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Abstract

The transcription factor Myc plays a central role in regulating cell-fate decisions, including proliferation, growth, and
apoptosis. To maintain a normal cell physiology, it is critical that the control of Myc dynamics is precisely orchestrated.
Recent studies suggest that such control of Myc can be achieved at the post-translational level via protein stability
modulation. Myc is regulated by two Ras effector pathways: the extracellular signal-regulated kinase (Erk) and
phosphatidylinositol 3-kinase (PI3K) pathways. To gain quantitative insight into Myc dynamics, we have developed a
mathematical model to analyze post-translational regulation of Myc via sequential phosphorylation by Erk and PI3K. Our
results suggest that Myc integrates Erk and PI3K signals to result in various cellular responses by differential stability control
of Myc protein isoforms. Such signal integration confers a flexible dynamic range for the system output, governed by
stability change. In addition, signal integration may require saturation of the input signals, leading to sensitive signal
integration to the temporal features of the input signals, insensitive response to their amplitudes, and resistance to input
fluctuations. We further propose that these characteristics of the protein stability control module in Myc may be commonly
utilized in various cell types and classes of proteins.
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Introduction

The proto-oncogene protein Myc is a transcription factor that

regulates numerous signaling pathways involved in cell-fate decisions

[1–4]. Sufficient accumulation of Myc leads to the activation of

Cyclin D and cyclin dependent kinases, which subsequently

phosphorylate Rb and release E2F. This results in the initiation of

DNA replication and cell cycle entry [5]. Excessive accumulation of

Myc, however, induces apoptosis [6,7] when cells are under stress or

deprived of growth factors. Finally, Myc also drives cell growth by

activating genes that encode cellular metabolic activities, including

translational factors, ribosomal proteins and RNAs [8].

Given its importance, Myc activity must be properly controlled

in response to different environmental cues. Past studies have

suggested that Myc is regulated at multiple levels, including auto-

regulation of Myc transcription [9] and post-transcriptional

regulation [10,11]. More recent discoveries indicate that Myc is

also dynamically regulated at the protein level by the Ras effector

pathways [12–15]. These discoveries suggest that Myc protein

undergoes a series of modifications that are sequential and

irreversible [12–14,16,17]. More specifically, when Myc is newly

synthesized, it is highly unstable and quickly undergoes ubiquiti-

nation and degradation [18]. It can be substantially stabilized

when phosphorylated at serine 62 (Ser62) by Ras-activated Erk

activity (Figure 1A). Subsequent phosphorylation of Myc at

threonine 58 (Thr58) by Gsk3b, however, initiates a destabilization

process in a sequential manner. This is achieved by a

dephosphorylation mechanism by a prolyl isomerase Pin1 and a

protein phosphatase PP2A. Once Myc is phosphorylated at Thr58

(MycSer62-Thr58), Pin1 induces it to undergo conformation changes,

which are required for PP2A to dephosphorylate the Ser62 residue

(MycThr58) [14]. To date, this is the only dephosphorylation

mechanism identified in the Myc stabilization processes. Destabi-

lization of Myc by Gsk3b can be blocked by the Ras-activated

PI3K pathway (Figure 1A).

The unique control of Myc dynamics by sequential phosphor-

ylation allows Myc to integrate upstream signals from Erk and

PI3K, which play critical roles in controlling diverse cell fates

[14,19,20]. Erk often exhibits an early, transient peak of activation

upon growth stimulation (Table S1). The peak is followed by

varying residual activities, which depend on cell lines and growth

factors. This residual Erk is critical in downstream signal encoding.

For example, in PC12 cells, a small residual Erk activity, as a result

of epidermal growth factor (EGF) stimulation, leads to prolifera-

tion. In contrast, a high residual Erk activity as a result of nerve

growth factor (NGF) stimulation in the same cell line leads to

differentiation [21,22]. The residual Erk level has also been

observed to be critical in regulating c-Fos level in fibroblasts [23].

The PI3K activation pattern depends on cell lines and

stimulants, as detailed in Table S2. It is bimodal (having two

peaks) in various cell lines including WI38, NIH 3T3, or HepG2

when stimulated by platelet-derived growth factors (PDGF) or fetal

bovine serum (FBS) [16,24,25]. In contrast, PI3K appears to have

only an early, transient single peak in the U-2OS or PVSM cell

lines stimulated with other growth stimulants [24,26]. The

bimodal activation of PI3K has been shown to be important for

cell cycle regulation [25,27,28]. In particular, the second peak has
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been found sufficient and critical to drive the G1/S transition

during cell cycle [16,27].

The temporal pattern of Myc activation closely correlates with

those of Erk and PI3K (Table S3). Myc protein reaches its peak at

,2 hours after growth stimulation and decreases to and remains

at an intermediate value, or hump, for over ,6 hours before

reducing to its basal level [16,29]. The peak and the hump of Myc

coincide with the Erk peak (also the 1st PI3K pulse) and the 2nd

PI3K pulse, respectively. These observations suggest that Myc

may sense and integrate signals from its two regulators (Erk and

PI3K).

To gain insight into this control mechanism, we have

constructed a mathematical model to analyze dynamics of Myc

accumulation controlled by sequential phosphorylation. Using this

model, we aimed to investigate how signaling patterns of Erk and

PI3K regulate Myc dynamics at the post-translational level. Also,

how robust is Myc dynamics with respect to network parameters,

such as phosphorylation and dephosphorylation rate constants?

What is unique about this strategy of controlling Myc accumu-

lation by sequentially modulating protein stability? Is this a

common strategy by which cells achieve reliable temporal control

of key regulatory proteins? By exploring these questions, our work

may provide insights into design features of cell signaling networks

and guidance for experimental intervention. Conceptually, our

model defines a unique module that connects with other models

that deal with upstream signaling dynamics leading to the

activation of Erk [21] or PI3K [30,31], as well as downstream

dynamics leading to mammalian cell fate decisions [32–34] We

further propose that post-translation regulation of Myc represents

an example of a generic dual-kinase motif. With appropriate

parameters, this motif will enable precise temporal sensing of input

signals.

Results/Discussion

The Base Simulation
The Myc temporal dynamics, simulated with reaction kinetics

and base parameter values in Table S4 and S5, was overall

consistent with experimental observations in Figure 1B [27,29]. To

achieve this consistency, however, we found that the input signals

Erk and PI3K needed to operate at or close to saturation, and

there needed to be sufficient residual Erk (ErkR) before the second

PI3K pulse (See the next section, as well as Tables S4 and S5). In

the base simulation (Figure 1B), the total Myc (black line) consisted

of unmodified, unstable Myc (blue line), stable MycSer62 (red line),

and unstable MycThr58 (green line). Although phosphorylation

state affects transactivation capacity [14], the contribution from

Figure 1. Myc protein stabilization for Myc accumulation. (A) Stimulation with growth factors (GF) leads to activation of Ras and Myc
synthesis. Active Ras induces activation of its downstream effector pathways: the MAPK and PI3K pathways. While the synthesized Myc is unstable
with short half-life, its stability can be significantly increased via the Ras effector pathways. Active Ras induces Erk that stabilizes Myc by
phosphorylation at Ser62. PI3K activation blocks Myc degradation by inhibiting phosphorylation at Thr58 by Gsk3b. As Ras activity declines, Gsk3b
initiates phosphorylation of Myc at Thr58 and triggers degradation. Phosphorylation at Thr58 requires prior phosphorylation at Ser62, and
phosphorylation at Thr58 induces dephosphorylation at Ser62. (B) Activation patterns of Erk and PI3K determine Myc stability pattern. The three
forms of Myc are plotted independently. The unmodified Myc (blue line) and MycThr58 (green line) accumulate only to a limited level, but stabilized
MycSer62 level increases via phosphorylation (red line). The total Myc level is the sum of the three forms of Myc (black line) and its dynamics are highly
correlated with input signals, Erk, and PI3K. We define the shaded area under the Myc curve as ‘‘potency’’, a measure of Myc accumulation.
doi:10.1371/journal.pcbi.1000013.g001

Author Summary

The transcription factor Myc plays a critical role in
regulating diverse cell-fate decisions, including growth,
proliferation, and programmed cell death. Underscoring its
importance, Myc expression is often found to be
deregulated in cancers. However, the dynamic mechanism
by which Myc is controlled by its upstream signaling
proteins remains unclear. To address this issue, we analyze
a well-defined signaling module for Myc regulation using a
kinetic model constrained by experimental data and
observations. In this module, Myc acts as an integrator of
its upstream signals that differentially regulate its stability.
We show that this module can enable highly sensitive Myc
response to the temporal features of the input signals, but
not to their maximum amplitudes. We further suggest that
this module represents a generic post-translational mech-
anism for signal sensing and integration in diverse
signaling networks. Our work offers insight into the
‘‘design’’ of natural biological networks and makes
predictions that can guide further experimental studies
on Myc regulation. Moreover, it defines a simple signal
processing unit that may be useful for engineering
synthetic gene circuits to carry out cell-based computa-
tion.

Integration of Erk and PI3K Signals by Myc
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MycSer62 to total Myc was much more significant than that from

MycThr58. Therefore, we assumed that the overall transactivation

capacity of Myc does not change significantly during Myc

modulation. The modification of Myc from its unstable to stable

form, then back to unstable form closely followed Erk and PI3K

signals. The first peak of Myc coincided with the Erk pulse and the

first PI3K pulse. After these initial pulses, unmodified Myc and

MycSer62 recovered to new steady state levels, which depended on

the rate constants of Myc synthesis, phosphorylation, and

degradation. Before MycSer62 reached its new steady state,

however, PI3K pulse became activated for the second time and

prevented MycSer62 from converting to the unstable form,

sustaining total amount of Myc at high level. Once the second

PI3K pulse subsided, MycSer62 was turned to MycThr58 via

phosphorylation by Gsk3b. In other words, while Erk and the first

peak of PI3K determine initial Myc accumulation, the second

peak of PI3K prevents Myc from receding to a lower level, thus

fine-tuning the Myc level.

As Myc accumulation was determined by conversion between

its unstable forms and stable form, we expected Myc accumulation

to depend on the degradation rate constant of each form. As a

quantitative estimate for Myc accumulation, we used Myc

potency, the shaded area in Figure 1B. If Myc became stabilized

quickly and remained stabilized for an extended period of time,

Myc potency would be high. In contrast, slow stabilization and

quick destabilization would yield small potency. Consistent with

these notions, our sensitivity analysis indicated that Myc potency

was highly sensitive to parameters involved in stabilization of Myc

and maintenance of the stable form (Table S6). In comparison,

other parameters governing the signal transduction in the PI3K

pathway had little impact on Myc potency (Table S7). This may

partially result from the signaling transduction in the PI3K

pathway operating with zero-order ultrasensitivity around the base

parameter setting (see Figures S2 and S5 for additional analysis

and discussion), which may explain robustness to random

perturbation in a signaling cascade [35].

Effects of Erk and PI3K Signal Patterns on Myc
Accumulation

Erk and PI3K activation patterns, which determine the

temporal dynamics of Myc, may vary significantly under different

growth conditions and in different cell lines (Table S1 and S2).

Here we investigated how Myc potency responds to varying

patterns of Erk and PI3K signals. Whenever possible, model

predictions were compared with existing experimental observa-

tions. When the latter are unavailable, our model predictions may

serve as testable hypothesis for future experiments, which in turn

can further constrain our model. As shown in Figure 2, we

quantitatively represented input signals of Erk and PI3K with the

following parameters: duration (DurE and DurP), maximal

amplitude (ErkMax and PI3KMax), and residual level (ErkR and

PI3KR). For PI3K, we used an additional parameter to describe

the time interval between the two peaks (IPP).

Our analysis predicted Myc accumulation to be insensitive to

further increase in Erk amplitude. A fivefold increase in ErkMax

caused little change in Myc accumulation (Figure 2C). A fivefold

decrease in ErkMax, however, predicted a slight but discernable

decrease in Myc accumulation. These results indicated that the

base case of Erk was operating at saturation. As a result, this

behavior enabled the system to be insensitive to minor changes in

Erk amplitude, unless the Erk amplitude became sufficiently small.

In comparison, the Myc potency was much more sensitive to the

duration of Erk pulse: excessive accumulation of Myc was also

observed when the duration of Erk was doubled (red line in

Figure 2D). Halving Erk duration resulted in significant reduction

in the initial peak of Myc.

Myc potency was sensitive to the residual Erk level (ErkR).

Without it (ErkR = 0), the total Myc level quickly reduced to a low

level following the Erk pulse (blue line in Figure 2E). Conversely, a

mere twofold increase in ErkR from the base value ( = 10% of

ErkMax) led to excessive Myc accumulation (red line in Figure 2E).

These results highlighted the importance of ErkR in fine-tuning

total Myc accumulation. In particular, ErkR was important for

maintaining sufficient Myc level before the arrival of the second

PI3K pulse, by providing a moderate rate of Myc stabilization. In

a more extreme case where the Erk signal was completely

removed, no Myc accumulation was observed (data not shown).

These results may provide a mechanistic explanation for

differential phenotypic responses to varying residual level of Erk

[21]. In PC12 cells proliferation was correlated with low residual

level of Erk, while high residual level of Erk was observed for

differentiation. Based on our simulations, we suggest that

differential regulation of Myc accumulation may be involved in

determining these diverging phenotypic behaviors of these cells.

This prediction can be tested by further experiments.

Similarly, Myc accumulation was insensitive to the maximum

amplitude of PI3K (PI3KMax), but much more sensitive to its

residual level (PI3KR) and temporal features, including duration of

the 2nd peak (DurP) and time interval between the two peaks (IPP).

Five-fold increase or decrease in PI3KMax resulted in little change

in Myc accumulation (Figure 2F). However, doubling or halving

the duration of the 2nd PI3K peak caused an approximately two

fold change in the duration of the Myc hump (Figure 2G).

Complete removal of the 2nd PI3K peak eliminated the Myc hump

(Figure S3A). This indicates that the 2nd PI3K peak was primarily

responsible for generating and maintaining the hump in Myc

activation. These results are consistent with recent experimental

data: removal of the 2nd PI3K peak by using a PI3K inhibitor [16]

or by acid washing [27] drastically reduced total Myc accumu-

lation. Given this role of the 2nd PI3K peak, the time interval

between the two peaks of PI3K was critical for determining Myc

accumulation pattern (dotted red line in Figure 2G). This is

highlighted by a variable time interval across different cell lines or

growth conditions. For example, the PI3K inter-peak delay is

3,4 hours in HepG2 cells [25] but approximately 8 hours in NIH

3T3 cells [16,25]. Our model was able to account for Myc

accumulation pattern in both conditions by varying only the time-

interval (either 3 hrs or 8 hours) between the two peaks of PI3K

(Figure S3B).

Another sensitive parameter of PI3K was its residual level. A

mere two-fold increase in the residual level from the base case

(10% of PI3KMax), resulted in excessive increase in Myc level (red

line in Figure 2H), consistent with an experimental study where

exogenous Akt expression induced significantly increased Myc

protein levels [36]. Interestingly, however, PI3KR below a certain

threshold level did not have much impact on Myc accumulation

(blue line overlapping with black line in Figure 2H). Such

threshold effect is due to the ultrasensitivity in the PI3K signaling

cascade (Figures S2 and 5). If the change in the PI3K residual level

triggers a digital switching behavior, it can cause a large change in

the output (black to red lines in Figure 2H). Any change in the

residual level outside the ultrasensitive region will not cause any

significant output change.

The results in Figure 2 suggest that Myc accumulation was

insensitive to changes in the maximum amplitude of Erk and PI3K

signals (Figure 2C and 2F), but much more sensitive to their

temporal features such as duration and inter-peak time delay, and

their residual values (Figure 2D, 2E, 2G, and 2H). This occurred

Integration of Erk and PI3K Signals by Myc
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because the maximum amplitudes of Erk and PI3K pulses were at

their saturation level. That is, when the Erk pulse is sufficiently

strong, Myc is almost completely converted into MycSer62; strong

PI3K pulses block further phosphorylation of MycSer62 to

MycThr58. If so, this mechanism will allow cells to resist further

changes in Erk and PI3K amplitudes. Such resistance (or

insensitivity) to amplitude changes (or fluctuations) of Erk and

PI3K may underlie precise control of signal transduction by Myc,

given its role as a key regulator of downstream cellular events.

That is, dysregulation of Myc activities, which is a signature of

various cancers, may have detrimental consequences [37]. To

prevent such dysregulation, activation or deactivation cues must

be transmitted and integrated precisely to regulate Myc accumu-

lation. We note that this noise-resistance, which we define as

insensitivity to the changes in Erk or PI3K level in individual cells,

requires the maximum amplitudes of Erk and PI3K to be

sufficiently large. If their amplitudes and residual values are set 10

fold lower, the Myc accumulation becomes much more sensitive to

perturbations around the new base values.

The Dual-Kinase Motif as a Generic Signal Integrator
The Erk and PI3K pathways that control Myc protein turnover

are conserved in yeast [15], and may represent a general post-

translational strategy in natural signaling pathways [38–44]

(Table 1). For instance, b-catenin stability is regulated by casein

kinase Ia (CKIa) and Gsk3b [42,44]. Similarly, an unknown

kinase and Gsk3b coordinate to modulate microtubule (MT)

stabilizing activity [43]. These examples consist of a dual-kinase

motif that integrates two independent input signals (Figure 3A). In

this motif, X represents the unphosphorylated effector protein,

which is unstable. It can be stabilized by kinase S1 through

phosphorylation (becoming Xp) and subsequently destabilized by

kinase S2 through additional phosphorylation (becoming Xpp), as

shown in Figure 3B.

The wide presence of this motif suggests its potential advantages

for cellular signal processing. To gain insights into this issue, we

developed a simplified model to analyze dynamics of the dual-

kinase motif (see Model and Methods). In the model, we treated

the two inputs of the system (Figure 3A) as independent, decoupled

upstream signals, since most of the dual-kinase motifs found in

nature often integrate independent upstream signals. Using this

model, we aimed to explore what properties of this basic motif

may underlie the dynamics observed for Myc regulation, and what

advantages these properties may confer in cellular signaling.

To characterize the dual-kinase motif, we first examined dose

response of the system with respect to the two inputs S1 and S2.

Figure 2. Erk and PI3K signal patterns determine Myc temporal behaviors. For all analyses, black lines represent the base case. (A) The Erk
signal was represented with the following parameters: duration (DurE), maximal Erk amplitude (ErkMax), and residual Erk level (ErkR). (B) The PI3K signal
was represented with the following parameters: duration (DurP), maximal PI3K amplitude (PI3KMax), residual PI3K level (PI3KR), and the time interval
between the two peaks of PI3K (IPP). The first peak of the PI3K was not considered, since its variations did not have a big impact. (C) Myc
accumulation was insensitive to ErkMax. Fivefold increase in ErkMax resulted in little change in Myc (red line) in comparison to the base case (black
line), whereas fivefold decrease in ErkMax resulted in light reduction in the main peak of Myc (blue line). (D) Doubling (red line) or halving (blue line)
DurE leads to significant change in the initial peak of Myc accumulation. (E) Myc was sensitive to ErkR. The base value of ErkR was 10 percent of ErkMax

(black line). A small increase in ErkR (20% of ErkMax) resulted in excessive Myc accumulation (red line). When Erk was completely removed (ErkR = 0),
Myc responded only to the initial, transient Erk pulse and became unresponsive to the PI3K signal (blue line). (F) Myc accumulation was insensitive to
PI3KMax. Fivefold increase (red line) or decrease (blue line) in PI3KMax resulted in little change in Myc accumulation. (G) The 2nd PI3K peak determined
generation and maintenance of Myc hump. Doubling (red line) or halving (blue line) the duration of the second PI3K peak led to approximately
twofold change in the Myc hump duration. Increasing IPP from 3 hours to 8 hours delayed the timing of the second rise in Myc accumulation (red
dotted line). (H) A slight increase (20% of PI3KMax) in PI3KR from the base value (10% of PI3KMax) resulted in excessive Myc accumulation (red line).
However, complete removal of PI3KR did not change Myc accumulation significantly (blue line overlapping with black line).
doi:10.1371/journal.pcbi.1000013.g002
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Our results indicated that system activation (through phosphor-

ylation by S1) was sensitive to input variations at an intermediate a
value (Figure 4A). In contrast, it was insensitive to input variations

at either high or low a values (green curve). Similar insensitivity (or

noise-resistance) at either strong or weak input signals was

observed for system deactivation (Figure 4B) for varying b. These

results provide a mechanistic explanation for the insensitivity of

Myc potency to input signal strengths (Figure 2C and 2F).

Another salient feature of the dual kinase motif was the

stabilization of X, which could be captured by the stabilization

efficiency (g), or the ratio between the degradation rate constant of

the unstable form and that of the stable form. Our analysis

indicated that the stabilization efficiency determines the dynamic

range of the output X. In response to S1, the upper bound of

output was set by the synthesis rate of X (k) and was asymptotically

approached as the signal strength (a) increasedh (Figure 5A). The

lower bound of the output, however, was set by k/g, which

corresponded to the basal level of X in the absence of S1. Thus, g
directly set the dynamic range of the output (k/g,k). Similar

dependence was also applied to deactivation of X by S2

(Figure 5B). Given saturating activation by S1, the dynamic range

for deactivation by S2 increased with increasing g, allowing the

dynamic range to be flexible. The system approached the basal

output level (k/g) with an increasing strength of S2 (bR‘).

These results highlight two appealing features of the dual kinase

motif. First, differential stability control on effector protein

isoforms enables flexible modulation of the output dynamic range.

This dynamic range can be fully exploited if the signal strengths

are sufficiently large. Second, sufficiently strong signals will also

result in desensitization of the system output to minor fluctuations

in the levels of these signals.

While advantageous, however, increase in noise-resistance and

dynamic range comes with increasing metabolic cost. On one

hand, increasing destabilization of X or Xpp is associated with

increasing metabolic cost. On the other, this will also require

stronger input signals to fully exploit the increased dynamic range

and to achieve noise-resistance, creating another metabolic burden

as characterized by a and b. To quantify this effect, we define a

critical a value (aC), which corresponds to a steady-state X (Xss)

value at 95% of the maximum X (for aR‘). If the input signal

would fluctuate in the range of a.aC, the resulting output

fluctuation would never exceed 5% (regardless of the magnitude of

input signal fluctuation). Here we can consider system activation as

noise-resistant in this parameter range. With similar reasoning, we

define a critical bC, which corresponds to an Xss value within 5%

of the minimum X (for bR‘). aC and bC thus determine the

minimal signal strengths required to achieve noise-resistance in

system activation or deactivation. As shown Figure 5C and 5D, the

greater the stabilization efficiency was (larger g), the heavier would

be the corresponding metabolic burden (larger aC or bC) required

to achieve noise-resistance. Insufficient input signal strength would

either fail to generate response or fall into the sensitive range of the

dose response curve (Figure 4).

Here we demonstrate that modulation of Myc stability by

sequential phosphorylation enables Myc to precisely sense and

integrate upstream Erk and PI3K signals. Such regulation is likely

critical to cell fate decisions. Our analysis indicates that, when

operating with appropriate parameters, this mechanism enables

the temporal features, instead of maximum amplitudes, of the

upstream signals to precisely modulate Myc accumulation.

Supporting this notion, dynamics of a minimal dual-kinase motif

provide direct, intuitive explanation for the key sensitivity

properties of Myc output in the full model. In this work, we have

limited our study to the well-defined post-translational control of

Myc. It is possible that robust control of Myc accumulation is

facilitated by additional mechanisms, including Myc stabilization

by a signal in the carboxy-terminus of Myc [45] and Myc

sequestration for degradation [46,47]. Myc modulation is also

tuned by regulations at other levels including post-transcription

[10] and translation [48], along with feedback control [9].

Furthermore, the activities of Pin1 and PP2A, which we assumed

to be abundant and not rate-limiting, may further contribute to

more complex Myc dynamics, as seen in various cancers [49–52].

As Myc is often deregulated in cancers, quantitative under-

standing of the mechanisms for Myc regulation may be helpful for

developing novel strategies for cancer treatment. Myc stabilization

processes consist of two temporally coordinated events: Myc

stabilization by Erk and prevention of Myc degradation by PI3K.

While the significance of Myc degradation by the second PI3K

activity has been suggested in cell proliferation [16], the extent to

which the initial Myc stabilization by Erk contributes to cell

proliferation remains unknown. Our model predicts that, for the

second round of Myc accumulation, Myc needs to be sufficiently

accumulated by ErkR prior to the second PI3K activity (black line

in Figure S4). With the PI3K signal fixed, a small increase in ErkR

is predicted to result in a significant increase in Myc accumulation

pattern (red line in Figure S4). In contrast, removal of ErkR

renders Myc unresponsive to the PI3K signal (blue line in Figure

Figure 3. Dual-kinase module as a signal integrator. (A) The
dual-kinase mechanism. S1 and S2 determine gain and loss of X stability
by sequential phosphorylation, which in turn control the total amount
of the target protein (xT = x+xP+xPP). k1 and k2 are the rate constants for
phosphorylation by S1 and S2, respectively. dX and dXP

are degradation
rate constants of the unstable (X or Xpp) and stable (Xp) forms of X. (B)
Given sufficiently strong input signals S1 and S2, the dual kinase
mechanism integrates upstream activating signal S1 to turn on, and
deactivating signal S2 to turn off. The time delay between the two
signals controls the duration of activation.
doi:10.1371/journal.pcbi.1000013.g003

Table 1. Examples of protein modulation by sequential
phosphorylation

Enzymes Module function References

Myc Erk, PI3K Protein stabilization [12–14]

Fos Erk Protein stabilization [38]

Jun JNK, Erk Protein stabilization [39]

B-catenin CKIa, Gsk3b Protein stabilization [42,44]

LPR6 Gsk3 b, CK1 Axin binding [40]

CDC25A B-Cdk1, ATM-Chk2 Stabilization [41]

doi:10.1371/journal.pcbi.1000013.t001

Integration of Erk and PI3K Signals by Myc
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S4). This is due to the sequential nature of the Myc stabilization

processes, where Erk activity must precede PI3K activity. In other

words, while Erk ‘primes’ Myc activity, PI3K ‘fine-tunes’ Myc

accumulation.

The priming ability of Erk for Myc modulation may play a

critical role in distinct responses to different stimulations. Studies

have shown that PC12 cells can be induced to undergo

differentiation or proliferation in response to NGF or EGF

[49,50], and the residual Erk level may be responsible for these

differential cellular responses [21]. Our analysis suggests that the

ability of Erk to modulate these cellular responses is through

modulation of Myc accumulation. For EGF stimulation, the low

residual Erk level may induce proliferation by weakly priming Myc

(black line in Figure S4). In contrast, the high residual Erk level

upon NGF stimulation may lead to a significant increase in Myc,

inducing differentiation (red line in Figure S4). This notion can be

Figure 4. System sensitivity to input signal perturbations. (A) At a given synthesis rate constant (k= 10), the maximal activated level of X at
the steady-state (Xss) can be modulated by a. For small or large a, sensitivity (defined as ln X/ln a) was minimal, while it was the greatest at
intermediate a values. We assumed 0 for b to allow decoupling of activation from deactivation. (B) Deactivation from the high state depended on b at
a given k. The system was initially driven to its high state by assuming a large a (10,000). Sensitivity was minimal for small or large b, and was the
greatest at intermediate b values.
doi:10.1371/journal.pcbi.1000013.g004

Figure 5. Dynamic range of output activation and deactivation. (A) The dynamic range for activation was g because: Xss<k/g as aR0; Xss<k
as aR‘. For a given g, we define a critical value aC that corresponds to an XSS = 95% of the maximal value. If a.aC, fluctuations in Xss due to
fluctuations in a would be smaller than 5%. Here we consider system activation in this parameter range as effectively noise-resistant. Similar to
analyses in Figure 4, we assumed 0 for b and a large value (10,000) for a, which allowed analyzing dynamic range for activation and deactivation
independently. (B) Given a sufficiently large a, the dynamic range for system deactivation was also g because: Xss<k as bR0; Xss<k/g as bR‘. For a
given g, we define a critical value bC that corresponds to Xss within 5% of its minimal value. Similar to (A), we consider system deactivation to be
effectively noise-resistant for b.bC. (C) aC increased with g almost linearly. (D) bC increased with g almost linearly.
doi:10.1371/journal.pcbi.1000013.g005

Integration of Erk and PI3K Signals by Myc

PLoS Computational Biology | www.ploscompbiol.org 6 2008 | Volume 4 | Issue 2 | e1000013



experimentally tested by simultaneous time-course measurements

of the input signals Erk and PI3K, and the output Myc protein.

Also, the input signals can be independently controlled by

inhibitor drugs [51], inducible systems, or siRNA molecules

targeting the MAPK or PI3K pathways [52].

The assumed saturation of the input signals in the base model

can also be experimentally tested. Our simulations indicate that

the assumed saturation is a necessary condition for the overall

robustness of Myc to parameters. This serves as an interesting

question to explore experimentally. Also, as detailed in Figure S5,

some constituent reactions in the PI3K pathway (e.g., the Ph-dePh

cycles) have not been well-characterized at the quantitative level.

Our additional model predictions on how the overall response of

Gsk3b to PI3K depends on sensitivity characteristics of individual

stages can serve as further targets for experimental tests.

The analysis of the Myc stabilization mechanism reveals a

regulatory network motif that may be ubiquitously used in nature.

Network motifs are small, recurring cellular regulatory networks,

identified and characterized by their shared architectures and

functions among diverse organisms. Well-known examples include

feedback regulations, feed-forward loops, and their derivatives (see

[53–56] for review). Here we suggest that the dual-kinase motif

represents another example with distinctive features.

The dual-kinase motif is similar to a well-studied phosphory-

lation-dephosphorylation enzymatic motif of protein modification.

In both motifs, protein modification events occur sequentially, and

the current state of the protein hinges upon its previous state.

Given appropriate input signals and parameters, the sensitivity

and amplitude of the output response can be precisely controlled

[57]. The dual-kinase motif differs from the phosphorylation-

dephosphorylation one, however, in that protein modification

process is irreversible. Once phosphorylated, the stabilized protein

cannot return to its initial state, but is targeted for degradation

upon further modification. This distinctive characteristic contrib-

utes to additional features of the dual-kinase motif: sequential

signal integration of multiple inputs and, correspondingly, flexible

dynamic range for the output governed by protein stability

modulation.

Model and Methods

Myc Regulation by Erk and PI3K
Based on the reaction network outlined in Figure 1A, we

developed a kinetic mathematical model in Dynetica, a graphics-

based, integrated simulation platform [58]. We further simplified

the model by lumping the sequential destabilization processes

together into the phosphorylation rate constant for MycThr58

(Figure S1). This simplification was based on the observation that

Pin1 and PP2A activation is not rate-limiting during cell cycle

entry [59,60]. Explicitly accounting for the sequential events by

Pin1 and PP2A did not have significant impact on Myc

accumulation. In addition, we assumed that the change in

transactivation capacity due to stability control [14] is not

significant, since MycSer62 is much more predominant than

MycThr58. Based on experimental data, we assumed phosphory-

lation of Myc at Ser62 or Thr58 to be much more significant than

dephosphorylation. This results in sequential, irreversible Myc

stabilization. However, we accounted specifically for the differen-

tial degradation dynamics of protein isoforms in this model.

To establish a framework that facilitates investigation of Myc

modulation by its upstream signals, Erk and PI3K, we built the

model with Erk and PI3K as the inputs and Myc as the output.

Despite the extensive interactions between the MAPK and PI3K

pathways, we decoupled Erk and PI3K signals and simplified them

as a single or double rectangular pulses, respectively (Figure 1B).

Such decoupling of these signals was driven by the objective of our

study: to characterize Myc’s response to various input signal

patterns. Since activation of Erk and PI3K is specific to cell lines

and stimulants (as shown in Table S1 and S2), and is mediated by

multiple signaling pathways including Ras, Rac, or Rap [61–64], it

is not clear to what extent these signaling pathways contribute to

Erk and PI3K activation patterns. Furthermore, the Erk and PI3K

pathways that control Myc protein turnover are a conserved motif

found in both mammalian and yeast systems and such control

motif has been speculated in many other protein stabilization

processes [15]. In many of these processes, input signals are not

triggered by a single protein. To set up a framework for a more

general Myc stabilization process, we decoupled the two signals

from each other and from their upstream network regulation and

assumed their effects on Erk and PI3K in the decoupled inputs.

This allowed analyzing Myc’s response to variations in Erk and

PI3K independently.

Based on experimental observations, we approximated input

signals as rectangular pulses with three parameters: duration, the

maximum level, and the residual level. To describe two-peak PI3K

activation, we introduced another parameter, inter-peak delay.

More sophisticated representations (for example, sinusoidal pulses)

give similar results (data not shown). Although we focused on the

two-peak activation of PI3K in the base model, the modeling

framework can be extended to study other patterns of PI3K signals

(such as a single peak pattern) by varying duration, steady-state

values, or inter-peak delay (for example, see Figure S3).

As detailed in Figure S1 and Tables S4, most reaction

mechanisms and base model parameters were derived from

experimental results in mouse or human cells. Others were

carefully obtained or estimated from previous theoretical studies

[65–67]. To test the effect of uncertainty in these parameter

values, we carried out parametric sensitivity analysis by increasing

or decreasing each parameter by 10 fold of its base value while

keeping the others constant (Figure S6). To quantify Myc’s

response to these changes, we used ‘potency’ or the shaded area

under the Myc temporal profile curve (Figure 1B). This

quantification method was previously used to characterize potency

of transient activation of signaling protein [68]. The parametric

sensitivity analysis was performed in Matlab.

Modeling a Generic Dual Kinase Motif
Based on the connectivity in Figure 3A, we modeled the dual

kinase motif using three highly simplified ordinary differential

equations (ODEs), as presented in a dimensionless form:

dx

dt
~k{a

x

1zx
{gx,

dxP

dt
~a

x

1zx
{b

xP

1zxP

{xP,

dxPP

dt
~b

xP

1zxP

{gxPP

where x, xP, and xPP are the concentrations of the three forms of a

molecule X; t is an independent variable, time; k describes the

synthesis of X (k=K dXP
); a is the activation efficiency by S1

(k1 S1=K dXP
); b is the deactivation efficiency by S2 (k2 S2=K dXP

); and g

is the ratio of unstable protein to stable protein (dX=dXP
), or

stabilization efficiency. Without loss of generality and for simplifica-

tion, we assumed that x and xpp had the same stability.

Similar to Myc regulation, we used the total effector

concentration X ( = x+xP+xPP) to represent the system output. As
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shown by a typical simulation (Figure 2B), this module enables

integration of two signals by the effector module. Drawing analogy

to electric signal processing, the output can be considered a

combination of ‘NOT’ and ‘AND’ operators, which defines a

pulse of output.

Supporting Information

Figure S1 Detailed reaction diagram for Myc protein stabilization.

Found at: doi:10.1371/journal.pcbi.1000013.s001 (0.22 MB TIF)

Figure S2 Modeling a phosphorylation-dephosphorylation cy-

cle. An enzymatic modification cycle of Gsk3b between phos-

phorylated and dephosphorylated states (A) is mathematically

modeled (B). k and kGP are rate constants for phosphorylation and

dephosphorylation, and K is the Michaelis-Menten constant.

Protein conversion is ultrasensitive near c = 1, for a sufficiently

small Michaelis-Menten constant. The sensitivity becomes weaker

as K is increased. Time-course simulation results at varying values

show the dependence of conversion on the rates of phosphoryla-

tion and dephosphorylation (C). Protein conversion becomes

ultrasensitive near a = 1 for a sufficiently small Michaelis-Menten

constant, while the sensitivity becomes weaker as K is increased.

Found at: doi:10.1371/journal.pcbi.1000013.s002 (0.12 MB TIF)

Figure S3 Impact of varying PI3K inputs on Myc accumulation.

(A) A single peak of Myc is predicted if the second round of PI3K

activity is removed. This results in reduced Myc accumulation

compared to the wild-type. (B) Increased inter-peak time delay of

PI3K (from 3 to 8 hours) results in wider separation between the

two peaks of Myc, and the resulting Myc accumulation is less than

the wild-type.

Found at: doi:10.1371/journal.pcbi.1000013.s003 (0.11 MB TIF)

Figure S4 Erk ‘primes’ Myc activity, and PI3K ‘fine-tunes’ Myc

accumulation level. With the PI3K signal fixed, different residual

Erk level leads to differential Myc accumulation by the second

PI3K activity. The base value of the residual Erk level (ErkR) was

10 percent of maximal Erk level (black line). For increased level of

ErkR (20%), the second PI3K activity increased Myc accumula-

tion level significantly (red line). When ErkR was completely

removed, Myc became unresponsive to the PI3K signal (blue line).

Found at: doi:10.1371/journal.pcbi.1000013.s004 (0.09 MB TIF)

Figure S5 The overall ultrasensitivity arises from the input/

output response in each level and across different levels down the

cascade. (A) The Akt Ph-dePh cycle (in response to PI3K) can be

either graded (red line) or ultrasensitive (blue line) depending on

the Michaelis-Menten constants. (B) Both types of PI3K-Akt

responses can lead to ultrasensitive PI3K-Gsk3b responses (both

red and blue), if the Akt-Gsk3b response remains ultrasensitive. (C)

If Akt-Gsk3b response is not ultrasensitive, the overall PI3K-

Gsk3b remains ultrasensitive if PI3K-Akt response is ultrasensitive,

but may lose ultrasensitivity if PI3K-Akt response is not

ultrasensitive. Note that here we have assumed that the output

from the first step (AktP) has an appropriate dynamic range that

‘‘matches’’ the input of the second step. The dependence of the

overall sensitivity of the PI3K-Gsk3b response will likely be much

more complex if this matching condition is not satisfied.

Found at: doi:10.1371/journal.pcbi.1000013.s005 (0.22 MB TIF)

Table S1 Erk signal pattern

Found at: doi:10.1371/journal.pcbi.1000013.s006 (0.05 MB

DOC)

Table S2 PI3K signal pattern

Found at: doi:10.1371/journal.pcbi.1000013.s007 (0.05 MB

DOC)

Table S3 Myc signal pattern

Found at: doi:10.1371/journal.pcbi.1000013.s008 (0.03 MB

DOC)

Table S4 Reaction kinetics

Found at: doi:10.1371/journal.pcbi.1000013.s009 (0.09 MB

DOC)

Table S5 Base model parameters and notes

Found at: doi:10.1371/journal.pcbi.1000013.s010 (0.08 MB

DOC)

Table S6 Parametric Sensitivity

Found at: doi:10.1371/journal.pcbi.1000013.s011 (0.03 MB

DOC)

Table S7 Parametric Sensitivity without ultrasensitivity

Found at: doi:10.1371/journal.pcbi.1000013.s012 (0.03 MB

DOC)

Text S1

Found at: doi:10.1371/journal.pcbi.1000013.s013 (0.05 MB

DOC)
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