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Genomic approaches are gathering momentum in biology and emerging opportunities lie in the creative use of
comparative molecular methods for revealing the processes that influence diversity of wildlife. However, few
comparative genomic studies are performedwith explicit and specific objectives to aid conservation of wild pop-
ulations. Here I provide a brief overview of comparative genomic approaches that offer specific benefits to biodi-
versity conservation. Because conservation examples are few, I draw on research from other areas to
demonstrate how comparing genomic data across taxa may be used to inform the characterisation of conserva-
tion units and studies of hybridisation, as well as studies that provide conservation outcomes from a better un-
derstanding of the drivers of divergence. A comparative approach can also provide valuable insight into the
threatening processes that impact rare species, such as emergingdiseases and theirmanagement in conservation.
In addition to these opportunities, I note areas where additional research is warranted. Overall, comparing and
contrasting the genomic composition of threatened and other species provide several useful tools for helping
to preserve the molecular biodiversity of the global ecosystem.
© 2015 Grueber. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural
Biotechnology. This is an open access article under the CCBY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Conservation genetics has entered the world of genomics [1]. The
number of species with whole-genome sequence data is continually
growing [2,3], so that more and more endangered taxa are becoming
“genome-enabled” [4], that is, genome resources are available for
them or their close relatives. These new technologies provide
researchers with unprecedented levels of data to generate precise esti-
mates of essential population genetic parameters, to examine questions
SW, Australia.

behalf of the Research Network of C
such as the causes and genetic consequences of population decline and
fragmentation [1,5; for critique see 6].Most applied conservation genet-
ics research targets issues operating within or amongst populations of
the same species (which may be spatially or temporally separated)
[7]. This level of focus is often appropriate because anthropogenic
threatening processes typically occur over relatively short evolutionary
time frames: the scale relevant to population/species-level processes
rather than deeper evolutionary trajectories such as speciation. Never-
theless, there is additional insight to be gained from considering the
evolutionary context of threatened species, i.e. by taking a comparative
approach across taxa. For example, comparative analyses of species' de-
mographic and life history characteristics have revealed those particular
ecological traits that predispose species to high risk of extinction [8,9].
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In this paper, I explore how comparative approaches using genomic
data may also add value to conservation efforts.

Comparative genomics benefits most from high-quality, annotated
and mapped genome data, but the pre-existence of such complete data
is not necessarily a prerequisite for taking a comparative genomic ap-
proach to wildlife genetics [10]. This is good news for conservation scien-
tists, who frequently work on non-model species for which genome
resources do not exist. Several options are available, although not all
will be uniformly applicable across contexts: reduced-representation li-
braries [11] provide a cost-effective means of obtaining genome-level
data for comparative studies [12]. RNAseq to obtain transcriptome-
level data can also provide valuable insight, without necessarily
obtaining whole-genome data (e.g. comparative RNA sequencing of
12 primate species, most of which had little or no genomic resources
[13]). Genome-informed SNP arrays, developed for well-studied spe-
cies, can be used to generate large amounts of data for closely related
threatened taxa (e.g. utilising a primarily domestic dog SNP array to
study wild canids [14]), although the percentage of shared polymor-
phisms between species decays exponentially with divergence time,
decreasing the amount of data obtained from the chip for more distant
species [15]. A further approach to preliminary comparative genomics
investigation is the generation of large amounts of sequencing data,
which is then aligned to the annotated genome of a closely related spe-
cies (e.g. aligning California condor sequencing data against the chicken
genome [16]).

Wildlife genomics may be undertaken at multiple levels, from
comparing individuals within a population (in a population genetics/
genomics framework) to comparisons at higher taxonomic levels (com-
parative genomics). Many genomics techniques offer opportunities for
conservation (for recent overviews, see [1,3,6,17]). However, despite
their potential value, comparative genomic studies with explicit and
specific conservation applications remain uncommon ([1,6,18], excep-
tions are [19,20]). Impediments to the uptake of genomics in conserva-
tion include sampling and analysis constraints [21], as well as a lack of
clear examples of successful application [6], amongst others. In this
review, I focus on possible applications of comparative genomics to
conservation, and provide examples of a variety of avenues for future
work in this field. Comparative genomics itself is a broad field, with
the potential to answer many salient questions in evolutionary biology,
medicine, and other fields (e.g. [22]), and therefore the analyses
mentioned herein also have many applications beyond threatened
species management. In fact, due to the scarcity of conservation
examples, much of the empirical work I discuss here has been con-
ducted on non-threatened species. I touch on a number of topics in
brief: my aim is not to provide an exhaustive survey, but rather an
overview of new ways that an ever-growing resource of genomic
data can be exploited to address timely problems in biodiversity
conservation.

1.1. Applications of comparative genomics to conservation

My main discussion centres on a summary of conservation science
research questions that may be approached or supported by the use of
comparative genomic methods, and identification of research needs to
further progress these aims.

1.1.1. Characterisation of conservation units
Identifying units of conservation is a fundamental goal of any

conservation strategy, essential to both resource planning in a legal
and financial sense (e.g. how to distribute conservation effort) and
management planning in a practical and biological sense (e.g. which
populations may be mixed and which show important distinctiveness
that should be preserved). Although definitions vary [23], the concept
of conservationmanagement units encompasses groupings beyond tra-
ditional taxonomic demarcations, such as evolutionarily significant
units and/or variants with particular ecological or social value.
Nevertheless, conservation units are usually informed by phylogeny,
traditionally using putatively neutral genetic regions such as microsat-
ellite markers or mtDNA. Importantly, these methods inform conserva-
tionists as to the degree of migration amongst putative conservation
units [24] providing a distinction between “evolutionarily significant
units”: populations that are phylogenetically discrete, and “management
units”: populations with significant divergence in allele frequencies [25].

Recently, researchers have begun to target adaptive molecular
variation for inclusion in the assessment of conservation units. These
data introduce information about evolutionary distinctiveness into the
definition of protected populations [26]. For example, diversity and
differentiation at the major-histocompatibility complex (MHC), genes
associated with adaptive immunity [27], have been incorporated into
the delineation of conservation management units for several species,
such as giant panda Ailuropodamelanoleuca [28] andmarbledmurrelets
Brachyramphus marmoratus (a threatened seabird) [29]. However, bas-
ing management decisions on a small number of functional genomic
regions presents a high risk of failing to detect evolutionarily and eco-
logically important processes that influence other parts of the genome
[30]. Recent studies have shown how genome-level data can provide
very high resolution for the reconstruction of phylogenetic trees, en-
abling detailed identification of species boundaries and relationships
[12,31]. For example, Wagner et al. [31] recently used reduced-
representation RAD sequencing to generate exceptionally detailed
phylogenetic inference amongst 16 cichlid species in Lake Victoria, a
communitywell-studied in evolutionary ecology. Evolutionary relation-
ships amongst these species had previously been difficult to dissect
using traditional methods, due to very recent divergence times which
impaired discrimination amongst morphologically distinct species
using much smaller numbers of nuclear and mitochondrial DNA
sequence variants [31].

In conservation, phylogenetic approaches have been used to identify
themost evolutionarily distinct species, whichmay then be targeted for
particular conservation effort (e.g. EDGE [evolutionarily distinct, global-
ly endangered] species [32]). Taking a whole-genome comparative ap-
proach to the characterisation of conservation units provides at least
three advantages over traditional approaches: 1) greater resolution via
the use of manymore loci, 2) the ability to incorporate a wide diversity
of putatively functional genetic regions (i.e. genic sequences) and 3) the
ability to perform analyses using either neutral or functional data (or
both), enabling researchers to study how different processes drive
population structure [33]. Several challenges exist with the use of
whole-genome data for the reconstruction of phylogenetic trees, such
as how to conduct inference regarding species trees in the case of con-
flicting gene trees from different genomic regions [34]. These issues
apply to all studies that use multigene data for phylogenetics, not just
those with conservation aims, and their resolution is still an area of ac-
tive research (e.g. [34,35]). Nevertheless, genome-level data enables re-
searchers to determine whether any differentiation observed amongst
populations results from evolutionary or demographic processes. For
example, genetic structures based on different genomic regions (such
as microsatellites versus MHC) are frequently uncorrelated (e.g. [29]),
typically interpreted as a greater role of selection than drift at immuno-
genetic versus neutral loci, respectively [36]. Populations differing as a
result of recent, drift-associated processes are not considered as distinct
as populations differing as a result of deep adaptation processes [23].
Differentiating these mechanisms of structure amongst populations is
essential to the fully informed preservation and management of molec-
ular biodiversity in ecosystems [1].

1.1.2. Informing the conservation consequences of hybridisation
Human landscape modification has increased the frequency with

which hybridisation influences the evolutionary course of many species
around the world [37]. Introgression of a threatened species by a previ-
ously geographically separated and more-common relative can affect
species integrity and result in extinction of the rarer type [38,39].
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Although the term “hybridisation” typically refers to interspecific
breeding, it has also been used to refer to interbreeding at lower levels
of genetic differentiation, which may be of conservation relevance,
such as amongst sub-species or regional variants. Hybridisation be-
tween previously separated groupsmay not only result in the extinction
of rare forms by assimilation, but also accelerate the decline of threat-
ened populations via outbreeding depression: the decreased fitness
that occurs when distantly related lineages interbreed, as a result of
the break-up of locally adapted haplotypes or gene combinations
[40–42]. Determining the evolutionary timing of hybridisation is impor-
tant froma conservation perspective, in order to evaluatewhether it has
occurred as a result of natural or anthropogenic processes [39]. Popula-
tion and comparative genetics can be used to quantify the degree of an-
cient or recent hybridisation between threatened and non-threatened
species [14,43], as well as to identify taxon-specific markers for the
diagnosis and monitoring of hybridisation in dynamic systems (e.g.
[44]). Identifying the degree of hybridisation represented by particular
individuals, and thus whether any “pure forms” remain in a population,
is essential in a conservation context for determining whether pure
lineages can be recovered [39].

Studying hybridisation in some taxonomic groups requires molecu-
lar markers at the genome-level due to peculiar characteristics of the
species' genomic architecture (such as a recent [~25–100MYA] genome
duplication in salmonids [20], or polyploidization in plants [45]). In
addition, research at the comparative genomic level can provide addi-
tional information that cannot be obtained using conventional genetic
approaches: by examining extensive functional diversity data, re-
searchers can identify the particular genomic regions that determine
the physiological consequences of hybridisation. For example, diagnos-
ing particular chromosomal regions under strong selection during
hybridisation events allowed researchers to quantify the proportion of
the wheat genome that has been affected by introgression [45]. Such
studies can also inform whether particular genes are experiencing
strong selection as a result (e.g. the identification of “super invasive”
alleles at higher-than-expected frequencies in admixed populations of
salmonids [46]).

Identifying genomic regionsmost affected by introgressionmay also
provide diagnosticmarkers for rapidly distinguishing hybrids from pure
forms [46]. These approaches have been used to inform the manage-
ment of westslope cutthroat trout Oncorhynchus clarki lewisi in North
America [20,46], for which the major threat to persistence is
hybridisationwith introduced rainbow troutO.mykiss [47]. Researchers
used genome-level data to identify 3180 species-diagnostic SNPs, which
were then genotyped in fish from multiple populations to evaluate
levels of introgression and numbers of pure forms remaining [20,46].
The data also provided estimates of the proportion of the genomes of in-
dividual hybrid fish that could be traced back to cutthroat or rainbow
trout. Quantifying individual-level introgression in this way enabled
the researchers to study introgression with great precision, including
identification of those animals for which a very small proportion of
their genome came from the invasive species, as well as the discovery
of candidate adaptive regions experiencing strong selection pressure
during the hybridisation process [46].

Overall, the comparative genomic approach can provide unprece-
dented levels of precision for the study of hybridisation in conservation
contexts, providing diagnostic markers for the identification of hybrids
versus pure forms. Comparative genome-level analyses have the poten-
tial to reveal the genomic architecture of hybridisation, for the purpose
of understanding the evolutionary mechanisms that drive hybrid
genome evolution. From a practical perspective, these findings can
also predict the effectiveness of novel selective breeding approaches
to producing pure forms from recently introgressed populations as
well as identifying those individuals to target (e.g. [48,49]). Molecular
selective breeding may enable the recovery of genetic diversity
contained within hybrids, which would otherwise be lost if only pure
forms were targeted for breeding [49]. Using molecular genetics for
the latter is preferred over pedigree or morphological approaches to
preserving rare forms from hybridisation, which can result in very
high levels of inbreeding [50], although there are advantages to inte-
grating multiple data types, especially when there may be ascertain-
ment bias in the reference genomic material relative to the target
species (e.g. [51]). The use of genome-level molecular data for de-
introgression is still in its infancy: so far it has been pursued theoretical-
ly using real molecular data from intentional hybrids of Merino and Poll
Dorset sheep breeds [49], andproposed in conservation planning for the
endangered Cika cattle breed, which has been historically hybridised
with other breeds [51]. Computational modelling has shown that
selective breeding regimes could ultimately recover pure genomes
from introgressed populations in only a few generations [49]. It will be
interesting to observe whether this approach, currently targeting the
conservation of rare breeds of commercially important domestic spe-
cies, will offer benefits for the recovery of wildlife species threatened
by hybridisation in the future.

1.2. Discovering the drivers of divergence

A broad goal of comparative genomics is to reveal the evolutionary
forces that drive genetic and genomic diversity and, as already shown,
these findings can add value to specific conservation problems. Impor-
tantly, comparative approaches can reveal the genomic regions under
selection and putative genetic underpinnings of unique traits [3,13,
52]. Identifying regions of the genome that are more divergent than ex-
pected, as well as those regions that are more variable than expected,
may help guide the preservation of genetic diversity in conservation
management, especially in captivity. At present, little is known about
the ongoing genetic consequences of adaptation to captivity in threat-
ened species, particularlywhen captive-raised animals are reintroduced
to the natural environment [23]. Comparing genomes amongst species
can help to identify those regions that are experiencing particularly
strong positive selection, which may signify rapid adaptation to captiv-
ity, providing markers for the management of this undesired process
[23,53].

At the whole-genome level, comparative approaches can reveal
gene losses/gains and help researchers discover the defining character-
istics of species (e.g. [54,55]) as these changes are major contributors to
functional evolution and divergence [56]. However, inference based on
gene losses/gains requires very high-quality genomes [57]. Many con-
servation genomic studies use data obtained through reduced-repre-
sentation methods or other unassembled data types [58], which
would not be suitable for addressing these questions. It has also been
noted that such “genome scan” population genomic studies need to be
undertaken with caution, as the risk of false-positives is high [59]. Con-
tinued advances in the computational comparison of genomes, in order
to more accurately catalogue regions of divergence between species
(whether sequence divergence or gene gains/losses) may provide valu-
able information about the biology and life history of species (e.g. [54]).
Identifying the genetic origin of unique traits can be helpful for manag-
ing threatening processes (e.g. determiningwhether they have intrinsic
or extrinsic causes). For example, in comparing the giant panda genome
to those of other carnivores, the absence of digestive cellulose enzymes
enabled Li et al. [55] to infer that the strict bamboo diet of the species is
unlikely to have arisen as a result of intrinsic genetic characteristics, and
may be directedmore by gutmicrobiota. In addition, identifying regions
of shared synteny between related species can aid in the characterisa-
tion of highly divergent orthologous genes, which would be difficult to
identify using homology searches alone [54]. Clearly, there are advan-
tages to be gained from taking a comparative approach to discovering
the most divergent loci, and a better understanding threatened species
and their potential response to threats. Ongoing improvements to geno-
mic assembly and comparison, particularly the identification of varia-
tion in gene composition amongst species, will help to facilitate this
conservation research.
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1.3. Understanding intrinsic threats and disease resilience

Over time, small, isolated populations will gradually lose genetic di-
versity and levels of inbreeding will increase: together, these processes
erode the resilience of these populations to environmental changes and
lead to increased expression of deleterious recessive alleles [60,61].
These genetic impacts leave populations vulnerable to a variety of
novel threats, particularly diseases. Comparative genomic approaches
can assist in the study of the disease threats that arise from losses in
genetic diversity, by providing a greater understanding of the origin of
diseases and the response of populations. The results can then be used
to design strategies for disease treatment or management. In this sec-
tion, I provide examples of research into diseases of threatened species
that have applied comparative molecular approaches.

Comparative genomics of wildlife can support the identification of
candidate loci responsible for heritable disorders that may increase in
frequency in small populations as a result of inbreeding. An example is
the lethal chondrodystrophy seen in the critically endangered California
condor Gymnogyps californianus [16]. This disease showed Mendelian
segregation in condor pedigrees [62], so researchers developed genomic
resources with the aim of identifying the genetic basis of the disorder
and revealing genetic markers linked to the disease [16,63]. It is hoped
that this ongoing research will ultimately inform the design of captive
breeding protocols that can reduce the frequency of chondrodystropy,
although it would be important to avoid losses of genetic diversity
overall (i.e. at other loci), and ensure inbreeding is minimised to avoid
further decreases in individual fitness [23].

A particularly interesting application of genomics to the study of
disease emergence in a threatened species is in the Tasmanian devil
Sarcophilus harrisi, which is under threat from devil facial tumour
disease (DFTD). DFTD is a highly contagious and fatal transmissible
cancer that has caused dramatic population declines in the species' na-
tive Tasmania, since its first observation in 1996 [64]. Uniquely, DFTD
cells are the infectious agent of the disease, spread via direct contact be-
tween individuals [65], probably when devils bite one another during
aggressive interactions [66]. In this case, comparative genomic research
compares the host genomewith that of its “pathogen”, DFTD, viawhole-
genome sequencing [67]. The aims of this work are to identify the
underlying mutations driving tumorigenesis and the ability of DFTD to
evade the immune system of the host, with a long-term view toward
a potentially identifying a target for a vaccine or other therapeutic [67,
68]. Many insights into the origin, transmission and evolution of DFTD
have arisen from this and related work, which is still ongoing [68].
Meanwhile, comparisons between the genome of DFTD and its host
have enabled the identification of marker loci, which, through genotyp-
ing of large numbers of tumour samples from throughout the popula-
tion, have confirmed the clonal origin of DFTD: it only arose once and
has spread [67]. This result has had important conservation implications
via the realisation that healthy devils could be prevented from acquiring
the disease if they were physically separated from diseased animals –
leading to the establishment of a highly successful captive “insurance”
population [69].

In addition to these examples of particular disease processes,
comparative genomics can be a powerful tool for the study of a species'
immunome. By examining the diverse characteristics of species' immu-
nity genes, we can learnmore about how each species has evolved to re-
spond to pathogens in its environment [70]. In a conservation context,
the comparative approach can be used to address questions about the
particular characteristics that predispose populations to emerging
threats (as has been done from an ecological perspective [9]). For
example, recent world-wide amphibian declines have resulted from
the spread of the chytrid fungus Batrachochytrium dendrobatidis [71].
Comparative immunogenomics of Xenopus and closely related species
allows researchers to examine the response of the model amphibians
to chytrid and other pathogens, in order to discover how diseases may
affect threatened species [72]. As whole-genome sequences are
published for a greater number of species, the hope is that whole-
immunome comparisons across species will become more refined, im-
proving the power of studies examining the immunogenetic diversity,
and therefore the disease consequences of low diversity, in threatened
taxa [18]. At present, immune-gene regions are challenging to assemble,
in part due to the very traits thatmake immunity highly adaptable: high
levels of gene duplication [73,74]. It is therefore difficult to determine
how many copies of duplicates genes are present in a species or even
individual genome [75,76]. Emerging technologies offering longer
sequencing reads [e.g. 77], as well as continued development and
assessment of computational approaches [e.g. 78,79], may help to over-
come this challenge.

2. Conclusions

I have presented a brief overview of conservation genetics questions
that can be targeted by a comparative genomic approach: including the
relationships between related species or populations (delineation of
conservation units and studies of hybridisation), studies of cross-
species variation (examination of the genomic regions contributing to
species distinctiveness and divergence) and the interactions between
species and their threatening processes (whether intrinsic or extrinsic).
It is clear that many aspects of preserving threatened species diversity
can benefit from looking beyond the threatened species itself, and
considering the differences between the rare species' genome and
other genomes that share its environment, although empirical exam-
ples in this research area, utilising threatened species themselves, are
scarce. A particularly exciting path of inquiry is the application of com-
parative genomics to the study of the ecological context of genomes,
through a better understanding of interactions between species, such
as hosts and parasites, in an “extended phenotype”, co-evolutionary
framework [80,81] (for examples see [82–84]). Such findings present
promising opportunities to better understand the evolutionary conse-
quences of anthropogenic biotic disturbances to ecosystems, such as
the shifting distributions of pathogens, predators, prey and competitors.
A better understanding of these complex ecological interactions can
help us to understand the relationships amongst species and inform
conservation planning at higher levels, such as the protection of vulner-
able habitats and ecological processes. The preservation of biodiversity
is essential at multiple levels: from molecular diversity, to species, to
whole ecosystems and habitats [e.g. 85]. One of the best arguments for
the use of comparative genomics in conservation is that whole-
genome level data is necessary to monitor and protect the greatest
breadth of genetic biodiversity [1]. By comparing and contrasting the
processes that influence the genomic composition of threatened species
with those of more-common species, we can identify what makes
vulnerable species ecologically and genetically unique, and stand the
best chance at preserving them and their individual roles in the global
ecosystem.
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