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Genome-scale metabolic model (GEM) has been established as an important tool to study cellular meta-
bolism at a systems level by predicting intracellular fluxes. With the advent of generic human GEMs, they
have been increasingly applied to a range of diseases, often for the objective of predicting effective meta-
bolic drug targets. Cancer is a representative disease where the use of GEMs has proved to be effective,
partly due to the massive availability of patient-specific RNA-seq data. When using a human GEM, so-
called context-specific GEM needs to be developed first by using cell-specific RNA-seq data. Biological
validity of a context-specific GEM highly depends on both model extraction method (MEM) and model
simulation method (MSM). However, while MEMs have been thoroughly examined, MSMs have not been
systematically examined, especially, when studying cancer metabolism. In this study, the effects of pair-
wise combinations of three MEMs and five MSMs were evaluated by examining biological features of the
resulting cancer patient-specific GEMs. For this, a total of 1,562 patient-specific GEMs were recon-
structed, and subjected to machine learning-guided and biological evaluations to draw robust conclu-
sions. Noteworthy observations were made from the evaluation, including the high performance of
two MEMs, namely rank-based ‘task-driven Integrative Network Inference for Tissues’ (tINIT) or ‘Gene
Inactivity Moderated by Metabolism and Expression’ (GIMME), paired with least absolute deviation
(LAD) as a MSM, and relatively poorer performance of flux balance analysis (FBA) and parsimonious
FBA (pFBA). Insights from this study can be considered as a reference when studying cancer metabolism
using patient-specific GEMs.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In studying cellular metabolism at a systems-level, a genome-
scale metabolic model (GEM) has served as an important approach
in the field of systems biology [1–3]. GEM is a stoichiometric com-
putational model that contains information on entire metabolic
genes and their corresponding proteins and reactions, and allows
simulating genome-scale metabolic flux distributions under a
specific genetic and environmental condition. With the availability
of generic human GEMs [4–7], GEMs started to be more increas-
ingly applied to address various medical problems [8–13]. A typical
initial step of using a human GEM for a medical problem is to
extract a context-specific GEM from a generic human GEM on
the basis of omics data (often RNA-seq) from a target cell by using
a model extraction method (MEM). The resulting context-specific
GEM is subsequently simulated for various metabolic phenotypes
(i.e., intracellular fluxes) via a model simulation method (MSM)
[14–16]. Thus, successful application of a human GEM highly
depends on both MEM and MSM.

At the moment, several MEMs and MSMs have been developed,
which poses a technical challenge as to which combination would
give the best prediction performance for a given human cell’s
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metabolism. MEMs have been comprehensively evaluated for
studying cancer metabolism [17–20], but, to the best of our knowl-
edge, MSMs for human GEMs have not been systematically evalu-
ated. For example, there was a recent study, arguing that metabolic
fluxes can serve as fingerprints that can properly reflect distinct
features of cancer types [21]. However, all the simulations were
conducted using flux balance analysis (FBA), which motivates the
use of other MSMs for possibly more accurate prediction of intra-
cellular fluxes in cancer cells. Use of different combination of
MEMs and MSMs is expected to heavily affect the simulation
results from context-specific GEMs for various human cells.

Thus, in this study, we systematically evaluated the effects of all
pairwise combinations of three representativeMEMs andfive repre-
sentative MSMs by examining biological features of the resulting
cancer patient-specific GEMs (Fig. 1). Cancerwas selected as a target
disease because reprogrammed metabolism of cancer cells can be
effectively addressed by using a human GEM; cancer cells show a
wide spectrum of metabolic features that are specific to a tissue of
origin [22–25], and also share common metabolic features that are
clearly distinct from normal cells [26]. To draw robust conclusions
from the evaluation studies herein, a large volume of RNA-seq data
and several different evaluation approaches, mainlymachine learn-
ing, were considered; 562 samples from Pan-Cancer Analysis of
Whole Genomes (PCAWG) [27] covering six cancer types, and
1,000 samples from The Cancer Genome Atlas (TCGA) covering 10
cancer typeswere considered in this study. Experimentally obtained
13C-metabolic flux data are also necessary for the rigorous evalua-
tion ofMEMsandMSMs [28,29], but very fewwere available for can-
cers. To mitigate the limitation of this study to a certain extent,
machine learning-guided and biological evaluations were newly
devised, and applied to such a large volume of RNA-seq data. The
evaluation studies revealed that ‘rank-based task-driven Integrative
Network Inference for Tissues’ (rank-based tINIT) [5] or ‘Gene Inac-
tivityModeratedbyMetabolismandExpression’ (GIMME) [30], both
MEMs, combined with least absolute deviation (LAD) as a MSM
appeared to generate biologically most sound cancer patient-
specific GEMs among all the pairwise combinations of MEMs and
MSMs. This study also showed that FBA, still the most frequently
usedMSM, could not generate flux data that are sufficiently specific
to a cancer type, and parsimonious FBA (pFBA) showed poorer per-
formance than our initial expectation.
2. Materials and methods

2.1. Data preparation

To reconstruct and simulate the patient-specific GEMs, a total of
1,562 personal RNA-seq data were obtained from the PCAWG Con-
Fig. 1. Workflow of the evaluation of model extraction and sim

3042
sortium [27] and TCGA (Supplementary Tables 1 and 2). The 562
PCAWG RNA-seq data represent six different cancer types, and
the 1,000 TCGA RNA-seq data represent ten different cancer types.
All these RNA-seq data correspond to primary tumors, and the
samples from metastatic and recurrent tumors were not
considered.

2.2. Generic human GEM

For a generic human GEM, Human1 version 1.6.0 was down-

loaded from a GitHub repository (https://github.com/SysBioChal-

mers/Human-GEM) [7]. Human1 is the most recent and
comprehensive human GEM, which contains information on
13,082 reactions, 8,378 metabolites, and 3,625 genes.

2.3. Model extraction methods

All the MEMs process a generic human GEM and RNA-seq data
as inputs, and generate a context-specific GEM by removing reac-
tions associated with lowly expressed genes, and keeping reactions
associated with highly expressed genes. In this process, reactions
are given weight scores by subjecting gene expression values
(Fragments per Kilobase of transcript per Million mapped reads,
or FPKM in this study) to Boolean calculations of gene-protein-
reaction (GPR) associations; reactions with negative weight scores
are likely to be removed from a context-specific GEM (Supplemen-
tary Methods). MEMs can be categorized into three families,
depending on the modeling logics [17,31]: ‘integrative Metabolic
Analysis Tool’ (iMAT)-like methods (e.g., iMAT, INIT, and tINIT),
GIMME-like methods (e.g., GIMME, GIMMEp, and GIM3E), and
‘Model Building Algorithm’ (MBA)-like methods (e.g., MBA,
mCADRE, FASTCORE and rFASTCORMICS). In this study, four MEMs
were initially considered by selecting one representative method
from each family (i.e., tINIT, GIMME and rFASTCORMICS), and addi-
tionally, rank-based tINIT, a modified version of tINIT [5]. All the
MEMs were implemented in MATLAB R2018b (The Mathworks,
Inc., Natick, MA). Using a computer with 2.30 GHz Intel Xeon
CPU E5-2670 v3, tINIT and rank-based tINIT took around 90 min
using 20 cores, and rFASTCORMICS required around 10 min using
10 cores. Finally, GIMME took around 35 s using a single core.

2.3.1. Task-driven integrative Network Inference for tissues (tINIT) and
rank-based tINIT

Among the iMAT-like methods, tINIT is the most widely used
method [32]. In the weight function of tINIT, a threshold for a gene
expression level was set to be the median of all the metabolic gene
expression levels for a single RNA-seq data. Rank-based tINIT is a
slightly modified version that uses a rank-based weight function
ulation methods using PCAWG and TCGA RNA-seq data.

https://github.com/SysBioChalmers/Human-GEM
https://github.com/SysBioChalmers/Human-GEM
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that minimizes the effects of outliers and sample variances by con-
sidering the rank of genes on the basis of their expression values

[5]. tINIT was implemented through a GitHub repository (https://

github.com/SysBioChalmers/Human-GEM), and two functions,
getINITModel2 and scoreComplexModel, available for tINIT in
this repository were modified to implement rank-based tINIT. A
threshold for the gene rank was set to 0.25, which denotes meta-
bolic genes ranked in the lowest 25 % of the expression levels;
genes in the lowest 25 % are given negative weight scores from
rank-based tINIT.

2.3.2. Gene Inactivity Moderated by metabolism and expression
(GIMME)

GIMME minimizes the presence of reactions with lowly
expressed genes, while keeping the growth rate beyond a certain
value [30]. GIMME was implemented by using COBRA Toolbox
v3.0 [33], and takes two parameters: a threshold for reaction
weights, which was set to the median of all the reaction weights
where the reaction weights were calculated from RNA-seq data
by using the function mapExpressionToReactions in COBRA
Toolbox; and a threshold for the allowed growth rate, which was
set to 90 % of the maximum growth rate. Before running GIMME,
specific constraints were first introduced to the generic Human1
model that reflect the composition of Ham’s medium (Supplemen-
tary Table 3); without the constraints, the reconstructed patient-
specific GEMs did not show the growth under Ham’s medium.

2.3.3. rFASTCORMICS
The MBA-like methods use a predefined core set of reactions

that should be retained and remove other remaining reactions as
many as possible. Among the MBA-like methods, rFASTCORMICS
[34] was selected in this study because it uses linear programming
(LP) in contrast to other related methods (e.g., MBA and mCADRE)
that use mixed-integer linear programming [35]. rFASTCORMICS
directly uses gene expression values from RNA-seq data without
using arbitrary thresholds, and discretizes the gene expression val-
ues to obtain core and non-core sets of reactions. rFASTCORMICS

was implemented through a GitHub repository (https://github.-

com/sysbiolux/rFASTCORMICS). As with GIMME, constraints that
reflect Ham’s medium were also provided to Human1 through
the option optional_settings.medium because the resulting
context-specific GEMs did not show the growth without these ini-
tial constraints.

2.4. Initial evaluation of the newly generated cancer patient-specific
GEMs

For all the reconstructed patient-specific GEMs, their capability
to grow in Ham’s mediumwas examined using FBA. Only the GEMs
that showed the growth were considered for subsequent analyses.
The patient-specific GEMs were also simulated to perform a total of
257 metabolic tasks, including 256 metabolic tasks previously
defined by Uhlén et al. [36] using the checkTasks function of
RAVEN Toolbox [37]; an additional task was additionally consid-
ered according to Robinson et al. [7] where the biosynthesis of vita-
min C (ascorbate) should fail in the patient-specific GEMs. Finally,
all the patient-specific GEMs were also evaluated using MEMOTE
(metabolic model tests) [38].

2.5. Model simulation methods

The patient-specific GEMs were simulated using a total of five
MSMs in this study: FBA [39], parsimonious FBA (pFBA) [40], least
absolute deviation (LAD) [41–43], Simplified Pearson cOrrelation
with Transcriptomic data (SPOT) [44], and E-Flux method com-
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bined with minimization of L2 norm (E-Flux2) [44]. These MSMs
were run with constraints that reflect the Ham’s medium. Specifi-
cally, exchange reactions for main carbon sources in Ham’s med-
ium were arbitrarily constrained with the maximum uptake rate
of 10 mmol/gDCW/h, and exchange reactions for inorganic nutri-
ents were set to have the maximum secretion and uptake rates
of 1000 and �1000 mmol/gDCW/h, respectively. Uptakes of all
the other nutrients were not allowed.

A threshold for a reaction flux to be considered as zero was set
differently for each combination of the MEMs and the MSMs (Sup-
plementary Table 4). A reason behind setting these threshold val-
ues is that the number of flux-carrying fluxes was significantly
different across the MSMs; for example, 88 % of reactions in the
patient-specific GEMs were predicted to carry fluxes according to
SPOT and E-Flux2, which seems biologically unrealistic. Flux values
at which the density of flux distributions rapidly decreases were
set as the thresholds for each combination of MEM and MSM (Sup-
plementary Figs. 1-6).

Using a computer with 2.30 GHz Intel Xeon CPU E5-2670 v3,
implementation of the MSMs took a few seconds and up to around
1 min. All the MSMs were implemented by using Python 3.6 with
Gurobi Optimizer 9.0.2 (Gurobi Optimization, LLC, Beaverton, OR)
in the Linux Ubuntu environment. Reading, writing and manipula-
tion of the COBRA-compliant MATLAB files were implemented
using COBRApy 0.22.1 [45].

2.5.1. Flux balance analysis (FBA)
FBA is the most fundamental method to simulate a GEM that

predicts intracellular flux values, based on the mass balance of
metabolites, and the definition of an objective function and con-
straints that shape a cell’s metabolic objective [39] (Eq. S4 in Sup-
plementary Methods). In this study, three different objective
functions were considered, including biomass formation, energy
(i.e., ATP) production, and reducing power (i.e., NADPH and NADH)
production (Supplementary Table 5). The energy and reducing
power productions were considered only for the TCGA samples.

2.5.2. Parsimonious flux balance analysis (pFBA)
pFBA is a variation of FBA that was coined to accurately predict

intracellular flux values by minimizing a total sum of reaction
fluxes [40]. The rationale behind pFBA is that cells attempt to effi-
ciently (or minimally) use their energy to meet their metabolic
objective. cTv� (Eq. S5 in Supplementary Methods) was relaxed to
99.999 % of an optimal solution (i.e., biomass formation, energy
production, or reducing power production) in order to avoid infea-
sible solution.

2.5.3. Least absolute deviation (LAD)
As with pFBA, LAD also attempts to accurately predict intracel-

lular flux values, often by using omics data (e.g., RNA-seq). In LAD,
the Manhattan distance is minimized between a reference flux set
(i.e., reaction weights) and a set of fluxes to be calculated [42,43],
and thus, theoretically, LAD is equivalent to linearized ‘minimiza-
tion of metabolic adjustment’ (MOMA) [41], which attempts to
accurately predict intracellular fluxes in genetically perturbed
metabolism via gene knockout [46]. LAD can be a good alternative
when a cellular objective is not clear, such as in normal human
cells, as it does not require defining a cellular objective function
(e.g., maximizing biomass formation rate) to predict fluxes. To pre-
dict more realistic fluxes in this study, the biomass formation rate
was constrained to be greater than or equal to v threshold

biomass , which was
set to 0.01 in this study (Eq. S6 in Supplementary Methods). In this
study, so-called ‘the modified LAD’ was implemented as discussed
in Supplementary Notes, which can generate reasonably accurate
flux data in a short calculation time as a result of a slight

https://github.com/SysBioChalmers/Human-GEM
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mathematical modification of the original LAD. LAD hereafter
refers to the modified LAD.

2.5.4. Simplified Pearson cOrrelation with Transcriptomic data (SPOT)
SPOT also attempts to predict flux values in accordance with

omics data, but by maximizing cosine similarity between a refer-
ence flux set (i.e., reaction weights) and a set of fluxes to be calcu-
lated (Eq. S7 in Supplementary Methods).

2.5.5. E-Flux method combined with minimization of L2 norm (E-
Flux2)

E-Flux2 also uses omics data (e.g., RNA-seq) to predict intracel-
lular fluxes, but additionally modifies the upper and lower bounds
of fluxes; greater and smaller values are given to the upper and
lower bounds for reactions with highly expressed genes. v�

biomass

was relaxed to 99.999 % of the optimal biomass formation rate
for the modified constraints in order to avoid sub-optimal or infea-
sible solution (Eq. S8 in Supplementary Methods).

2.6. Evaluation of model extraction and model simulation methods

2.6.1. t-SNE
Reaction contents and flux data from the patient-specific GEMs

were visualized using t-distributed stochastic neighbor embedding
(t-SNE) [47] to cluster the GEMs according to their cancer type. For
MEMs, reaction content for each GEM was prepared as an input
binary vector, indicating the presence and absence of a reaction
as ‘1’ and ‘0’, respectively. For MSMs, flux values of reactions were
standardized (the mean of ‘0’ and the standard deviation of ‘1’).
When evaluating the MSMs using t-SNE, reactions absent in at
least one patient-specific GEM were excluded from input flux data.
For hyperparameters, ‘number of principal components’ and ‘per-
plexity’ were both set to be 20 after examining 10, 20, and 30 for
both hyperparameters in pairwise combinations.

2.6.2. Convolutional neural network (CNN)
One-dimensional convolutional neural network (1D CNN) was

used to classify the patient-specific GEMs to cancer types based
on their reaction contents or flux data. 1D CNN uses the same types
of input data (i.e., the binary vector of a reaction content and the
standardized flux data) prepared for t-SNE, but additional prepro-
cessing took place. For both types of input data, reactions in the
patient-specific GEMs were first sorted according to their subsys-
tem in order to capture meaningful features associated with each
subsystem. For the flux data, they were first quantile-normalized
[48] in order to remove any effects caused by large variations in
the uptake rate of metabolites; quantile-normalized flux data were
subsequently standardized. As with the input of flux data for t-SNE,
reactions absent in at least one GEM were excluded from an input
for 1D CNN.

The prepared datasets (Supplementary Table 6) were subjected
to the stratified 10-fold cross-validation to develop 1D CNN. The
dataset was first divided into 10 folds (i.e., outer loop) where the
nine folds (i.e., inner loop) provided training and validation sets,
and the remining single fold was used as a test set. This split was
implemented by using the function StratifiedKFold from
scikit-learn [49] to consider the relative sample size of each cancer
type within each fold. An inner loop was further split into training
and validation sets at a ratio of 8:1 by using the function Strati-

fiedShuffleSplit from scikit-learn. This validation set was
used to select the best model among the models generated at each
epoch by using callbacks of Keras v2.3.0 [50]. The best model
selected from an inner loop was further evaluated using a test
set. This procedure was repeated ten times. It should be noted that
the inner loops were not subjected to the cross-validation.
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The input vector is directly fed into a 1D convolutional layer
with L2 regularization and a rectified linear unit (ReLU) as an acti-
vation function. The convolutional layer used 32 filters, all having
the same size of 1 � 30, which is equal to the average number of
reactions in subsystems of Human1. Stride was set to 10. Output
of the convolutional layer is subsequently passed to a max pooling
layer, a fully connected layer with dropout rate of 0.5, and a soft-
max output layer. As a result, 1D CNN generates a probability dis-
tribution of six cancer types for input data from the PCAWG
samples, and ten cancer types for input data from the TCGA sam-
ples (Supplementary Fig. 7). Performance of 1D CNN was also
examined using a total of 27 different sets of hyperparameters:
strides of 5, 10 and 20; 16, 32 and 64 filters; and kernel sizes of
15, 30 and 60. Each model was trained using Adam optimizer
[51] with a batch size of 32 for 200 epochs with early stopping
set at 20 epochs. 1D CNN models were developed using Python
package Keras v2.3.0 [50] with TensorFlow backend [52] v1.14.0.

2.6.3. Preparation of gene expression data and housekeeping genes
‘Biological evaluation’ conducted in this study examines reac-

tions in the patient-specific GEMs in comparison with 1) gene
expression data from corresponding tissues of origin, and 2) house-
keeping genes. Comparison with expressed genes from each tissue
of origin is based on a previous finding that normal and cancer tis-
sues still share tissue-specific metabolic features [22–25]. For this,
a set of expressed genes in a tissue (TPM � 1 in each tissue of ori-
gin) was obtained from gene expression data available at Human
Protein Atlas (HPA) [36]. The collected gene expression data cover
the following ten tissues in accordance with cancer types consid-
ered in this study: brain, breast, colon, kidney, liver, lung, lymph
node, ovary, pancreas, and urinary bladder. A full list of housekeep-
ing genes was also obtained from HPA. Out of 8,839 housekeeping
genes from HPA, 2,055 housekeeping genes appeared to be
reflected in Human1, which correspond to 5,376 housekeeping
reactions.

2.6.4. Spearman’s correlation coefficient
Spearman’s correlation coefficient (Spearman’s q) was com-

puted using SciPy v1.5.4 [53] for the predicted flux data from pair-
wise combinations of the patient-specific GEMs. Reactions were
removed from each model before computing Spearman’s q if their
flux values were equal to zero or absent in both models. This cor-
relation analysis is another part of the biological evaluation con-
ducted in this study.
3. Results

3.1. Reconstruction of cancer patient-specific GEMs for 562 PCAWG
samples using four different model extraction methods

Cancer patient-specific GEMs were reconstructed using 562
PCAWG RNA-seq data for six cancer types (Supplementary Tables
1 and 2), and the most recently developed generic human GEM
‘Human10 as a template model [7]. In this study, tINIT [32], rank-
based tINIT [5], GIMME [30] and rFASTCORMICS [34] were used
to reconstruct a patient-specific GEM for each RNA-seq data. As a
result, a total of 2,046 patient-specific GEMs were generated; 561
GEMs using tINIT, 562 GEMs using rank-based tINIT, 562 GEMs
using GIMME, and 361 GEMs using rFASTCORMICS (Supplemen-
tary Table 2). Based on these reconstructions, rFASTCORMICS was
no longer considered in this study because its reconstruction suc-
cess rate (361 out of 562 RNA-seq data) was much lower than the
other three methods (Supplementary Fig. 8). For both tINIT and
rFASTCORMICS, failed reconstruction of the patient-specific GEMs
was caused by infeasibility of the optimization problems.
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The patient-specific GEMs were first evaluated for growth capa-
bility, metabolic tasks and MEMOTE [38] (Materials and methods).
First, it was confirmed that all the patient-specific GEMs showed
the growth under Ham’s medium. For the metabolic tasks, four
patient-specific GEMs from rank-based tINIT and one GEM from
GIMME were discarded as these five GEMs completed substantially
fewer metabolic tasks than other GEMs (Supplementary Fig. 9); the
remaining 1,680 patient-specific GEMs (Supplementary Table 1)
built using tINIT, rank-based tINIT or GIMME successfully com-
pleted the averages of 206, 214 and 225 metabolic tasks, respec-
tively. Also, according to MEMOTE, the 1,680 patient-specific
GEMs showed high consistencies overall: on average, 99.47 % reac-
tions mass-balanced, 100 % reactions charge-balanced and 100 %
stoichiometric consistency.

The average number of reactions in the patient-specific GEMs
for each cancer type appeared to be heavily affected by the MEMs.
GIMME overall generated the patient-specific GEMs with the
greatest number of reactions, while the GEMs from rank-based
tINIT showed the smallest variations in the number of reactions
(Fig. 2A). However, the relative average number of reactions across
the six cancer types appeared to be consistent throughout the
three MEMs, for example liver cancer patient-specific GEMs having
the greatest number of reactions (Liver-HCC in Fig. 2A) and blood
cancer patient-specific GEMs with the lowest number of reactions
(Lymph-BNHL in Fig. 2A).

3.2. Machine learning-guided and biological evaluation of the model
extraction methods

The three MEMs (i.e., tINIT, rank-based tINIT and GIMME) were
evaluated by using t-SNE and 1D CNN to examine to what extent
these methods can generate biologically distinct patient-specific
GEMs for each cancer type. To prepare input data for t-SNE and
1D CNN, reaction contents of the patient-specific GEMs were con-
verted to binary values, indicating the presence and absence of a
reaction as ‘1’ and ‘0’, respectively (Materials and methods). Imple-
mentation of t-SNE for three binary vectors, each corresponding to
tINIT, rank-based tINIT and GIMME, showed that, overall, the
patient-specific GEMs from all the MEMs could be clustered in
accordance with cancer types (Fig. 2B). Also, 1D CNN models
trained with the binary vectors from the three MEMs were able
to classify the patient-specific GEMs to their corresponding cancer
types at high accuracies: on average, 97.6 % for the patient-specific
GEMs from tINIT, 98.5 % for rank-based tINIT, and 97.9 % for
GIMME, respectively. The accuracy was calculated by dividing
the sum of diagonal values in a confusion matrix (Fig. 2C) by the
sum of entire values.

To more rigorously examine the MEMs in terms of biology, reac-
tions in the patient-specific GEMs were examined in comparison
with a set of expressed genes from corresponding tissues of origin
as well as housekeeping genes; all the gene expression data were
obtained from HPA [36]. For this biological evaluation, reactions
that correspond to the expressed genes from tissues of origin and
housekeeping genes were first identified through GPR associations
(Materials and methods). Housekeeping genes are constitutively
expressed in all the cell types in an organism [36,54], and thus,
their corresponding housekeeping reactions should be available
in all the patient-specific GEMs. As expected, high percentages of
reactions appeared to be present in the patient-specific GEMs,
which are associated with the genes expressed in corresponding
tissues, and the results did not seem to be affected by the MEMs
(left graph in Fig. 2D). However, percentages of the housekeeping
reactions in the patient-specific GEMs were affected by the MEMs
(right graph in Fig. 2D); the patient-specific GEMs from GIMME
included the greatest percentage of the housekeeping reactions
(94.6 % on average), followed by rank-based tINIT (83.8 %) and
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tINIT (73.1 %). GIMME usually keeps a greater number of reactions
in a context-specific GEM (Fig. 2A), which might have contributed
to the inclusion of more housekeeping reactions than the other two
methods.

Taken together, tINIT, rank-based tINIT and GIMME all appeared
to have generated the patient-specific GEMs with acceptable qual-
ities as a result of machine learning-guided and biological evalua-
tions (i.e., classification of the patient-specific GEMs at an average
accuracy of greater than 97 % by using 1D CNN; and high percent-
age of reactions supported by the expressed genes from tissues of
origin and housekeeping genes).

3.3. Evaluation of the model simulation methods using machine
learning

Next, five MSMs (i.e., FBA [39], pFBA [40], LAD [41–43], SPOT
[44], and E-Flux2 [44]) were examined by using the patient-
specific GEMs constructed above (Supplementary Tables 1 and 2).
Here, the five MSMs were implemented in combination with each
of the three MEMs, and their prediction results were evaluated by
using machine learning. For machine learning-guided evaluation, a
total of 8,398 flux data were used as input for t-SNE and 1D CNN;
8,398 flux data were prepared by simulating the 1,680 patient-
specific GEMs using each of the five MSMs; two flux data from a
combination of tINIT and E-Flux2 were not obtained due to numer-
ical difficulties. First, the patient-specific GEMs were clustered by
t-SNE [47] on the basis of their flux data from each MSM (left plots
in Fig. 3A-E, and left plots in Supplementary Figs. 10A-E and 11A-
E). Overall, LAD and SPOT generated more distinct clusters than the
other three MSMs (i.e., FBA, pFBA, and E-Flux2) regardless of the
MEMs used.

1D CNN was also used to evaluate the MSMs, which classified
the patient-specific GEMs into six cancer types (confusion matrices
in Fig. 3A-E, and confusion matrices in Supplementary Figs. 10A-E
and 11A-E). In contrast to the MEM evaluation using 1D CNN, 1D
CNN models were trained using 15 different flux data generated
from pairwise combinations of the three MEMs and the five MSMs
(Materials and methods). As a result, with the GEMs from rank-
based tINIT, LAD, SPOT and E-Flux2 showed relatively high classi-
fication accuracies, on average, 97.3 %, 95.3 % and 87.8 %, respec-
tively, while FBA and pFBA showed lower classification
accuracies (Fig. 3F). These results are somewhat consistent with
the clustering results from t-SNE where LAD, SPOT, and E-Flux2
generated more distinct clusters. If tINIT and GIMME were addi-
tionally considered, a combination of rank-based tINIT and LAD
(average accuracy of 97.3 %) as well as a combination of GIMME
and LAD (average accuracy of 98.0 %) generated the best prediction
results (Fig. 3F, and Supplementary Figs. 10F and 11F). It was inter-
esting to note that pFBA was initially thought to outperform other
MSMs according to a previous study [28], but showed moderate
prediction performance; pFBA showed better predictions when
combined with tINIT and GIMME than rank-based tINIT (Fig. 3F,
and Supplementary Figs. 10F and 11F).

3.4. Biological evaluation of the five model simulation methods

As with the MEMs, the patient-specific GEMs were also evalu-
ated with respect to the set of expressed genes from corresponding
tissues of origin as well as the housekeeping genes, both from HPA
[36]. First, most of the patient-specific GEMs from all pairwise
combinations of the MEMs and the MSMs had greater than 90 %
of their flux-carrying reactions that were associated with the
expressed genes from corresponding tissues of origin (Supplemen-
tary Fig. 12). For the housekeeping reactions, which should carry
fluxes to perform essential functions, LAD showed the best results
(i.e., the greatest percentage of flux-carrying reactions among all



Fig. 2. Evaluation results of the three model extraction methods (MEMs). (A) Statistics of the cancer patient-specific genome-scale metabolic model (GEMs) built using the
three MEMs and 562 PCAWG RNA-seq data. (B) t-SNE plots of the reaction contents of the patient-specific GEMs. (C) Classification of the patient-specific GEMs into six cancer
types by using 1D CNN. Values in each confusion matrix correspond to the averaged percentage of cancer type predictions (i.e., true labels versus predicted labels); greater
values in a diagonal indicate that the true and predicted labels are more consistent. The averaged percentage was obtained from 10 runs of 1D CNN using each fold of the 10
test datasets (Materials and methods). In (B) and (C), the evaluation results are presented using the patient-specific GEMs that were reconstructed using tINIT (left), rank-
based tINIT (middle), and GIMME (right). (D) (left) Percentage of GPR-associated reactions supported by the expressed genes in each corresponding tissue of origin, among all
the GPR-associated reactions in each patient-specific GEM. (right) Percentage of housekeeping reactions incorporated in each patient-specific GEM among all the known
housekeeping reactions. Gene expression data and housekeeping genes were obtained from Human Protein Atlas (HPA).
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the housekeeping reactions in the patient-specific GEMs) with
rank-based tINIT and GIMME across the six cancer types, and E-
Flux2 additionally performed good when combined with tINIT
(Fig. 4A, and Supplementary Figs. 13A and 14A). In contrast, FBA
and pFBA overall showed poor results for the patient-specific GEMs
3046
from the three MEMs. It should be noted that, among all the known
housekeeping reactions, more than 70 % of them were included in
the patient-specific GEMs (right graph in Fig. 2D), but only <40 % of
them carried fluxes (Fig. 4A, and Supplementary Figs. 13A and
14A). This high discrepancy may be largely due to the limited pre-



Fig. 3. Evaluation results of the five model simulation methods combined with rank-based tINIT for the PCAWG samples. (A-E) (left) t-SNE plots, and (right) confusion
matrices showing the classification results of 1D CNN for flux data from the 558 patient-specific GEMs. Values in each confusion matrix correspond to the averaged
percentage of cancer type predictions (i.e., true labels versus predicted labels); greater values in a diagonal indicate that the true and predicted labels are more consistent. The
averaged percentage was obtained from 10 runs of 1D CNN using each fold of the 10 test datasets (Materials and methods). Flux data of the 558 patient-specific GEMs were
generated using (A) LAD, (B) FBA, (C) pFBA, (D) SPOT, and (E) E-Flux2. (A-E) Figures for quantitative analysis of the t-SNE plots are available at https://doi.org/10.6084/
m9.figshare.19810927.v1. (F) The mean classification accuracies and standard deviations from 10 runs of 1D CNN. The accuracy was calculated by dividing the sum of
diagonal values in a confusion matrix (A-E) by the sum of entire values. Pvalues were calculated by using two-sided Welch’s t-test (*P < 0.05, ***P < 0.001, and ****P < 0.0001).
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diction capacity of the currently available MSMs; reaction fluxes
are highly dependent on objective functions and constraints that
do not necessarily consider housekeeping reactions.

Finally, Spearman’s q were calculated between two flux data
generated from all pairwise combinations of the patient-specific
GEMs built with rank-based tINIT. Ideally, the patient-specific
GEMs from two different cancer types should have lower Spear-
man’s q, whereas the GEMs from the same cancer type should have
higher values. As expected, use of all the MSMs resulted in lower
Spearman’s q for the patient-specific GEMs from two different can-
cer types than the GEMs from the same cancer type (Fig. 4B-F);
however, this trend was less clear for FBA according to ‘the mean
difference’ (defined in Fig. 4B-F). FBA, in contrast to the other four
MSMs, showed relatively similar Spearman’s q across all pairwise
combinations of the patient-specific GEMs regardless of cancer
types (Fig. 4C). Combinations of MSMs with tINIT or GIMME also
showed similar results as rank-based tINIT (Supplementary
Figs. 13B-F and 14B-F).
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3.5. Evaluation of the model extraction and simulation methods using
TCGA samples

To confirm whether the observations made using the PCAWG
samples are robust, 1,000 RNA-seq data across ten cancer types
from TCGA were additionally considered in this study. First, a total
of 2,997 cancer patient-specific GEMs were reconstructed using
the three MEMs (i.e., tINIT, rank-based tINIT, and GIMME); three
out of 3,000 patient-specific GEMs could not be developed using
tINIT (Supplementary Table 2). As expected, GIMME-generated
GEMs had much greater numbers of reactions, and rank-based
tINIT generated the GEMs with the smallest variations in the num-
ber of reactions (Fig. 5A). Except for one patient-specific GEM from
GIMME (Supplementary Figs. 15 and 16), all the other patient-
specific GEMs built using tINIT, rank-based tINIT and GIMME suc-
cessfully completed a high number of metabolic tasks: i.e., aver-
ages of 208, 213, and 225 metabolic tasks, respectively. Also,
according to MEMOTE, the 2,996 patient-specific GEMs showed

https://doi.org/10.6084/m9.figshare.19810927.v1
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Fig. 4. Biological evaluation results of the five model simulation methods combined with rank-based tINIT for the PCAWG samples. (A) Percentage of the housekeeping
reactions that carry fluxes among all the housekeeping reactions in the patient-specific GEMs. (B-F) Spearman’s correlation coefficients (Spearman’s q) between two flux data
generated from all pairwise combinations of the patient-specific GEMs. Values in each cell represent the average of Spearman’s q. Flux data of the 558 patient-specific GEMs
were generated using (B) LAD (P < 0.0001; mean difference of 0.14), (C) FBA (P < 0.001; mean difference of 0.028), (D) pFBA (P < 0.0001; mean difference of 0.081), (E) SPOT
(P < 0.0001; mean difference of 0.13), and (F) E-Flux2 (P < 0.0001; mean difference of 0.13). P value for each matrix (B-F) was calculated by using one-sided Welch’s t-test,
which indicates that the diagonal values are significantly greater than the off-diagonal values. The mean difference for each matrix (B-F) refers to the difference between the
mean of the diagonal values and the mean of the off-diagonal values.
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high consistencies: on average, 99.48 % reactions mass-balanced,
100 % reactions charge-balanced and 100 % stoichiometric consis-
tency. As with the PCAWG samples, all the three MEMs generated
distinct clusters overall, depending on a cancer type, as a result of
implementing t-SNE (Fig. 5B and Supplementary Fig. 17). Also, all
the patient-specific GEMs were well classified into their corre-
3048
sponding cancer types via 1D CNN (Fig. 5C,D and Supplementary
Fig. 17). As to the presence of reactions that correspond to the
expressed genes in corresponding tissues of origin as well as
housekeeping genes, patterns observed with the PCAWG samples
(Fig. 2D) were consistently observed from the TCGA samples
(Fig. 5E).



Fig. 5. Evaluation results of the three model extraction methods (MEMs) using the TCGA samples. (A) Statistics of the cancer patient-specific GEMs built using the three
MEMs and 1,000 TCGA RNA-seq data. (B) t-SNE plots of the reaction contents of the patient-specific GEMs. (C) Classification of the patient-specific GEMs into ten cancer types
by using 1D CNN. Values in the confusion matrix correspond to the averaged percentage of cancer type predictions (i.e., true labels versus predicted labels); greater values in a
diagonal indicate that the true and predicted labels are more consistent. The averaged percentage was obtained from 10 runs of 1D CNN using each fold of the 10 test datasets
(Materials and methods). In (B) and (C), the data are presented only for rank-based tINIT, and those from tINIT and GIMME are available in Supplementary Fig. 17. (D) The
mean classification accuracies and standard deviations from 10 runs of 1D CNN for the patient-specific GEMs built with tINIT, rank-based tINIT, and GIMME. The accuracy was
calculated by dividing the sum of diagonal values in a confusion matrix (C) by the sum of entire values. (E) (left) Percentage of GPR-associated reactions supported by the
expressed genes in each corresponding tissue of origin, among all the GPR-associated reactions in each patient-specific GEM. (right) Percentage of housekeeping reactions
incorporated in each patient-specific GEM among all the known housekeeping reactions. Gene expression data and housekeeping genes were obtained from Human Protein
Atlas (HPA).
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Subsequently, flux data were generated from all the 2,992
patient-specific GEMs by using the five MSMs (i.e., LAD, FBA, pFBA,
SPOT, and E-Flux2) for further analysis using machine learning
(Fig. 6, and Supplementary Figs. 18 and 19); four flux data from a
combination of E-Flux2 and tINIT were additionally discarded at
this stage because they could not generate optimal solutions (Sup-
plementary Table 2). When t-SNE was applied to these flux data,
LAD and SPOT generated more distinct clusters with respect to
cancer types than FBA and pFBA (left plots in Fig. 6A-E, and left
plots in Supplementary Fig. 19A-E). Clusters from the five MSMs
were overall slightly less distinct when tINIT was used (left plots
3049
in Supplementary Figs. 18A-E). Using 1D CNN for all the three
MEMs, LAD and SPOT consistently showed the best classification
performances, while FBA showed the worst performance, and pFBA
and E-Flux2 showed moderate performances (confusion matrices
in Fig. 6A-E, and confusion matrices in Supplementary Figs. 18A-
E and 19A-E). In particular, LAD combined with rank-based tINIT
(average accuracy of 89.1 %; Fig. 6F) or GIMME (average accuracy
of 89.9 %; Supplementary Fig. 19F) generated the best prediction
results. Despite the use of rank-based tINIT, FBA still generated
the worst prediction results (average accuracy of 45.0 %; Fig. 6F).
To examine whether FBA and pFBA would show improved predic-



Fig. 6. Evaluation results of the five model simulation methods combined with rank-based tINIT for the TCGA samples. (A-E) (left) t-SNE plots, and (right) confusion matrices
showing the classification results of 1D CNN for flux data from the 1,000 patient-specific GEMs. Values in each confusion matrix correspond to the averaged percentage of
cancer type predictions (i.e., true labels versus predicted labels); greater values in a diagonal indicate that the true and predicted labels are more consistent. The averaged
percentage was obtained from 10 runs of 1D CNN using each fold of the 10 test datasets (Materials and methods). Flux data of the 1,000 patient-specific GEMs were generated
using (A) LAD, (B) FBA, (C) pFBA, (D) SPOT, and (E) E-Flux2. (A-E) Figures for quantitative analysis of the t-SNE plots are available at https://doi.org/10.6084/m9.figshare.
19810927.v1. (F) The mean classification accuracies and standard deviations from 10 runs of 1D CNN. The accuracy was calculated by dividing the sum of diagonal values in a
confusion matrix (A-E) by the sum of entire values. P values were calculated by using two-sided Welch’s t-test (****P < 0.0001). (A and C) An outlier was removed from each t-
SNE plot for better presentation of data points.
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tion results by using different objective functions, maximizing
energy (i.e., ATP) production and maximizing reducing power
(i.e., NADPH and NADH) production were additionally considered
for the TCGA samples. However, FBA or pFBA with these new
objective functions did not outperform FBA or pFBA with maxi-
mization of biomass formation according to 1D CNN (Supplemen-
tary Fig. 20).

Finally, the flux data from the patient-specific GEMs built using
the TCGA RNA-seq data were subjected to the biological evalua-
tion. First, the flux data generated from LAD and E-Flux2 showed
greater percentages of flux-carrying housekeeping reactions than
the other three MSMs (Supplementary Fig. 21), which was consis-
tent with the overall patterns observed with the PCAWG samples
(Fig. 4A, and Supplementary Figs. 13A and 14A). Next, all the MSMs
showed lower Spearman’s q for the patient-specific GEMs from
two different cancer types than the GEMs from the same cancer
type, regardless of the MEMs used (Supplementary Figs. 22–24).
In particular, Spearman’s q differences as a function of cancer types
were clearer for LAD and SPOT (Supplementary Figs. 22F, 23F, and
24F). Taken together, the prediction outcomes with the TCGA sam-
ples were found to be consistent with the observations made with
the PCAWG samples where LAD often generated more ‘cancer
type-specific’ flux data, and FBA did not.
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4. Discussion

Use of MEMs andMSMs has been considered critical for the suc-
cessful development and simulation of context-specific GEMs.
Therefore, in this study, all pairwise combinations of three MEMs
(i.e., tINIT, rank-based tINIT, and GIMME) and five MSMs (i.e.,
FBA, pFBA, LAD, SPOT, and E-Flux2) were evaluated using machine
learning (i.e., t-SNE and 1D CNN) and a total of 1,562 RNA-seq data
from PCAWG and TCGA. Besides machine learning, the biological
evaluation was also conducted for the patient-specific GEMs from
pairwise combinations of the MEMs and the MSMs, which involved
the use of gene expression data, housekeeping gene list, and corre-
lation analysis. These evaluations revealed to what extent the
resulting patient-specific GEMs would be biologically valid. Note-
worthy findings from these evaluations include the high perfor-
mance of rank-based tINIT or GIMME paired with LAD, and
relatively poorer performance of FBA and pFBA regardless of the
MEMs used.

These evaluation studies also provided insights on the MSMs
applied to cancer patient-specific GEMs. First, it was our surprise
to learn that FBA and pFBA did not perform well for predicting can-
cer type-specific fluxes despite their wide usage in various human
metabolism studies [11,12,55,56]; relative poor performance of
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https://doi.org/10.6084/m9.figshare.19810927.v1


Sang Mi Lee, G. Lee and Hyun Uk Kim Computational and Structural Biotechnology Journal 20 (2022) 3041–3052
FBA and pFBA became clearer as all the three MEMs generated
highly cancer type-specific GEMs (Fig. 2B,C). These findings suggest
that FBA and pFBA may not be suitable for predicting fluxes in can-
cer metabolism. In case of FBA, introduction of more sophisticated
constraints, such as availability of tumor microenvironment-
specific nutrients, enzyme kinetics [7,57], or thermodynamic irre-
versibility [58], may help improve the prediction performance;
however, use of such complex constraints for a large network
model such as Human1 is another challenge. Second, generation
of both RNA-seq and 13C-metabolic flux data will certainly help
advancing MSMs for cancer metabolism studies. To more precisely
evaluate MSMs, 13C-metabolic flux data are ideal as they clearly
reveal metabolic phenotypes of a cell [59–61]. However, 13C-
metabolic flux data could not be used in this study because there
are very few studies on cancers that generated both RNA-seq data
and 13C-metabolic flux data. Greater availability of RNA-seq data
coupled with 13C-metabolic flux data will allow simulating
patient-specific GEMs in various manners, which can be validated
using corresponding 13C-metabolic flux data. Also, our conclusions
derived in this study will be able to serve as a reference for integra-
tive analysis of RNA-seq and 13C-metabolic flux data to be gener-
ated from cancer samples. Finally, it remains to be seen whether
our findings from this study can also be applied to other diseases,
for example diabetes. The findings from rigorous evaluations in
this study will serve as a useful reference when simulating cancer
metabolism using a GEM.
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