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To address the issues of low detection accuracy and poor effect caused by small

Oncomelania hupensis data samples and small target sizes. This article

proposes the O. hupensis snails detection algorithm, the YOLOv5s-ECA-

vfnet based on improved YOLOv5s, by using YOLOv5s as the basic target

detection model and optimizing the loss function to improve target learning

ability for specific regions. The experimental findings show that the snail

detection method of the YOLOv5s-ECA-vfnet, the precision (P), the recall

(R) and the mean Average Precision (mAP) of the algorithm are improved by

1.3%, 1.26%, and 0.87%, respectively. It shows that this algorithm has a good

effect on snail detection. The algorithm is capable of accurately and rapidly

identifying O. hupensis snails on different conditions of lighting, sizes, and

densities, and further providing a new technology for precise and intelligent

investigation of O. hupensiss snails for schistosomiasis prevention institutions.
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1 Introduction

Schistosomiasis is a disease caused by the parasitism of pathogenic schistosome in

the human blood circulation system. Schistosoma mansoni, S. japonicum, S.

haematobium, S. intercalatum, and S. mekongi are the five main species of

schistosomes that live in humans (Huang, 2018). Among them, S. japonicum is

mainly distributed in China, Indonesia and the Philippines. Oncomelania snails is the

intermediate host of S. japonicum in China. Oncomelania snails and S. japonicum

have a very subtle interaction. There must be Oncomelania snails where there is an

epidemic of S. japonicum. Usually, there is S. japonicum without Oncomelania snails,

it is unlikely to generate an epidemic. Oncomelania snails control is a critical

component of schistosomiasis eradication. By the end of 2020, China’s

Oncomelania snails covered around 2.06 billion m2 (Zhang et al., 2021a).

Traditional O. hupensis snails surveys rely heavily on the naked sight to identify

based on their morphology, which is time consuming, difficult, and not very accurate

(Jiang and Yang, 2020), which impairs the accuracy of the O. hupensis snails situation
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assessment. As a result, research into novel technologies and

methods of O. hupensis snails survey should be bolstered, and

the efficiency of O. hupensis snails survey should be increased

to meet the demand for S. japonicum elimination efforts.

The current research on the O. hupensis is mainly about its

breeding environment distribution, monitoring methods, control

technology, etc. Hong et al. (Hong et al., 2004) and Hang and

ZhouHong (2004) found that the development ofOncomelania eggs,

oxygen consumption, enzyme activity, etc. The temperature which

too high or too low is not conducive to the survival, reproduction

and life span of the Oncomelania snails. The most suitable

temperature for the survival of the snails is 20–30°C (Huang,

2006). He et al. (2006) analyzed the number and spatial

distribution characteristics of Oncomelania in different land types

in a typical study area through indoor tests and field surveys. The

results showed that there were large differences in the density of live

O. hupensis between different land types. Yang et al. (2003)

introduced the methods of microbial O. hupensis control,

describing the general microbial O. hupensis control tests and

their effects. The results of the microbial tests of Pseudomonas

conrexa chester, Streptomyces griseolus 230, Streptomyces

diastatochromogeryes 218, etc., have a strong role in killing O.

hupensis and O. hupensis eggs. Wang (2010) extracted geometry,

edge morphology, and brightness features from O. hupensis. They

established classifiers with neural network techniques to increase

recognition accuracy and stability. Shi et al. (2021a) developed a

visual intelligent recognition model for O. hupensis using deep

learning technology. They proposed a convolutional neural

network with an optimized training strategy of “Data

Augmentation + Transfer Learning,” which is capable of

accurately recognizing O. hupensis images.

In summary, the algorithm used in the existing research is a two-

stage target detection algorithm, which first generates a target pre-

selection frame, and then classifies and regresses the area through the

CNN network layer to obtain the detection frame (Xie et al., 2022a).

The YOLO algorithm used in this study can generate the predicted

classification probability and predicted coordinate value of the

detected object with only one detection, so that it has faster

training speed and detection speed than previous research

algorithms. The O. hupensis snail is a small target with fuzzy

border characteristics; its appearance is complex and difficult to

recognize, and it presents unique detection issues. The results

indicated that YOLOv5s-ECA-vfnet improved the algorithm’s

precision (P), recall (R), and mean average precision (mAP) by

1.3 percent, 1.26 percent, and 0.87 percent respectively, over

YOLOv5s, thereby providing a new technology for accurate and

intelligent investigation of O. hupensis snails.

2 Algorithm YOLOv5

Three components make up the YOLOv5 algorithm. The first

section contains the input, which consists of a 608-part training

image. The second section is the backbone network, which

extracts information-rich features from the input photos using

the CSPDarknet53 network. The third section is the detection

layer, which employs multiple scales for detection (Cai et al.,

2021a). In addition, it incorporates a new bottom-up path

aggregation network structure (Path Aggregation Networks,

PAN) following the Feature Pyramid Networks (FPN)

structure (Lin, 2016) to achieve feature information fusion at

various scales. Following that, predictions are made on the three

created feature maps.

The YOLOv5 algorithm’s convolution kernel is primarily

33 or 11, and the convolution structure is composed of a

convolution layer, a batch normalization (BN) layer, and an

activation function layer (Wu et al., 2018; Zhang et al., 2021b;

Zhou et al., 2021). For multi-scale fusion, the Spatial Pyramid

Pooling (SPP) structure employs maximum pooling of 1 × 1,

5 × 5, 9 × 9, and 13 × 13 (Cui et al., 2019; Gao, 2020).

Furthermore, YOLOv5 maintains a multi-scale detection

framework. After the backbone network extracts the

features, two upsampling and three convolutions are done

to achieve significant and tiny target categories and position

prediction at three scales of 19 × 19, 38 × 38, and 76 × 76,

respectively. The YOLOv5 makes advantage of adaptive

anchor frame computation, which determines the optimal

anchor frame values in the training set based on the

training data set (Shu and Zhang, 2021). Figure 1 illustrates

the overall algorithm structure of YOLOv5.

The YOLOv5s is a fast and precise detection method that

performs well on open-source datasets, but its detection

performance for O. hupensis identification tasks still needs to

be improved. Experiments and tests have confirmed the

enhanced algorithm described in this paper’s effectiveness.

3 Improvement of YOLOv5s-ECA-
vfnetO. hupensis detection algorithm

3.1 YOLOv5s-ECA network based on
effective channel attention mechanism

When the YOLOv5s network extracts features, it treats all

model channels equally, which limits the algorithm’s detection

effectiveness somewhat. Due to the study’s small and densely

dispersed O. hupensis, an effective channel attention mechanism

is incorporated into the CSPDarknet53 feature extraction

network of YOLOv5s. The enhanced model is dubbed

YOLOv5s-ECA-vfnet. The attention mechanism has been

demonstrated to be a critical component of enhancing target

detection performance and is frequently used in a variety of

popular detection algorithms (Cui et al., 2021a; Hu and Yan,

2021). The most prominent feature of Efficient Channel

Attention is that it avoids downscaling and cross-channel

interactions, while reducing the complexity of the model and
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enhancing feature representation (Cai et al., 2020; Wang et al.,

2020; Zhu et al., 2021). Figure 2 illustrates the structure of the

ECA’s attention module.

The ECA module generates channel attention via a fast 1D

convolution of size k, the size of which is completely determined

by the adaptive channel dimensionality correlation function.

After importing feature images with constant dimensionality

χ, all channels are globally averaged and pooled. The ECA

module will learn features using a one-dimensional

convolution that can share weights, and will involve k nearest

neighbors per channel to capture cross-channel interactions

when learning features. The adaptive k value is determined by

the proportional relationship between the masked area of cross-

channel information interactions and the channel dimension C,

as shown in Eq. 1.

K � (φ) �
∣∣∣∣∣∣∣∣
log2(C)

γ + b
γ

∣∣∣∣∣∣∣∣ood (1)

where γ and b are set to 2 and 1 by default, and |*|ood denotes the
nearest odd number, and C is the channel dimension.

FIGURE 1
The overall algorithm structure of YOLOv5.

FIGURE 2
ECA attention module structure diagram.
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The general channel attention mechanism module selects a

high-level feature map for global pooling and then compresses

the two-dimensional features of each channel using

dimensionality reduction. After this computation, the entire

feature can be considered compressed in order to obtain a

complete global perceptual field, but some spatial feature

information is lost as the dimensionality is reduced. The

relationship between the channel and spatial dimensions

cannot be reflected. While more mature CBAM attention

mechanisms are based on both space and channel, their

computational processes are completely independent,

significantly increasing computational time and effort (Wang

and Wang, 2021). In comparison, the important significance of

Efficient Channel Attention is: Firstly, it is not required

dimensionality reduction. all channel and spatial dimension

information will be integrated without losing information;

secondly, the coverage area and channel dimension through

the interaction of cross-channel information. The proportional

relationship of C obtains an adaptive k value, which reduces the

amount of calculation. The model’s complexity is reduced while

the expression of features is increased, increasing the model’s

accuracy (Xie et al., 2022b).

3.2 Optimization of the anchor frame
parameters

The YOLOv5 implements the concept of Auto Learning

Bounding Box Anchors, which utilizes the K-Means algorithm

to automatically calculate the appropriate anchor box based on

the labeled target box (ground truth) (Li et al., 2021a; Cui et al.,

2021b), and the anchor box is learned from the training data.

Since the size of the detection target of the custom dataset

differs from that of the public dataset, YOLOv5 learns the size of

the anchor frame by relearning it automatically. The

YOLOv5 generates nine anchor boxes from the COCO

dataset: (10, 13), (16, 30), (33, 23), (30, 61), (62, 45), (59,

119), (116, 90), (156, 198) and (373, 326). In this paper, we

add three anchoring frame sizes for detecting small targets with

inconspicuous boundaries, namely (5, 6), (8, 14), and (15, 11).

Anchor boxes were assigned based on the detection layer scale,

and the statistical anchor box assignments for detecting O.

hupensis with small targets are shown in Table 1.

3.3 Improvement of the confidence loss
function

The YOLOv5 network uses the focal loss function, which has

similar loss weights for positive and negative samples

superimposed, and the focus is on more difficult to detect

targets, which creates some difficulties when training the

pinned O. hupensis snails. The number of positive and

negative samples is highly unbalanced due to the small size of

the pinned O. hupensis snails target. If both positive and negative

sample losses are treated equally, the network’s convergence

speed will be slowed and the learning information about the

target will be lost (Li et al., 2021b). The original loss function

concentrates the network’s attention on low-quality samples,

reducing the efficiency of updating the target detection model

parameters and having a direct effect on subsequent detection

results. When the target arrangement is dense, the non-

maximum suppression algorithm will eliminate the

interference of redundant prediction boxes according to the

highest scoring prediction box. At this time, the high score

prediction box will affect the subsequent screening results. In

this paper, we introduce the VariFocal Loss (Ye, 2021) function

for YOLOv5s, as defined in Eq. 2

VFLoss(p, q) � {−q(q log(p) + (1 − q)log(1 − p)) q> 0
−αpγ log(1 − p) q � 0

(2)
In which p is the confidence level of the network output

prediction frame, and q is the target IoU score. For positive

samples with higher scores in training, the model increases their

share of the loss weights. For negative samples in training, q is 0.

The negative sample loss is incorporated with a γ downgraded

weight, while the positive sample loss is not introduced in the

calculation of γ. The weight of the negative sample loss can be

effectively reduced without affecting the positive sample weight.

In order to balance q, α downscaling is used and ultimately allows

the network to focus its training on the positive samples with

high scores.

4 Finds of experiments and their
analysis

4.1 Platform for experimentation

The deep computing platform used in this paper is comprised

of an Intel® Core(TM) i7-8700K CPU at 3.20 GHz as the central

processor, Windows 10 Pro as the operating system, 16 GB

TABLE 1 Anchor Box allocation table.

Feature map 20*20 40*40 80*80 160*160

Receptive field Large Larger Medium Small

Anchor boxes (116,90) (30,61) (10,13) (5,6)

(156,198) (62,45) (16,30) (8,14)

(373,326) (59,119) (33,23) (15,11)

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Fang et al. 10.3389/fbioe.2022.861079

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.861079


DDR4 as the running memory, a GeForce GTX 1070 8 GB as the

graphics processor, Python 3.8 with Pytorch 1.9 as the

programming language.

4.2 Experimental dataset

The data in this paper were obtained from the study site:

Jianghuzhou Island in Zongyang County on the Yangtze River

Island in Zongyang County, the north bank of the lower Yangtze

River in Anhui Province, China, a dataset of 2000 images of lake

and the O. hupensis snails were built under the guidance of blood

control professionals from the Tongling Center for Disease

Control and Prevention according to the distribution pattern

of O. hupensis snails (Zhou, 2019). Some samples of the dataset

are shown in Figure 3.

The collected data were filtered and organized, and all O.

hupensis image samples in the collected images were annotated

using the marker software Make-Sense. The annotated images’

annotation information was saved in the form of.txt files, which

included the target object’s category and coordinate information.

Figure 4 illustrates a data annotation example.

4.3 Evaluation indicators

The average precision (AP) and mean value of average

precision mAP are frequently used in target detection to

assess the model’s detection effectiveness and performance

(Zhao et al., 2021). AP is defined as the area under the Recall

and Precision curves, which is equivalent to mAP in this

study for a single target. Ratio of area intersections (IoU). The

FIGURE 3
Data set sample.
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model’s ability to predict the location is determined by

comparing the area of the rectangular area predicted by

the model to the rectangular area calibrated in the

validation set. Precision (P): The ratio of correct targets

detected by the model to the total number of targets,

which indicates the model’s detection accuracy (Cai et al.,

2021b; Shanid and Anitha, 2021).

P � TP
TP + FP

(3)
Recall R: Recall is the ratio of targets detected by the model to the

total number of targets, and it indicates the model’s ability to

identify a wide variety of targets.

R � TP
TP + FN

(4)

AP � ∫1

0
P(R)dR (5)

Where TP (True positive) denotes the number of positive

samples correctly detected, that is, the prediction frame

belongs to the same category as the labeled frame and

IoU >0.5. FP (False positive) denotes the number of positive

samples incorrectly detected. FN denotes the number of negative

samples incorrectly detected. Since precision and recall are

affected by confidence level, evaluating model performance

solely on the basis of precision and recall would be

unscientific and limited. Therefore, in our experiments, we use

Average Precision (AP) to evaluate the model’s recognition

performance, which is one of the most important indices for

evaluating the performance of mainstream target detection

algorithms.

4.4 Training parameter design

The spiked data set is divided randomly into training sets and

test sets in a 7:3 ratio. There are 1,400 training and 600 test sets,

respectively. The scale of the input image is 640 × 640. The

number of training batches is 8. The training momentum is

0.843. The initial learning rate is set to 0.0032. The weight decay

is set to 0.00036. The training epochs for theYOLOv5s and the

YOLOv5s-ECA-vfnet are both 400 according to the model’s

characteristics.

FIGURE 4
Example of data set annotation.
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FIGURE 6
Comparison of precision.

FIGURE 7
Comparison of boxloss.

FIGURE 5
Curve of the loss function value with the number of training
rounds.

FIGURE 8
Comparison of recall.
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4.5 Analysis of findings

4.5.1 Training process loss values
The loss function value in deep learning can reflect the

error between the final prediction result of this target

detection model and the actual true value, and is used to

analyze and judge the training process’s merit, the model’s

convergence, and whether it is over fitted (Wang and Fu,

2018). While the loss function can be considered a layer of the

network within the model definition in the PyTorch

framework used in this paper. In actual use, it is more

focused on the forward propagation process as a functional

function (Gong et al., 2019; Fang et al., 2022; Zhang et al.,

2022).

The loss function values of the original YOLOv5s model and

the improved YOLOv5s-ECA-vfnet model are compared and

analyzed, and the loss function values of YOLOv5s-ECA-vfnet

are found to be significantly lower than those of the original

YOLOv5s model after 150 epochs. Loss function as one of the

criteria for evaluating the quality of model training. We found

that the YOLOv5s-ECA-vfnet is significantly better than the

YOLOv5s, and the YOLOv5s-ECA-vfnet has a lower loss

function value under the same number of training epochs.

Figure 5 depicts the loss function value’s transformation curve

as a function of the number of training rounds.

4.5.2 Parameter convergence results
The training and evaluation parameters typically reflect the

process of developing the model and the effect of target detection

(Fang et al., 2021a; Shi et al., 2021b). Box Loss, Objectness Loss,

Precision, Recall, mAP@0.5, mAP@0.5:0.95, and so on are used

as the primary parameters to determine the degree of

convergence in this paper. The closer Box Loss and

Objectness Loss values are to 0, the better the training effect.

The Precision, Recall, mAP@0.5, and mAP@0.5: 0.95 values are

to 1, the more converged the parameters are, and thus the better

the training effect (Wang et al., 2017; Fang et al., 2021b).

The experimental results indicate that the parameters of

both YOLOv5s and its improved YOLOv5s- ECA-vfnet

gradually converge (the loss parameter converges to 0 and

the result parameter converges to 1). Figure 6 illustrates the

accuracy of the YOLOv5s training process, and the improved

algorithm outperforms the traditional YOLOv5s. From the

loss curve of border regression in Figure 7, it can be seen that

the loss value of the YOLOv5s- ECA-vfnet is significantly

smaller than that of the YOLOv5s algorithm and is stable at

about 0.01. Figures 8, 9 show the recall rate and the average

precision mean of training, respectively, and the proposed

algorithm has also improved.

In order to verify the effectiveness of the YOLOv5s-ECA-

vfnet algorithm in snail detection, compared with the YOLOv5s,

the experiment uses precision, mAP, Recall and inference time as

evaluation indicators. The results are shown in Table 2.

4.5.3 Predictability of the YOLOv5s-ECA-
vfnet algorithm

The effect of O. hupensis target visualization detection is

shown in Figure 10, from Figures 10A,B it can be seen that the

detection of densely arranged target regions with the original

algorithm is seriously missed, while the detection rate of the

improved algorithm is significantly improved and the effect of

dense targets on detection is effectively reduced. Figure 10C The

loss function in the original algorithm does not pay enough

attention to the high-quality prediction frames, resulting in a low

confidence of the output prediction frames. YOLOv5-eca-vfnet is

added with an attention mechanism, improved anchor frames,

and improved loss function, and from Figure 10D it can be found

that the confidence of the prediction frames is significantly

FIGURE 9
Comparison of mAP.

TABLE 2 Comparison with the YOLOv5s.

Model Images P/% R/% mAP@0.5/% Frame/Sec

Yolov5s 2000 92.48 92.89 95.51 61

YOLOv5s-ECA-vfnet 2000 93.78 94.15 96.38 55
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improved, the prediction frames can optimally cover the target

area, and the final output is more accurate target location

information.

5 Conclusion

In recent years, machine learning techniques of computer

vision have been gradually applied to the field of parasitic disease

control research, and certain results have been achieved (Eshel

et al., 2017). The recognition results are often constrained by the

merits of manually selected O. hupensis features through the

problems of difficult manual extraction of O. hupensis image

features, poor adaptability and weak anti-interference ability. In

contrast, visual recognition based on deep learning techniques

can often achieve better results.

To solve the problems of complex appearance of O. hupensis,

inconspicuous boundary features, small detection target and low

accuracy of O. hupensis detection due to small O. hupensis data

samples, this paper introduces the effective channel attention

mechanism, propose the YOLOv5s-ECA-vfnet algorithm based

on O. hupensis conch image detection by optimizing the anchor

FIGURE 10
The result of object detection. (A,C) The prediction of the YOLOv5s; (B,D) The prediction of the YOLOv5-ECA-vfnet; The red rectangular boxes
are the probability values of the algorithms to identify the pictures containing the snails, and the three yellow boxes are snails that YOLOv5s cannot
detect in (A). The improved algorithm can detect the snails in (B). (C,D) are different in the predicted probability values.
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frame parameters and changing the confidence loss function. The

experimental findings show that the YOLOv5s-CA-

vfnet algorithm has improved 1.3%, 1.26% and 0.87% in

Precision (P), Recall (R) and mean Average Precision (mAP),

respectively, over YOLOv5s. The O. hupensis image classification

dataset also provides a data base for the subsequent study of other

parasitic host snail identification.

There are some limitations in this study. 1) The sample

collection area of this study was limited to Anhui Province,

and could not represent the image recognition ability of

samples from other regions of the country. 2) This study

established an O. hupensis snail identification model, which

could only identify O. hupensis snail, but could not sub-

classify and identify which subspecies of O. hupensis snail.

In the future, we will further expand the scope of O. hupensis

snail and similar snail sample collection and further optimize

the subclassification capability of the intelligent model.

Further increase the scope of application of the model

(Rauf et al., 2020; Sharifizadeh et al., 2021).
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