 mm, ML¼ þ 1.6 mm
and DV¼ � 2.6 mm) with a rate of 1 ml min� 1. The same coordinates were used
for all intracranial injections in this study. Mouse brains were harvested when
severely sick mouse was found in treated or control group. H&E staining was
performed on 20mm coronal sections of frozen brain samples, followed by tumour
size analysis. The tumour volume was measured by multiplying the area of the
tumour tissues (quantified by Image J) by the thickness of the sections, then
multiplying by the number of the sections that contain the tumour tissues. In a
separate set of experiment, the survival of grafted mice was recorded and analysed.

Intracranial viral transduction. PBT003 cells (2� 105) transduced with lucifer-
ase-expressing lentivirus were intracranially transplanted into the frontal lobe of
6- to 8-week-old NSG mice. One week or two weeks later, mice were randomly
grouped and treated with scrambled control RNA or TLX shRNA-expressing
lentivirus by intratumoral injection. Tumour growth was monitored by biolumi-
nescence xenogen imaging. The bioluminescence intensity was quantified. Six
weeks after virus treatment, mouse brains were collected and H&E staining was
performed on brain sections. In a separate set of experiment, the survival of mice
after virus treatment was recorded and analysed.

Dendrimer-based siRNA delivery in vitro. The G5 dendrimer was synthesized
starting with the triethanolamine core and following the iterative Micheal
addition and amidation as previously described38. The RGDK peptide was
synthesized as an oligopeptide with the sequence of E16G6RGDK40 and purchased
from GL Biochem Ltd. The TLX siRNA has the sequence of sense: 50-CCGCCAU
UGCAGCCCUUCAAGAUdGdA-30 , antisense: 50-UCAUCUUGAAGGGCU
GCAAUGGCGGGG-30. The control siRNA has the sequence of sense: 50-CAUC
CAUCAGACCCUCGCUGGAUdGdA-30 , antisense: 50-UCAUCCAGCGAGG
GUCUGAUGGAUGGG-30. To form RGDK-coated G5 dendrimer-siRNA
complexes, G5 was first mixed with siRNAs at N/P ([total terminal amines in G5]/
[phosphates in siRNA]) ratio of 5 and kept at 37 �C for 30 min. Then RGDK
peptide was added to the G5-siRNA complex at G5/RGDK molar ratio of 0.426 and
incubated at 37 �C for another 10 min. The G5-siRNA or RGDK-G5-siRNA
complexes were then added to GSCs. PBT003 cells (2� 105) were treated with
Cy3-siRNA alone (50 nM), G5 dendrimer-siRNA or RGDK-coated G5 dendrimer-
siRNA (N/P ratio of 5; G5/RGDK ratio of 0.426). Two days after, cellular uptake of
Cy3-labelled siRNA delivered by siRNA alone, G5 dendrimers or RGDK-coated G5
dendrimers was monitored by fluorescence microscopy and flow cytometry. For
knocking down of TLX, PBT003 cells were treated with the G5 dendrimer-TLX
siRNA complex or G5-control siRNA complex with or without RGDK coating,
TLX expression was analysed by RT–PCR after 2 days of dendrimer-TLX siRNA
treatment.

Intracranial delivery of dendrimer-siRNA nanoparticles. PBT003 cells (2� 105)
transduced with luciferase-expressing lentivirus were intracranially transplanted
into the frontal lobe of 6- to 8-week-old NSG mice. One week after transplant,
tumours were detected by bioluminescence imaging and mice were treated
with RGDK-coated G5 dendrimer-TLX siRNA complex or RGDK-coated
G5 dendrimer-SC complex (2.5 nmole siRNA per mouse with N/P ratio of 5,
G5/RGDK ratio of 0.426) by intratumoral injection once a week for 6 weeks.
Tumour growth was monitored by bioluminescence imaging once a week for 7
weeks. The bioluminescence intensity, mouse body weight and mouse survival were
analysed.

Microarray analysis and GBM subtype determination. For GBM subtype
characterization, total RNAs were extracted from ten lines of GSCs using RNeasy
Mini Kit (Qiagen). Microarray analysis was performed using GeneChip Human
Genome U133A 2.0 Array (Affymetrix). Microarray labelling, hybridization and
quality control measurements were performed in the Integrative Genomics Core of
City of Hope. The microarray expression data of the ten GSC samples were pooled
together with published microarray expression data of 173 TCGA samples37. After
batch removal, principle component analysis (PCA) was performed on the pooled
data set using Partek Genomics Suite software, version 6.6 (2014 Partek Inc). 747
relevant genes were used for PCA according to the data filtering approach as
described37. Centroids of the four GBM subtype clusters were defined by PCA and
the Euclidean distance of each GSC sample to the centroids were calculated.
Samples were classified to the GBM subtype that has the least Euclidean distance
value.

To identify TLX or TET3 downstream target genes, PBT003 cells were
transduced with scrambled control RNA or TLX shRNA-expressing lentivirus
(for shTLX microarray), or control RNA or TET3 shRNA-expressing lentivirus

(for shTET3 microarray). Three days after virus transduction, total RNA was
extracted using RNeasy Mini Kit (Qiagen). Microarray analysis was performed
using GeneChip PrimeView Human Gene Expression Array (Affymetrix).
Microarray labelling, hybridization and quality control measurements were
performed in the Integrative Genomics Core of City of Hope. Microarray analysis
was performed using Partek Genomics Suite (Partek, Inc.). Expression values were
robust multi-array average (RMA) normalized57, and fold-change values were
calculated using least-squares mean between samples. Genes were defined as
differentially expressed if they showed an absolute value of fold-change larger than
1.5. Heat maps to visualize differentially expressed genes were produced in Partek
using Euclidian distance for hierarchical clustering of standardized expression
values. Microarry a data have been deposited to NCBI’s GEO under accession
number GSE75945.

Cell growth and sphere formation analysis. PBT cells were transduced with
relevant shRNA or specific gene-expressing lentivirus. For growth analysis, the
transduced cells were cultured for 4 to 10 days in 24-well plates, and cell numbers
were counted using a haemocytometer every 2 or 3 days. For sphere formation
assay, the transduced cells were seeded at 100 cells per well in 48-well plates and
cultured for 2–3 weeks followed by analysis of sphere number under microscope.
The sphere formation rate was defined as the percentage of sphere-forming cells
out of the 100 starting cells.

In vitro limiting dilution assay. PBT cells transduced with control RNA or
relevant shRNA expressing lentivirus were seeded at 1, 5, 10, 20, 50 and
100 cells per well into a 96-well plate. Ten days after seeding, the number of
neurospheres in each well was counted. Extreme limiting dilution analysis was
performed as described52,58 using software available at http://bioinf.wehi.edu.au/
software/elda.

CellTiter-Glo luminescent assay. PBT003 cells were treated with G5 dendrimers
or RGDK-coated G5 dendrimers complexed with 100 nM scrambled control RNA
or TLX siRNA at N/P ratio of five. Three days after treatment, cells were seeded at
5,000 cells per well in a 96-well plate. After another 3 days, cells were subjected to
CellTiter-Glo luminescent assay (Promega). The luminescent intensity is an indi-
cation of relative cell number.

Dox inducible knockdown. PBT003 or PBT707 cells were transduced with
lentivirus expressing dox-inducible TLX shRNA, with or without lentivirus
expressing dox-inducible TET3 shRNA. PBT003 cells (1� 105) or PBT707 cells
(5� 104) were induced with dox (5mg ml� 1 for PBT003, 2 mg ml� 1 for PBT707)
or without dox every other day for 6 days (for PBT003) or 4 days (for PBT707),
followed by cell counting using a haemocytometer. PBT003 or PBT707 cells
without viral transduction were used as controls to test toxicity from dox. For gene
knockdown effect, total RNA was extracted 4 days after dox induction, followed by
RT–PCR.

In vivo gene knockdown. PBT003 cells (2� 105) were intracranially transplanted
into the frontal lobes of 6- to 8-week-old NSG mice. One week later, the trans-
planted mice were treated with scrambled control RNA or TLX shRNA-expressing
lentivirus by intratumoral injection. Three days after viral transduction, total RNA
was extracted from tumour tissues and RT–PCR was performed using human
gene-specific primers to determine in vivo TLX knockdown and expression of
downstream target genes TET3, BTG2 and PPP2R1B.

ChIP assay. ChIP assay was performed following our previously published pro-
cedure45. Briefly, 5 million PBT003 or PBT707 cells and 5 mg TLX antibody45,
0.5 mg trimethyl H3K4 antibody (HeK4me3, Cell Signaling; Catalogue # 9727) or
0.5 mg trimethyl H3K9 antibody (H3K9me3, Abcam; Catalogue # Ab8898-25) were
used for each immunoprecipitation assay. The precipitation was performed using
magnetic beads conjugated protein G (Thermo Fisher). Primers used are listed in
Supplementary Table 1.

5hmC dot blot. PBT003 cells were transduced with relevant shRNA-expressing
lentivirus. Three days after, genomic DNA was extracted (QIAamp DNA Mini Kit)
and subjected to dot blot analysis using an antibody specific for 5hmC (1:5,000;
Active Motif; Catalogue # 39770)51.

Hydroxymethylated DNA immunoprecipitation-qPCR. PBT003 cells were
transduced with relevant shRNA-expressing lentivirus. Three days after, hydro-
xymethylated DNA immunoprecipitation assay was performed using 5 million cells
and 1 ml rabbit anti-5hmC antibody (Active Motif; Catalogue # 39770)51 for each
reaction. The immunoprecipitation was carried out using magnetic beads
conjugated protein G (Thermo Fisher). Primers used for BTG and PPP2R1B RT-
PCR are listed in Supplementary Table 1.
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