
 International Journal of 

Molecular Sciences

Review

Estrogen Receptor Modulators in Viral Infections Such as
SARS−CoV−2: Therapeutic Consequences

Nikita Abramenko 1,2 , Fréderic Vellieux 1 , Petra Tesařová 3, Zdeněk Kejík 1,2 , Robert Kaplánek 1,2 ,
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Abstract: COVID-19 is a pandemic respiratory disease caused by the SARS−CoV−2 coronavirus. The
worldwide epidemiologic data showed higher mortality in males compared to females, suggesting
a hypothesis about the protective effect of estrogens against severe disease progression with the
ultimate end being patient’s death. This article summarizes the current knowledge regarding the
potential effect of estrogens and other modulators of estrogen receptors on COVID-19. While
estrogen receptor activation shows complex effects on the patient’s organism, such as an influence
on the cardiovascular/pulmonary/immune system which includes lower production of cytokines
responsible for the cytokine storm, the receptor-independent effects directly inhibits viral replication.
Furthermore, it inhibits the interaction of IL-6 with its receptor complex. Interestingly, in addition
to natural hormones, phytestrogens and even synthetic molecules are able to interact with the
estrogen receptor and exhibit some anti-COVID-19 activity. From this point of view, estrogen receptor
modulators have the potential to be included in the anti-COVID-19 therapeutic arsenal.

Keywords: COVID-19; SARS−CoV−2; estrogen; estrogen receptor; viral replication; IL-6; cy-
tokine storm

1. Introduction

COVID-19 is a severe respiratory infection that possesses a pandemic character caused
by the SARS−CoV−2 coronavirus, which is a virus similar to the SARS and MERS viruses.
Published global epidemiologic data show that while the incidence of infection is only
negligibly sex-dependent with some protective role of estrogens in premenopausal women,
males die more frequently than females [1,2]. Data from the Ministry of Health of the
Czech Republic released up to mid-February 2021 does not contradict these observations
(Figures 1 and 2). Experimental data obtained from ovariectomized mice showed more
severe courses of SARS−CoV or MERS infections than in control animals [3], which also
supports the hypothesis that estrogens possess a certain protective effect against viral
infection in females because of their anti-inflammatory and immunomodulatory effect [4].
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However, data concerning the role of estrogens are equivocal because there are no sig-
nificant differences in mortality observed between premenopausal and postmenopausal
Chinese women [5]. This can be due to the high dietary intake of isoflavonoids in East-
ern Asia.
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influences the cardiovascular system [2]. Moreover, ADAM17 also activates TNFα and,
through the cleavage of the IL6-receptor, it also stimulates the IL-6 signalling cascade [6,7].
This mechanism seems to be associated with the absence of estrogens and low levels of
testosterone in aged males and is likely linked to their unfavourable prognosis following
SARS−CoV−2 infection [8]. Thus, the sex-dependent difference and the more severe dis-
ease progression resulting in higher mortality of males could also be ascribed to the effect
of estrogens in females resulting in lower expression of SARS−CoV−2 receptor [9,10].

On the other hand, the male gender and the presence of androgens could be a predis-
posing factor for severe COVID-19 cases because androgens appear to ease the entry of
the virus into the host cell [11,12]. This observation is supported by an independent study
performed in Peru, where male COVID-19 patients with androgenic alopecia suffer from
severe COVID-19 more frequently than infected males who do not suffer from this type
of alopecia [13]. The protective role of estrogens in COVID-19 is also evident in women
suffering from polycystic ovary syndrome. In this condition, with an excess of androgens,
women have an increased risk of SARS−CoV−2 compared to the control group [14]. In
addition to biological factors, the higher COVID-19 fatality of males is also influenced by
behavioural factors such as smoking, alcohol consumption or noncompliance to COVID-19
prevention measures, all of which are generally observed more frequently in males [15].

2. Physiological Estrogen Receptor-Dependent Effects and Viral
Infection Susceptibility

The difference in susceptibility to viral infection in males and females [16] seems to
be dependent on the production of sex hormones in women [17]. These steroids have
remarkable effects on a multitude of physiological functions.

The biological functions of estrogens are largely modulated by estrogen receptors
known as subtypes alpha (ERα) and beta (ERβ). Estrogen receptors are expressed in
numerous cell types of various tissues, including the immune system. During physiological
conditions, ERs exist as dimers and are stabilized by the binding of either agonists or
antagonists. These receptors reach the cell nucleus and control the transcription of specific
target genes by binding to associated DNA regulatory sequences. Estrogen receptors
control cells and pathways in the innate and adaptive immune system and regulates
immune cell development [18]. Estradiol and ER activity show profound effects on innate
immune signaling pathways and myeloid cell development [19].

Moreover, several such hormones may be responsible for the poorer course of COVID-
19 disease occurring in males [20]. When focusing on the effect of estradiol on human
physiology, many authors have observed that this particular steroid hormone significantly
influences the respiratory, cardiovascular and immune systems (summarized by Breithaupt-
Fallopa et al. [21] and Pinna [22]. Briefly, estradiol decreases recruitment of neutrophils and
local cytokine production and possesses an antioedematous effect in the lungs. Estradiol
also reduces blood platelet aggregation and increases the number of lymphocytes. This was
confirmed mainly for Th1 and virus-specific CD8 T lymphocytes. Therefore, we observe
dysregulated immune functions in COVID-19 infected individuals more frequently in
males than in females [23].

On the other hand, tamoxifen is an ERM (estrogen-receptor modulator) that is fre-
quently used to treat breast cancer patients. While short-term tamoxifen application
could be helpful in anti-COVID-19 therapy, its long-term application may reduce expres-
sion of estrogen receptors (ERs). Hence, this therapy can increase the susceptibility to
SARS−CoV−2 [24,25]. In order to address this hypothesis, we retrospectively analysed
a group of 273 breast cancer patients suffering from triple-negative and HER2-positive
cancer from the Department of Oncology (First Faculty of Medicine, Charles University
and General Teaching Hospital, Prague). We focused our analysis on the incidence of clini-
cally manifested infection that was later confirmed in symptomatic patients as COVID-19
by PCR. We reviewed the period during the COVID-19 epidemic, specifically between
March 2020 and February 2021, when vaccination became broadly available to our patients.
These patients received chemotherapy or endocrine treatment combined with trastuzumab.
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Patients on immunotherapy, CKD4/6 inhibitors, everolimus or alpelisib were excluded.
Similarly, we excluded patients with cancer duplicity or multiplicity and the patients who
were already COVID-19 vaccinated. Our data suggest the influence of tamoxifene on
SARSe−CoV−2 clinically manifest infection in our breast cancer patients (Figure 3).
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Figure 3. Effect of hormonal therapy of female breast cancer patients with tamoxifene on the sensi-
tivity to SARS−CoV−2 infection. Females treated by this drug were not as sensitive to infection
as non-treated patients. The effect of therapy was higher in postmenopausal women without the
production of estrogens.

From this point of view, males are predisposed to a more severe course of COVID-19
disease [26]. This observation agrees with the results of a genomic investigation using a
gene-set enrichment analysis of normal and SARS−CoV−2-infected human tissue, where
estrogen receptors ERα and β significantly stimulate the immune response in the infected
women. This is in contrast with males, where the immune response is inhibited [27]. Both
ERα/β are present in immune cells and their role in COVID-19 may be expected [28,29].
Estrogens stimulate ERα expression in T lymphocytes and activates them [24,30]. The
age-dependent loss of ERα in T lymphocytes increases the susceptibility to viruses such
is the Coxackie infection [31]. These data may be relevant to the SARS−CoV−2 infection
as well.

It should be mentioned here that activities involving the whole-body level function
are dependent of the interaction of oestrogens with their specific receptors.

3. Effect of Oestrogen Receptor Modulators (ERMs) on Viral Replication

Different modes of action of estrogens and ERMs on viral replication have been
described. The mechanism can be either dependent on or independent of the interaction
of hormones with their receptors. It has been observed that estradiol interferes with
hepatitis B virus infections via the induction of hepatocyte nuclear factor 4α production
and interaction with HBV enhancer I [32]. A similar inhibitory effect was confirmed in
hepatitis C infections [33,34]. Moreover, these observations are further supported by the
evidence of reduced efficiency of hepatitis treatment in postmenopausal women [35]. These
mechanisms were also dependent on the interaction of hormones with their receptors. The
inhibitory effect of estrogens on replication was documented [36–66]. in a panel of viruses
(for particulars see Table 1).
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Table 1. Effect of ERMs on the biology of representative viruses.

Substance (Relation to
Estrogen) Virus Effect

Estradiol SARS−CoV−2 Blocking of virus entry [36]

Bazedoxifene
(agonist/antagonist)

EBOLA
SARS−CoV−2

Blocking of endolysosomal system [37]
Interaction with SARS−CoV−2 main protease [38]

Clomiphene (analogue) SARS−CoV−2
EBOLA

Blocking of endolysosomal system [39]
Blocking of virus entry [37,40–45]

Cyclofenil
(agonist/antagonist) Dengue, Zika RNA synthesis inhibition [46]

Genestin (analogue)

Adenoviruses
Bovine herpesvirus 1

Virus herpes simplex 1/2
Human herpesvirus 8

Moloney murine leukemia
Rotaviruses

Simian virus 40
Human cytomegalovirus

Human immunodeficiency 1

Blocking of virus entry [47]
Reduction in virus replication [48]

Blocking of virus entry and translation [49]
Reduction in virus DNA synthesis [50]

Blocking of virus entry [51]

Genistein (analogue)
Arenaviruses

Bovine viral diarrhoea
African swine fever virus

Inhibition of tyrosinkinase [52]
Blocking of virus entry and translation [49]

Disruption of DNA synthesis [53]

Quercetin (analogue) Adenoviruses Blocking of virus entry and translation [49]

Quinestrol (analogue) Flaviviruses (ZIKA, Dengue, West Nile) Reduction in virus RNA synthesis [54]

Raloxifene
(agonist/antagonist)

Flaviviruses (ZIKA, Dengue, West Nile)
EBOLA, SARS−CoV−2

Reduction in virus RNA synthesis [54,55]
Blocking of virus entry [44,56–60]

Ridaifene-b(+XL-147)
(Tamoxifen analogue without

effect on ER)
EBOLA Blocking of virus entry [42]

Tamoxifen
(agonist/antagonist)

MERS
Vesicular stomatitis virus

EBOLA

Inhibition of virus replication [61]
Inhibition of virus replication and activation of

macrophages [62]
Blocking of virus entry [45,58]

Toremifene
(agonist/antagonist)

MERS
EBOLA

SARS−CoV−2

Inhibition of virus replication [61]
Blocking of virus entry [43,58,63,64]

Blocking of virus entry [65,66]

It seems that estrogens here act independently of their interaction with receptors.
What is also noteworthy is that natural and synthetic compounds modulating estrogen
receptor activities can be medically relevant. These drugs with ERM activity act as estrogen
analogues or agonists (Supplementary Materials Figure S1). However, they can also attenu-
ate the course of viral infection. Unfortunately, the precise molecular mechanisms of action
were deciphered only in a few cases and are usually independent of the interaction with the
receptor. Clomifene, raloxifene, ridaifene (+XL-147) and toremifene act via attenuation of
the interaction of SARS−CoV−2 or EBOLA with their target cells [37,40–44], where some
role of the inhibition of SARS−CoV−2 spike protein interaction with receptor ACE2 may be
expected [36,37,39,44,45,67]. ERMs seem to inhibit the glycan–glycan interaction between
the spike protein and ACE2 and so reduces the virus entry to permissive cells [43,68].

Clomiphene, raloxifene and tamoxifen also interact with late endo/lysosomes. This
stimulates accumulation of cholesterol and has an inhibitory effect on the release of
SARS−CoV−2 and EBOLA RNA from the vesicle. This represents a critical step in virus
replication [39,45,55].
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Another compound, genistein, can directly disrupt the replication of viral DNA in the
African swine fever virus (ASFV) by interaction with ASFV topoisomerase II [53]. Similarly,
quinestrol and raloxifene inhibits the synthesis of SARS−CoV−2 RNA [54].

Cylofenil inhibits assembly and maturation in the Dengue virus [46].
Some candidate drugs can exert several effects in parallel. In addition to targeting virus

replication, bazedoxifene can also protect TNF-α-dependent damage to endothelial cells in
persons suffering from COVID-19. TNF-α is elevated in this disease as an essential bioactive
protein of cytokine storm [68]. Bazedoxifene can block TNF-α binding to CD40 expressed on
endothelial cells. This action can prevent endothelial injury [32]. Indeed, epidemiological
data suggest that patients on anti-TNF-α drugs for rheumatologic conditions are at lower
hospitalisation risk than the control population [69].

These data collectively demonstrate that several ERMs possess remarkable broad
antiviral activity independent of their interactions with estrogen receptors. Their activities
overlap and can have an inhibitory effect on the viral entry, release of nucleic acid from
virions encapsulated by endosomes and replication of nucleic acid and virus assembly,
which represent the crucial steps of virus infection.

4. ERMs and Estrogens as Inhibitors of SARS−CoV−2 Proteases

Among the SARS−CoV−2 components, the viral proteases such as main protease
(Mpro) and papain-like protease (PLpro) represent molecules critically important in viral
replication [70,71]. Proteases, therefore, also offer a potential target for antiviral ther-
apy [72]. A plethora of known protease inhibitors (including but not limited to disulfiram,
lopinavir/ritonavir, nelfinavir and danoprevir) can be potentially employed in COVID-19
therapy [70].

Remdesivir, an inhibitor of the viral RNA-dependent RNA polymerase, was used
as COVID-19 therapeutic. Interestingly, it is also able to interact with SARS−CoV−2
Mpro [73].

Some works suggested that ERMs could also be potent inhibitors of SARS−CoV−2
proteases [74], namely isoflavonoids and raloxifene. Among candidate inhibitors of
SARS−CoV−2 Mpro, quercetin and other similar flavonoids were identified [75,76].

The possible interactions of ERMs (structures are shown in Supplementary Materials
Figure S1) with both SARS−CoV−2 proteases Mpro and PLpro are presented in Table 2 and
Figures 4–6.

Chiou and coworkers [77] have reported that raloxifene is a potent inhibitor of
SARS−CoV−2 Mpro (IC50 = 5.61 µmol/L). It is known that part of the ERM biological
effect lies in their interaction with ER. This results in the question of whether estrogens,
or the other ERMs could also interact with CoV−2 proteases. In order to address this
question, we used AutoDock Vina [78] to predict the binding affinity of genistin, estrogens
and ERMS to Mpro. Based on various interactions, we calculated the binding energy. The
docking study implies that ERMs, especially bazedoxifene, display the highest affinity for
the SARS−CoV−2 main protease and SARS and the lowest affinity for CoV−2 papain-like
protease (PLpro monomer). In the case of estrogens, the values obtained for SARS−CoV−2
Mpro were comparable with those calculated for their interaction with PLpro (monomer
and trimer) (Table 2, Figures 5 and 6, Supplementary Tables S1–S3 and Figures S2–S22).

These results allow us to postulate the hypothesis that some ERMs, especially bazedox-
ifene, could display another important therapeutic activity necessary for the treatment of
COVID-19 via inhibition of COVID proteases in addition to the inhibition of IL-6 signalling
and modulation of ER. The possible inhibitory effect of estrogens against CoV−2 proteases
should also be considered when explaining the higher susceptibility of males to COVID-19
than that observed in females. In summary of this section, interaction of ERM including
natural estrogens with SARS−CoV−2 proteases can participate in the inhibition of their
replication as proposed [72].
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Table 2. The calculated interaction energy between SARS−CoV−2 proteases and estrogens or ERMs
(kcal/mol).

Agents Main Protease Papain-Like
Protease (Monomer)

Papain-Like
Protease (Trimer)

Estradiol −7.14 −6.86 −7.32

Estrane −7.59 −6.28 −7.51

Estriol −7.9 −6.43 −7.82

Estrone −8.96 −6.94 −7.61

Bazedoxifene −10.13 −5.54 −7.69

Genistine −7.7 −6.07 −6.25

Raloxifene −8.61 −6.14 −7.49
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5. Antiviral Effect of Estrogens as a Developmental Strategy

Sex-specific infection rates and sex-related differences in mortality rates have been
documented in humans [79]. Indeed, this is a sort of sexual dimorphism. The hormonal
regulation becomes highly dynamic during the course of pregnancy. The development of
the hormonal milieu of pregnancy has become an increasingly studied area of interest of
immunology in recent years [80]. Pregnancy is associated with an alteration in immune
priorities characterised by a strengthening of innate immune barriers and a concomitant
reduction in adaptive/inflammatory immunity in the later stages of pregnancy [81]. Briefly,
all this precise orchestration of the maternal immune system provides protection for the
mother and her future offspring from pathogens, while avoiding detrimental immune
responses against the allogeneic foetus. Therefore, estrogen-related signalling seems to
be part of a developmental strategy potentially providing critical protection for both the
mother and the infant in early life.

The estrogen-ER axis represents a fundamental hormonal regulatory axis of the female
reproductive system. This essential regulation influences virtually all body parts in females.
This article demonstrates that ER-dependent activity predisposes the organism, namely the
respiratory, cardiovascular system and innate/adaptive immunity, to be more resistant to
viral infection. Moreover, ER-independent functions can minimise viral entry, replication
and assembly.

It is well known in clinics that the female organism in fertile age is more resistant
to cardiovascular problems and females have more robust immunity [82]. Klein and
Flanagan [16] aimed to summarize the sex-related differences in the immune response of
males and females. As confirmed in many species, the immune response is more robust
in females than in males (data collected from sea urchin, fruit fly, scorpion fly, wall lizard,
Eurasian kestrel, great tit, home mouse, Rhesus macaque and humans). It is also consistent
with the fact that women develop a stronger response to vaccination [16].

However, women pay for this advantage by a higher proclivity to autoimmune
disorders (e.g., Graves’ disease, Hashimoto thyroiditis and multiple sclerosis).

The activation of ER also stimulates wound healing. It seems to be a critically im-
portant aspect of postpartum healing in mammals [83]. However, this impact is broader
and also affects extragenital organs. Interestingly, distinct steps of wound healing, such as
epidermal cell proliferation or production of extracellular matrix, are precisely regulated
by the timely expression of α/β ER [84]. What is noteworthy is that the benefits of the
female sex are diminished in female mammals after menopause, when the production of
sex hormones decreases [16]. Nevertheless, these lost hormone-dependent functions can be
restored to some extent by substitutional estrogen therapy and it is used in clinics routinely.

In the context of this article, raloxifene is clinically used as ERM for the prevention of
postmenopausal osteoporosis. Moreover, raloxifene administration also normalises levels
of blood lipids and thus reduces cardiovascular risks [85].

From the evolutionary view, the summarized plethora of advantages of estrogen
during the fertile age can be interpreted as a sort of protection of the female as a donor and
bearer of life. Hormonal substitution has had several relevant applications recently and can
substantiate therapeutic interventions available in the future. Furthermore, this hypothesis
harmonizes well with the lower mortality in women suffering from COVID-19 [86] and
may have therapeutic implications.

6. Therapeutic Consequences

COVID-19 can be theoretically influenced by the wide panel of approved therapeutics.
This repurposing was suggested for angiotensin II receptor blocker (Losartan), protease
inhibitors (lopinavir) or biologics inhibiting the IL-6 signalling cascade (Tocilizumab).
Corticoids are routinely employed in practice for their broad ability to suppress the immune
response [87,88]. Based on extensive knowledge from cancer therapy, inhibitors of sex
hormone receptors were also proposed as candidate therapeutics for COVID-19 [25]. As
demonstrated in our article, a panel of ERM can be potentially employed [89]. ER of both
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types are expressed, at the protein level, in cells in both sexes and more in females than in
males [90]. However, it is sufficient for clinicians to use estrogen modulators in patients
of both sexes. ERM therapy in males is possible for a limited period of time without the
adverse effect of feminisation. In addition to the receptor-dependent effect of estrogens
controlling the immune response, there is also the direct antiviral effect of ERM that is
ER-independent.

Searching for possible off-target indications in approved drugs, ERMs were identified
as suitable candidates for COVID-19 therapy [88]. A broad panel of ERMs is routinely
used in clinical practice to treat conditions ranging from endocrine disorders to cancer. The
combination of ERMs with antiandrogen therapy could also be helpful in the COVID-19
treatment. However, the employment of ERMs in anti-COVID-19 therapy requires further
research and clinical testing before their introduction to clinics.

Another strategy can be based on targeting the regulation of androgens. This can
result in their temporarily decreased production in COVID-19 patients. This principle was
proposed and tested in animal experiments and in a limited clinical study performed in
COVID-19 patients [91–93].

Concerning the hypothesised multiple therapeutic effects of ERMs, bazedoxifene and
raloxifene can be good examples. These drugs are very similar with respect to their chem-
ical structures. Both are used for the treatment of postmenopausal osteoporosis [94,95].
As mentioned above, both possess an inhibitory effect on virus replication in which they
can interact with viral proteases (Table 2). They also interact with a signal transducer
(glycoprotein 130) and, by this mechanism, they attenuate the interaction of IL-6 with its
receptor [96,97]. This activity seems to have some anticancer effect. IL-6 is a critical com-
ponent in the initiation of cytokine storm/hyperinflammatory syndrome that represents
the deadly complication of COVID-19 [98–100]. Although results are not unambiguous,
anti-IL-6 receptor therapy with therapeutic antibody Tocilizumab demonstrated promising
effects [101–103]. Moreover, bazedoxifene and raloxifene estrogen-like activity and their
ability to activate ER may result in beneficial effects on the COVID-19 patients (namely on
the lungs, immunity and vascular permeability). The potential effects of ERM on COVID-19
are summarised in Table 3 and in Figure 7, where we demonstrate the effect of ERMs on
the organism of infected person and on the virus replication including the effect of ER
occupation by suitable ERMs.

Table 3. Summarization of the potential role of ERMs including estrogen in COVID-19.

Function Potential Effect of ERM Dependence on ERM
Binding to ER

Potential
Clinical/Therapeutic Effect

Pulmonary function Stimulated Yes [21,29] Yes

ACE2 expression in airways Reduced Yes [9] Yes

Cardiovascular function Stimulated Yes [21] Yes

Vascular endothelium injury Reduced No [21] Yes

Increased vascular
permeability Reduced Yes/No [21] Yes

Immune response against
SARS−CoV−2 Stimulated Yes [16] Yes

Sensitivity to vaccination Stimulated Yes [16] Yes

Hypersecretion of cytokines
including IL-6 Reduced Yes [16,68] Yes

IL-6 binding to receptor Reduced No [96,99] Yes
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Table 3. Cont.

Function Potential Effect of ERM Dependence on ERM
Binding to ER

Potential
Clinical/Therapeutic Effect

Virus replication (virus entry) Reduced Yes/No (see Table 1) Yes

Virus replication (release of
RNA from endosome) Reduced No (see Table 1) Yes

Virus replication (inhibition of
proteases) Reduced No (see Table 1, [77]) Yes
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SARS−CoV−2 infection.

The use of ERM, perhaps in combination with other therapeutics, can extend the panel
of anti-COVID-19 therapeutics.

7. Experimental Part Describing Procedures of Molecular Docking of SARS−CoV−2
Proteases with Estrogens and ERM

For docking studies, the model complexes of SARS−CoV−2 proteases with estrogens
and drugs have been created. The three-dimensional structures of proteases were retrieved
from the protein data bank database with PDB ID (id 6YB7 for SARS−CoV−2 main protease
and id 6W9C for SARS−CoV−2 papain-like protease). The three-dimensional structures of
estrogens and drugs with estrogenic effects (Supplementary Figures S2–S22) were obtained
from PDB (for estrogens) and PubChem (for drugs) databases. The structures from the
PubChem database were saved, using the UCSF Chimera software, as pdb files. During the
docking process, one molecule was taken as a receptor and another considered as a ligand
and we took a grid box for the receptor. In this study, the protease’s three-dimensional
structure was taken as a receptor. The estrogens (estradiol, estrone, estrange and estriol)
and ERMs (bazedoxifene, raloxifene and genistein) were considered as ligands. We used
AutoDockTools (ADT) in our in silico analysis [78] to prepare receptors and ligands. UCSF
Chimera was used to remove two chains from the SARS−CoV−2 papain-like protease
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(trimeric) to obtain the SARS−CoV−2 papain-like protease (monomeric). Non-essential
water molecules, including hetero atoms, were extracted before continuing with the docking
test. However, we used ADT for the molecule’s preparation for docking in our analysis.
For all our molecules, we used ADT to remove water molecules and solvent residues;
we also used a software for adding polar hydrogens and partial chargers to the structure.
Molecular docking was finally performed by ADT.

We studied the interaction of proteases with estrogens and ERMs using ADT and
UCSF Chimera to identify the protein–ligand binding site. We also tried to define important
properties of the new complexes, such as the binding energy between the protein and
ligand, the existence of hydrogen bonds and π–π interactions and the presence of amino
acids playing a role in the process of binding. The three-dimensional structures were
converted to pdbqt format using ADT. The grid box size 126 × 126 × 126 and the centre
was selected that covered thes maximum of the surface of the receptor.

After AutoGrid and AutoDock commands we found ten conformations and selected
one best based on the power of binding energy and number of H-bonds. The better binding
sites (conformations), obtained from the docking process, were found with ADT by function
“analysis-conformation-ranked by energy”. After that, we created pdb files of the obtained
complexes for the following study of molecules in the UCSF Chimera software [104]. ADT
was used to assess the binding affinity of the estrogens to the proteases. In this study,
we carried out docking for estradiol, estrone, estrane, estriol, bazedoxifene, raloxifene
and genistein. By ADT, we detected information about the binding energy, H-bonds and
the existence of π–π interactions. By using the UCSF Chimera software, we obtained
information about the binding pockets, such as complete information on what amino acids
are involved in the binding process [104]. Moreover, the UCSF Chimera software allowed
us to render pictures and label amino acids on them for better visualisation of the binding
pockets. Complete information with images is given in separate documents below.

8. Conclusions

This paper demonstrates the potential to employ estrogens and modulators of estrogen
receptor in COVID-19 therapy.
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